Computer Vision - Lecture 20

Motion and Optical Flow

25.01.2017
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Many slides adapted from K. Grauman, S. Seitz, R. Szeliski, M. Pollefeys, S. Lazebnik
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Announcements

e Lecture Evaluation
> Please fill out the evaluation form...
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Course Outline

 Image Processing Basics

e Segmentation & Grouping
e Object Recognition

e Local Features & Matching
e Object Categorization

e 3D Reconstruction
~ Epipolar Geometry and Stereo Basics
~ Camera calibration & Uncalibrated Reconstruction
> Active Stereo

e Motion
> Motion and Optical Flow

e 3D Reconstruction (Reprise)
> Structure-from-Motion
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Recap: Epipolar Geometry - Calibrated Case

x-[tx(Rx)]=0 ®mE) Xx'Ex'=0 with E=[t]R

8

Essential Matrix
(Longuet-Higgins, 1981)
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Slide credit: Svetlana Lazebnik B. Leibe
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Recap: Epipolar Geometry - Uncalibrated Case

X

OJ

~ o \

S 5T =g T r - T r—1
: X EX'=0 mm) x'Fx'=0 with i_K EK
e X =KX

; , A Fundamental Matrix

= X = K (Faugeras and Luong, 1992)
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Slide credit: Svetlana Lazebnik B. Leibe



Recap: The Eight-Point Algorithm
x=(uv, DT, x’=(@’v’,1)7
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B. Leibe

Slide adapted from Svetlana Lazebnik



RWTH
Recap: Normalized Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-2 constraint using SVD. Set d.., to
_ ) . 33
SYD d,, V, ‘- V3| —~ zeroand
F-UDV™ =U S reconstruct /'

4. Transform fundamental matrix back to original units: if
T and T are the normalizing transformations in the two

images, than the fundamental matrix in original
coordinates is T/ F'T".
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Slide credit: Svetlana Lazebnik B. Leibe [Hartley, 1995]
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Practical Considerations

- Z_. X

Small Baseline Large Baseline

1. Role of the baseline
> Small baseline: large depth error
> Large baseline: difficult search problem

e Solution
> Track features between frames until baseline is sufficient.

Slide adapted from Steve Seitz B. Leibe
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Topics of This Lecture

e |Introduction to Motion
~ Applications, uses

e Motion Field

> Derivation

e Optical Flow
~ Brightness constancy constraint
~ Aperture problem
> Lucas-Kanade flow
> lterative refinement
> Global parametric motion
> Coarse-to-fine estimation
> Motion segmentation

e KLT Feature Tracking

B. Leibe
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Video

e A video is a sequence of frames captured over time

e Now our image data is a function of space
(X, y) and time (t)

— I('xay:t)

Slide credit: Svetlana Lazebnik B. Leibe
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e Sometimes, motion is the only cue...

e DT > -

Slide credit: Svetlana Lazebnik

Not grouped

Proximity

Similarity

Common Fate

Common Region

B. Leibe

R\N11-I ACHEN
Motion and Perceptual Organization

UNIVERSITY

Parallelism
Symmetry

Continuity

Closure

19
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Motion and Perceptual Organization

e Sometimes, motion is foremost cue
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B. Leibe

Slide credit: Kristen Grauman
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Motion and Perceptual Organization

e Even “impoverished” motion data can evoke a strong
percept

Slide credit: Svetlana Lazebnik B. Leibe
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Motion and Perceptual Organization

e Even “impoverished” motion data can evoke a strong
percept

Slide credit: Svetlana Lazebnik B. Leibe
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Uses of Motion

e Estimating 3D structure
» Directly from optic flow
> Indirectly to create correspondences for SfM

e Segmenting objects based on motion cues

e Learning dynamical models

e Recognizing events and activities

e Improving video quality (motion stabilization)
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Slide adapted from Svetlana Lazebnik B. Leibe
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Motion Estimation Techniques

e Direct methods

~ Directly recover image motion at each pixel from spatio-
temporal image brightness variations

- Dense motion fields, but sensitive to appearance variations
~ Suitable for video and when image motion is small

e Feature-based methods

> Extract visual features (corners, textured areas) and track them
over multiple frames

> Sparse motion fields, but more robust tracking
> Suitable when image motion is large (10s of pixels)

24

Slide credit: Steve Seitz B. Leibe
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Topics of This Lecture

e Motion Field

> Derivation
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Motion Field

e The motion field is the projection of the 3D scene
motion into the image
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Slide credit: Svetlana Lazebnik B. Leibe
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Motion Field and Parallax

Slide credit: Svetlana Lazebnik

P (t) is a moving 3D point

Velocity of 3D scene point:
V =dP/dt

p(t) = (z(t),y(?)) is the
projection of P in the
image.

Apparent velocity v in the
image: given by components
v, = dz/dt and v, = dy/dt

These components are
known as the motion field of
the image.

B. Leibe
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Quotient rule:

Motion Field and Parallax (fl9) =9 =9/

P (t-+dt)

V = [V,,V,, V] pzfg Pw

To find image velocity v, differentiaf‘*ea
p with respect to ¢ (using quotient rulé___a.):

ZV-V.P _ fV - Vzp

and the depth of the 3D point (2).

. V=it

5 p(t+dt
(é) ./v.

= fV,—V,x fV, — sz p(t)

o B Yy

>

g  Image motion is a function of both the 3D motlon (V)
3

S

28

Slide credit: Svetlana Lazebnik B. Leibe
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Motion Field and Parallax

e Pure translation: V is constant everywhere

V.cr;_vz ]-
_ 7 _ z V:Z(VO_VZ ),

I = (1 1Y)

Uy

Uy

Slide credit: Svetlana Lazebnik B. Leibe
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Motion Field and Parallax

e Pure translation: V is constant everywhere

1
V = Z(VO—VZ ),

Vo = (fVIBJ fvy)
* V. is nonzero:

- Every motion vector points toward (or away from) v,
the vanishing point of the translation direction.

B. Leibe

Slide credit: Svetlana Lazebnik
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Motion Field and Parallax

e Pure translation: V is constant everywhere
1

V = E(VO—VZ ),

Vo = (fV:L‘a fvy)
* V. is nonzero:

- Every motion vector points toward (or away from) v,
the vanishing point of the translation direction.

* V. is zero:

~ Motion is parallel to the image plane, all the motion vectors are
parallel.

e The length of the motion vectors is inversely
proportional to the depth ~.

31

Slide credit: Svetlana Lazebnik B. Leibe
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Topics of This Lecture

e Optical Flow
~ Brightness constancy constraint
~ Aperture problem
> Lucas-Kanade flow
> lterative refinement
> Global parametric motion
> Coarse-to-fine estimation
> Motion segmentation

B. Leibe

32
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Optical Flow

e Definition

~ Optical flow is the apparent motion of brightness patterns in
the image.

e Important difference
~ ldeally, optical flow would be the same as the motion field.

> But we have to be careful: apparent motion can be caused by
lighting changes without any actual motion.

> Think of a uniform rotating sphere under fixed lighting vs. a
stationary sphere under moving illumination...

Slide credit: Svetlana Lazebnik B. Leibe
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Apparent Motion # Motion Field

©
—
S~
Yo
—
%2
=
c
©
D
>
2
S
Q
S
(@]
@)

34

Figure from Horn book

B. Leibe

Slide credit: Kristen Grauman



Estimating Optical Flow

./' Q@ *

W ®
o—> I (@] .
I(xayat_l) I(CB,y,t)

e Given two subsequent frames, estimate the apparent
motion field u(z,y) and v(x,y) between them.

e Key assumptions

» Brightness constancy: projection of the same point looks the
same in every frame.

> Small motion: points do not move very far.
» Spatial coherence: points move like their neighbors.
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Slide credit: Svetlana Lazebnik B. Leibe



The Brightness Constancy Constraint

(z.y)
\dlsplacement = (u,v)

(@)
(z +u,y 4+ v)

[(X,y,t-1) 1(X,y,1)

e Brightness Constancy Equation:

| (X, y,t=1) =1 (X+U(x,y), y+V(xy)1t)
e Linearizing the right hand side using Taylor expansion:

1(X, Y, t=D) = (X, y,t)+ 1 -u(x, y)+1,-v(X,y)
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e Hence, @\u -\ ~(

Spatial derivatives Temporal derivative
B. Leibe

Slide credit: Svetlana Lazebnik
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RWTH
The Brightness Constancy Constraint

l,-u+l, -v+1, =0
e How many equations and unknowns per pixel?
~ One equation, two unknowns

e Intuitively, what does this constraint mean?

VI-(u,v)+1 =0

e The component of the flow perpendicular to the
gradient (i.e., parallel to the edge) is unknown

gradient

If (U,V) satisfies the equation,
so does (U+U’, v+Vv')if VI-(u',v')=0

Slide credit: Svetlana Lazebnik B. Leibe
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The Aperture Problem

Slide credit: Svetlana Lazebnik B. Leibe

Perceived motion

38



The Aperture Problem
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\ Actual motion
39

Slide credit: Svetlana Lazebnik B. Leibe
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The Barber Pole lllusion
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§ http://en.wikipedia.org/wiki/Barberpole illusion 0

Slide credit: Svetlana Lazebnik B. Leibe


http://en.wikipedia.org/wiki/Barberpole_illusion

UNI\IEF(%II%I
The Barber Pole lllusion
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http://en.wikipedia.org/wiki/Barberpole illusion

41

Slide credit: Svetlana Lazebnik B. Leibe


http://en.wikipedia.org/wiki/Barberpole_illusion

VRS
The Barber Pole lllusion
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http://en.wikipedia.org/wiki/Barberpole illusion
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Slide credit: Svetlana Lazebnik B. Leibe


http://en.wikipedia.org/wiki/Barberpole_illusion

Solving the Aperture Problem

e How to get more equations for a pixel?

e Spatial coherence constraint: pretend the pixel’s
neighbors have the same (u,v)

~ If we use a 5x5 window, that gives us 25 equations per pixel
0 = I;(p;j) + VI(p;) - [u v]

- I:(p1) Iy(p1) | - Ii(p1) |
Ia:(Pz) fy(Pz) { U } _ ft(Pz)
i Ia:(I.)25) fy(I.)25) ] i It(1;25) |

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 674-679, 1981.

Slide credit: Svetlana Lazebnik
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B. Leibe


http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf
http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf
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Solving the Aperture Problem

e Least squares problem:

I Ix(pl) Iy(pl) ] i It(pl) ]
Ix(pZ) Iy(Pz) |: U ] — _ [t(pZ) A d=0b
: : v 5 25x2 2x1 25x1
| Ie(p25) Iy(p2s) | | Ii(p2s) |

e Minimum least squares solution given by solution of
(ATA) d= Alp

2X2 2x1 2x1

E:-LEIQ EZ‘Lny (Y E:_Ly]i
Al'A Alp
(The summations are over all pixels in the K x K window)

Slide adapted from Svetlana Lazebnik B. Leibe
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Conditions for Solvability

e Optimal (u, v) satisfies Lucas-Kanade equation

Sl SELI, | [w] _ [ S
SLly, SELI, || o]~ | S

AT A Alp

e When is this solvable?
» ATA should be invertible.
» ATA entries should not be too small (noise).
> ATA should be well-conditioned.

Slide credit: Svetlana Lazebnik B. Leibe

|

45



©
—
~~
L0
—
)
=
c
©
D
>
2
S
Q
S
(@]
@)

RWTH
Eigenvectors of ATA

Iy S I Iy
ATA = [%ley %Iy[z] =2 [ I, ] [ I,) = > vI(vD)!

e Haven’t we seen an equation like this before?

e Recall the Harris corner detector
> M= ATAis the second-moment matrix.

e The eigenvectors and eigenvalues of M relate to edge
direction and magnitude.

» The eigenvector associated with the larger eigenvalue points in
the direction of fastest intensity change.

~ The other eigenvector is orthogonal to it.

Slide credit: Svetlana Lazebnik B. Leibe

46



RWTHAACHEN
, . UNIVERSITY
Interpreting the Eigenvalues

e Classification of image points using eigenvalues of the
second moment matrix:

A

A, and A, are small }I>

Slide credit: Kristen Grauman
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Edge
5
7))
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pS T
5 Y VI(VI)
é - Gradients very large or very small
S - Large )\, small )\,
48

Slide credit: Svetlana Lazebnik B. Leibe
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Low-Texture Region

Svi(vi?t

- Gradients have small magnitude
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Slide credit: Svetlana Lazebnik B. Leibe
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High-Texture Region

Svi(vi?t

- Gradients are different, large magnitude
- Large )\, large )\,
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Per-Pixel Estimation Procedure

e Let M=>(VI)(VI) and { %:H

e Algorithm: At each pixel compute U by solving MU =Db

M is singular if all gradient vectors point in the same
direction
- E.g., along an edge
> Trivially singular if the summation is over a single pixel
or if there is no texture
> l.e., only normal flow is available (aperture problem)

e Corners and textured areas are OK

Slide credit: Steve Seitz B. Leibe
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Iterative Refinement

1.

Slide adapted from Steve Seitz

Estimate velocity at each pixel using one iteration of
Lucas and Kanade estimation.

Sl SELI, | [w] _ [ S
SLly, SELI, || o]~ | S

AT A Alp

. Warp one image toward the other using the estimated

flow field.

~ (Easier said than done)

. Refine estimate by repeating the process.

B. Leibe
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Optical Flow: Iterative Refinement

A f1@) ()

estimate

Initial guess:dn, = 0O
update ® 0

Estimate:d; = dg+d

>
Xo X

(using d for displacement here instead of u)
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Slide credit: Steve Seitz B. Leibe



Optical Flow: Iterative Refinement

& file —d1) | f(2)

estimate

Initial guess: d
update ® 1

Estimate: d, = dy +d

>
Xo X

(using d for displacement here instead of u)
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Slide credit: Steve Seitz B. Leibe



Optical Flow: Iterative Refinement

A file —d2) | f5(2)

estimate

Initial guess: d-»
update

Estimate:ds = dr + d

>
Xo X

(using d for displacement here instead of u)
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Slide credit: Steve Seitz B. Leibe
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Optical Flow: Iterative Refinement

A

filz —d3) = fa(x)

=

(using d for displacement here instead of u)

Slide credit: Steve Seitz

_ 56
B. Leibe
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RWTH
Optic Flow: Iterative Refinement

e Some Implementation Issues:

~ Warping is not easy (ensure that errors in warping are smaller
than the estimate refinement).

- Warp one image, take derivatives of the other so you don’t need
to re-compute the gradient after each iteration.

» Often useful to low-pass filter the images before motion
estimation (for better derivative estimation, and linear
approximations to image intensity).

57

Slide credit: Steve Seitz B. Leibe
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Problem Cases in Lucas-Kanade

e The motion is large (larger than a pixel)
> |terative refinement, coarse-to-fine estimation

e A point does not move like its neighbors
> Motion segmentation

e Brightness constancy does not hold
» Do exhaustive neighborhood search with normalized correlation.

61

Slide credit: Svetlana Lazebnik B. Leibe
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Temporal Aliasing

e Temporal aliasing causes ambiguities in optical flow
because images can have many pixels with the same

intensity.
e |l.e., how do we know which ‘correspondence’ is
correct?
4 fi(z) fo(z) A  fi(z)  fo(w)
/\/ actual shift
o NS
estimated shift
- |
Nearest match is Nearest match is
correct (no aliasing) incorrect (aliasing)

e To overcome aliasing: coarse-to-fine estimation.

Slide credit: Steve Seitz B. Leibe
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ldea: Reduce the Resolution!
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Slide credit: Svetlana Lazebnik B. Leibe



Computer Vision WS 15/16

RWTHAACHEN
UNIVERSITY

Coarse-to-fine Optical Flow Estimation
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Gaussian pyramid of image 1

Slide credit: Steve Seitz
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Coarse-to-fine Optical Flow Estimation

A N
My M
AN I

| |

- —, Runiterative L-K _-

Warp & upsample

- —— Run iterative L-K +— -

Computer Vision WS 15/16

Gaussian pyramid of image 1

Gaussian pyramid of image 2

66

Slide credit: Steve Seitz B. Leibe
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Topics of This Lecture

e |Introduction to Motion
- Applications, uses

e Motion Field
> Derivation

e Optical Flow
> Brightness constancy constraint
~ Aperture problem
> Lucas-Kanade flow
» lterative refinement
» Global parametric motion
» Coarse-to-fine estimation
> Motion segmentation

e KLT Feature Tracking

B. Leibe

CHEN
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Feature Tracking

e So far, we have only considered optical flow estimation
in a pair of images.

e If we have more than two images, we can compute the
optical flow from each frame to the next.

e Given a point in the first image, we can in principle
reconstruct its path by simply “following the arrows”.

Slide credit: Svetlana Lazebnik B. Leibe
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Tracking Challenges

e Ambiguity of optical flow
> Find good features to track

e Large motions
> Discrete search instead of Lucas-Kanade

e Changes in shape, orientation, color
~ Allow some matching flexibility

e Occlusions, disocclusions
- Need mechanism for deleting, adding new features

e Drift - errors may accumulate over time
> Need to know when to terminate a track

Slide credit: Svetlana Lazebnik B. Leibe
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Handling Large Displacements

e Define a small area around a pixel as the template.

e Match the template against each pixel within a search
area in next image - just like stereo matching!

e Use a match measure such as SSD or correlation.

e After finding the best discrete location, can use Lucas-
Kanade to get sub-pixel estimate.

Slide credit: Svetlana Lazebnik B. Leibe
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Tracking Over Many Frames

e Select features in first frame

e For each frame:
» Update positions of tracked features
- Discrete search or Lucas-Kanade

> Terminate inconsistent tracks

- Compute similarity with corresponding feature in the previous
frame or in the first frame where it’s visible

> Start new tracks if needed

- Typically every ~10 frames, new features are added to “refill the
ranks”.

Slide credit: Svetlana Lazebnik B. Leibe
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Shi-Tomasi Feature Tracker

e Find good features using eigenvalues of second-
moment matrix
> Key idea: “good” features to track are the ones that can be
tracked reliably.
e From frame to frame, track with Lucas-Kanade and a
pure translation model.

> More robust for small displacements, can be estimated from
smaller neighborhoods.

e Check consistency of tracks by affine registration to
the first observed instance of the feature.

~  Affine model is more accurate for larger displacements.
> Comparing to the first frame helps to minimize drift.

J. Shi and C. Tomasi. Good Features to Track. CVPR 1994,
B. Leibe

Slide credit: Svetlana Lazebnik
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UNI\IEF(%II%I
Tracking Example

Figure 1: Three frame details from Woody Allen’s
Manhattan. The details are from the 1st, 11th, and
21st frames of a subsequence from the mowvie.

Figure 2: The traffic sign wmmdows from frames
1,6,11,16.21 as tracked (top), and warped by the com-
puted deformation matrices [bottom).
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J. Shi and C. Tomasi. Good Features to Track. CVPR 1994,
B. Leibe
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RWTH
Real-Time GPU Implementations

e This basic feature tracking framework (Lucas-Kanade +

Shi-Tomasi) is commonly referred to as “KLT tracking”.

~ Used as preprocessing step for many applications
(recall the Structure-from-Motion pipeline)

» Lends itself to easy parallelization

e Very fast GPU implementations available

> C. Zach, D. Gallup, J.-M. Frahm,
Fast Gain-Adaptive KLT tracking on the GPU.
In CVGPU’08 Workshop, Anchorage, USA, 2008

» 216 fps with automatic gain adaptation
» 260 fps without gain adaptation

http://www.cs.unc.edu/~ssinha/Research/GPU KLT/

http://cs.unc.edu/~cmzach/opensource.html
B. Leibe
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RWTH
Real-Time Optical Flow Example

GPU KLT:

A GPU-based Implementation of the
Kanade-Lucas-Tomasi Feature Tracker

http://www.cs.unc.edu/~ssinha/Research/GPU KLT/

http://cs.unc.edu/~cmzach/opensource.html
B. Leibe
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Dense Optical Flow

e Dense measurements can be obtained by
adding smoothness constraints.

Color map

(¢) Thomas Brox 2009

T. Brox, C. Bregler, J. Malik, Large displacement
optical flow, CYPR‘09, Miami, USA, June 2009.

B. Leibe



http://www.cs.berkeley.edu/~brox/pub/brox_cvpr09.pdf

©
—
S~
Yo
—
)
=
c
©
D
>
2
S
Q
£
(@]
@)

Summary

e Motion field: 3D motions projected to 2D images;
dependency on depth.

e Solving for motion with
~ Sparse feature matches

- Dense optical flow
e Optical flow
~ Brightness constancy assumption

~ Aperture problem

> Solution with spatial coherence assumption

Slide credit; Kristen Grauman B. Leibe
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RWNTH
References and Further Reading

e Here is the original paper by Lucas & Kanade

> B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In Proc. IJCAI,
pp. 674-679, 1981.

B. Leibe
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