Computer Vision - Lecture 17

Epipolar Geometry & Stereo Basics

16.01.2017

Bastian Leibe
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Course Outline

 Image Processing Basics

e Segmentation & Grouping
e Object Recognition

e Local Features & Matching

e Object Categorization

e 3D Reconstruction
~ Epipolar Geometry and Stereo Basics
~ Camera calibration & Uncalibrated Reconstruction
~ Multi-view Stereo

e Optical Flow
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R\WNTH

Recap: R-CNN for Object Deteection

ConvNet

Slide credit: Ross Girshick

ConvNet

ConvNet

B. Leibe




N~
—
S~~~
o
—
n
=
c
©
i
>
2
>
o
=
@)
@)

Recap: Faster R-CNN

> Remove dependence on

¢ One network) four losses Classification Bounding-box
loss regression loss

external region proposal

algorithm.

Classification
loss

Bounding-box
regression loss

Rol pooling

> Instead, infer region

proposals from same
CNN.

~ Feature sharing
> Joint training

= Object detection in
a single pass becomes
possible.

%propcgls — /;1
e /

H.

Region Proposal Network

feature map

Slide credit: Ross Girshick



RWNTH
Recap: Fully Convolutional Networks

“tabby cat”
e CNN
9000 ®
At S S L
\
convolutionalization
tabby cat heatmap
0020 a®
5 iR
25°

oo

e |ntuition

> Think of FCNs as performing a sliding-window classification,
producing a heatmap of output scores for each class
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Image source: Long, Shelhamer, Darrell




RWTH
Recap: Semantic Image Segmentation

e Encoder-Decoder Architecture
» Problem: FCN output has low resolution
> Solution: perform upsampling to get back to desired resolution
> Use skip connections to preserve higher-resolution information
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Image source: Newell et al.



Recap: FCNs for Human Pose Estimation

e |nput data

Image Keypoints Labels
ORATIOM 7 PROPER SOCTTD € DRATIOP

919) §41-9211

e Task setup
> Annotate images with keypoints for skeleton joints
> Define a target disk around each keypoint with radius r
» Set the ground-truth label to 1 within each such disk
> Infer heatmaps for the joints as in semantic segmentation
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Slide adapted from Georgia Gkioxari



Other Tasks: Face Verification
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Slide credit: Svetlana Lazebnik


https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf
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Discriminative Face Embeddings

e Learning an embedding using a Triplet Loss Network

» Present the network with triplets of examples
Negative Anchor Positive

» Apply triplet loss to learn an embedding f(-) that groups the
positive example closer to the anchor than the negative one.

| (%) — f(a:f)né < |f@?) = f=M)3

Negative

Anchor LEARNING
Negative

Anchor
Positive Posntwe

= Used with great success in Google’s FaceNet face recognition

B. Leibe
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RO ONVERSITY
Vector Arithmetics in Embedding Space

e Learned embeddings often preserve linear regularities
between concepts

> Analogy questions can be answered through simple algebraic
operations with the vector representation of words.

> E.g., vec(“King”) - vec(“Man”) + vec(“Woman”) ~ vec(“Queen”)
> E.g.,

5 et
. 1 o +
\3‘ e
L~ -

smiling neutral neutral
woman woman

smiling man
man 13

[Mikolov, NIPS 2013], [Radford, ICLR 2016]

B. Leibe



N~
—
~~
o
—
n
=
c
©
i
>
2
>
o
S
@)
@)

Topics of This Lecture

e Geometric vision
> Visual cues
> Stereo vision

e Epipolar geometry

Depth with stereo

Geometry for a simple stereo system

» Case example with parallel optical axes
General case with calibrated cameras

Y

Y

Y

e Stereopsis & 3D Reconstruction
Correspondence search

Additional correspondence constraints
Possible sources of error

Applications

Y

Y

Y

Y

B. Leibe
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RWTHAACHEN
. . . UNIVERSITY
Geometric vision

e Goal: Recovery of 3D structure

> What cues in the image allow us to do this?

-
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Slide credit: Svetlana Lazebnik
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Visual Cues

e Shading

Slide credit: Steve Seitz

Merle Norman Cosmetics, Los Angeles

B. Leibe
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Visual Cues

e Texture

Slide credit: Steve Seitz

The Visual Cliff, by William Vandivert, 1960

B. Leibe

17



RWTHAACHEN
. UNIVERSITY
Visual Cues

g‘:.:z_.."‘.
===—x=|
( J
e Focus
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Slide credit: Steve Seitz B. Leibe
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. UNIVERSITY
Visual Cues

e Perspective 4 ‘/’—:;;1 =

[NATIONALGEOGRAPHIC © 2003 National Geographic Society. All rights reserved.
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B. Leibe

Slide credit: Steve Seitz
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Visual Cues

e Shading

e Texture

e Focus
=
(o)
—
=l o Perspective rigures from L. zhan
2 =
=1 ¢ Motion
= :
@]
@)

20
Slide credit: Steve Seitz, Kristen Grauman http://www.brainconnection.com/teasers/?main=illusion/motion-shape
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Our Goal: Recovery of 3D Structure

e We will focus on perspective and motion

e We need multi-view geometry because recovery of
structure from one image is inherently ambiguous

A

Slide credit: Svetlana Lazebnik

\
.
\

X?

B. Leibe
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To lllustrate This Point...

e Structure and depth are inherently ambiguous from
single views.
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Slide credit: Svetlana Lazebnik, Kristen Grauman B. Leibe
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ereo VYision
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http:// www.well.com/~jimg/stereo/stereo list.html

Slide credit: Kristen Grauman


http://www.well.com/~jimg/stereo/stereo_list.html

VRS
What Is Stereo Vision?

e Generic problem formulation: given several images of
the same object or scene, compute a representation of
its 3D shape
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B. Leibe

Slide credit: Svetlana Lazebnik, Steve Seitz
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What Is Stereo Vision?

e Generic problem formulation: given several images of
the same object or scene, compute a representation of
its 3D shape -

B. Leibe

Slide credit: Svetlana Lazebnik, Steve Seitz
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What Is Stereo Vision?

e Narrower formulation: given a calibrated binocular

stereo pair, fuse it to produce a depth image
Image 1 Image 2

Slide credit: Svetlana Lazebnik, S

26
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What Is Stereo Vision?

e Narrower formulation: given a calibrated binocular
stereo pair, fuse it to produce a depth image.
> Humans can do it

5 B ;
4 gl I R e
<ot TN N
i L) 2 V’“‘"»;-eﬂ“ P, A“ RS R

Stereograms: Invented by Sir Charles Wheatstone, 1838

Slide credit: Svetlana Lazebnik, Steve Seitz B. Leibe
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What Is Stereo Vision?

e Narrower formulation: given a calibrated binocular
stereo pair, fuse it to produce a depth image.
> Humans can do it

Autostereograms: http://www.magiceye.com
Slide credit: Svetlana Lazebnik, Steve Seitz

28


http://www.magiceye.com/
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What Is Stereo Vision?

e Narrower formulation: given a calibrated binocular
stereo pair, fuse it to produce a depth image.
> Humans can do it

Autostereograms: http://www.magiceye.com
Slide credit: Svetlana Lazebnik, Steve Seitz
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http://www.magiceye.com/

RWTHAACHEN
. . . UNIVERSITY
Application of Stereo: Robotic Exploration

Nomad robot searches for meteorites
in Antartica

Computer Vision WS 16/17

30
edit: Steve Seitz



http://www.frc.ri.cmu.edu/projects/meteorobot/index.html

N~
—
S~~~
(o)
—
%2
=
c
©
i
>
2
>
o
&
o
@)

Topics of This Lecture

e Epipolar geometry
~ Depth with stereo
- Geometry for a simple stereo system
» Case example with parallel optical axes
~ General case with calibrated cameras

B. Leibe
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Depth with Stereo: Basic Idea

e Basic Principle: Triangulation

> Gives reconstruction as intersection of two rays

> Requires
- Camera pose (calibration)
- Point correspondence

Slide credit: Steve Seitz B. Leibe
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Camera Calibration

Extrinsic parameters:
SR Camera frame & Reference frame

W't
' Intrinsic parameters:
/ Image coordinates relative to

v Camera camera <> Pixel coordinates

frame

e Parameters

» Extrinsic: rotation matrix and translation vector

- Intrinsic: focal length, pixel sizes (mm), image center point,
radial distortion parameters

We’ll assume for now that these parameters are given
and fixed.

Slide credit: Kristen Grauman
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B. Leibe
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Geometry for a Simple Stereo System

e First, assuming parallel optical axes, known camera
parameters (i.e., calibrated cameras):

Slide credit: Kristen Grauman B. Leibe
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image point | image point
(left) | (right)

N |/

length f :

optical
Center ' . . B ' r Center
(left) (right)

hitp/iwww.cse psu.edu/~zyin/Demo/Stereo%20geometry.jpg

baseline

Slide credit: Kristen Grauman
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RWTH
Geometry for a Simple Stereo System

e Assume parallel optical axes, known camera parameters
(i.e., calibrated cameras). We can triangulate via:

Similar triangles (p,, P, p,)
and (O,, P, O,):

T — (z, — x;)
Z—f

T
Z

Z

L
y

“disparity”

36

Slide credit: Kristen Grauman B. Leibe



Depth From Disparity

Image I(z,y) Disparity map D(x,y) Image I'(z',y")
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RWNTH
General Case With Calibrated Cameras

e The two cameras need not have parallel optical axes.

/\ N

N~
o s RN .
C_O| o ®
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B. Leibe

Slide credit: Kristen Grauman, Steve Seitz
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RWNTH
Stereo Correspondence Constraints

e Given p in the left image, where can the corresponding
point p’ in the right image be?

Slide credit: Kristen Grauman B. Leibe
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RWTH
Stereo Correspondence Constraints

i 3
/ 3

e Given p in the left image, where can the corresponding
point p’ in the right image be?
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Slide credit: Kristen Grauman B. Leibe
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Slide credit: Kristen Grauman B. Leibe
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ACHEN
UNIVERSITY
Stereo Correspondence Constraints

e Geometry of two views allows us to constrain where the
corresponding pixel for some image point in the first
view must occur in the second view.

epipolar line epipolar line

e Epipolar constraint: Why is this useful?

» Reduces correspondence problem to 1D search along conjugate
epipolar lines.

42

Slide adapted from Steve Seitz B. Leibe
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Epipolar Geometry

=

O

—

n

=

S « Epipolar Plane « Baseline
2

10 * Epipoles * Epipolar Lines
=

O

O

43

Slide adapted from Marc Pollefeys



Epipolar Geometry: Terms

e Baseline
> Line joining the camera centers
e Epipole
~ Point of intersection of baseline with the image plane
e Epipolar plane
> Plane containing baseline and world point
e Epipolar line
» Intersection of epipolar plane with the image plane

e Properties
~ All epipolar lines intersect at the epipole.

» An epipolar plane intersects the left and right image planes in
epipolar lines.
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Slide credit: Marc Pollefeys B. Leibe
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Epipolar Constraint

0 \
e Potential matches for p have to lie on the corresponding
epipolar line [’.

e Potential matches for p’ have to lie on the corresponding
epipolar line /.

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Slide credit: Marc Pollefeys B. Leibe
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http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html
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B. Leibe

Slide credit: Kristen Grauman



/ As position of 3D

/ point varies,
_"_“"_""""-“—-",_ """"" epipolal' lines
o “rotate” about

the baseline
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47
Figure from Hartley & Zisserman

Slide credit: Kristen Grauman B. Leibe
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Example: Motion Parallel With Image P|lane !

e at e’ at
—— ———
infinity infinity
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Figure from Hartley & Zisserman

Slide credit: Kristen Grauman B. Leibe
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. UNIVERSITY
Example: Forward Motion

e Epipole has same coordinates in both images.

e Points move along lines radiating from e: “Focus of
expansion”
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Figure from Hartley & Zisserman

Slide credit: Kristen Grauman B. Leibe
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Let’s Formalize This!

e For a given stereo rig, how do we express the epipolar
constraints algebraically?

e For this, we will need some linear algebra.

e But don’t worry! We’ll go through it step by step...

B. Leibe
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RWNTH
Stereo Geometry With Calibrated Cameras

X world point

R
e |If the rig is calibrated, we know:

- How to rotate and translate camera reference frame 1 to get to
camera reference frame 2.

- Rotation: 3 x 3 matrix; translation: 3 vector.

Slide credit: Kristen Grauman, Steve Seitz B. Leibe
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Rotation Matrix

1 0 0

R,(a)= |0 cosa —sina

0 sina cosa

cosB3 0 sinfB
R,(8) = 0 1 R B

—sinf 0 cosf

‘cosy —siny O]
R.(y) = |siny cosy O

0 0 1

Slide credit: Kristen Grauman

B. Leibe

Express 3D rotation as
series of rotations
around coordinate axes

by angles o, 5, v

Overall rotation is
product of these
elementary rotations:

52



3D Rigid Transformation

Slide credit: Kristen Grauman

ri1 T2 Tiz| [ X 1
/
Y — 21 T9292 T923 Y Ty
/
7 T31 T32 T33]| |4 T,
~
S
(0))]
2
= /
E X' = RX+T
>
i
=4
&
(@]
@)
) 53
B. Leibe



RWNTH
Stereo Geometry With Calibrated Cameras

X world point

R
e Camera-centered coordinate systems are related by

known rotation R and translation T':
X'=RX+T

B. Leibe
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Slide credit: Kristen Grauman
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Excursion: Cross Product

. a-¢c = 0
axb=c -
b-¢c = 0

e Vector cross product takes two vectors and returns a
third vector that’s perpendicular to both inputs.

e So here, c is perpendicular to both a and b, which
means the dot product is 0.

Slide credit: Kristen Grauman B. Leibe
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From Geometry to Algebra

X world point

Ye
X' = RX4T X' -(TxX)=X-(TxRX)
TxX =TxRX+TxT 0=X"-(TxRX)

Normal Yo the plane

- 56
—_ T X RX Slide credit: Kristen Grauman
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Matrix Form of Cross Product

S]]
X
S

|

QY
oY R
QL Oy

“skew symmetric” matrix

TN

0 —a,
a ] a. 0
—a,; Gy

Slide credit: Kristen Grauman

Ay

)

dxb=lax]

b

57



From Geometry to Algebra

X world point

Yo
X' = RX4T X' -(TxX)=X-(TxRX)
TIxX' =TxRX+TxT ‘O:X'-(TXRX)‘

Normal Yo the plane

- 58
—_ T X RX Slide credit: Kristen Grauman
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Essential Matrix

/ X world point
X' (TxRX)=0
X'-(Tx RX)=0 -
p A
AN -
Let E=T:R Yok
XIT E)( . O " R

e This holds for the rays p and p’ that
are parallel to the camera-centered -
position vectors X and X, so we have:| P Ep =0

* E is called the essential matrix, which relates
corresponding image points [Longuet-Higgins 1981]

B. Leibe
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Slide credit: Kristen Grauman
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Essential Matrix and Epipolar Lines

prTEp — O

Epipolar constraint: if we observe
point p in one image, then its
position p’ in second image must
satisfy this equation.

Pl = Ep is the coordinate vector represen-
ting the epipolar line for point p
=

(i.e., the line is given
by: [’'x=0)

l:ETp!

Slide credit: Kristen Grauman

IS the coordinate vector representing
the epipolar line for point p’

, 60
B. Leibe
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Essential Matrix: Properties

e Relates image of corresponding points in both cameras,
given rotation and translation.

e Assuming intrinsic parameters are known

E=TR

Slide credit: Kristen Grauman B. Leibe
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RWTH
Essential Matrix Example: Parallel Cameras

For the parallel cameras,
image of any point must
lie on same horizontal
line in each image plane.
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Slide credit: Kristen Grauman



RWTH
Essential Matrix Example: Parallel Cameras

R =
T=[-d,0,0]'
0 0O
E—[T.R {O : (g
0—d
0 0 0]z
% 2y f1|0 0 d||y|l =0
o 0 —d 0| f]
= _
S 0
L P, ] _
; For the parallel cameras, < [.5(; Y fﬁ d(J; =0
= image of any point must —ay |
£ lie on same horizontal Sy = y’
%H line in each image plane.

63
Slide credit: Kristen Grauman



More General Case

Image I(z,y) Disparity map D(x,y) Image I'(z',y")

(=',y") = (z+ D(z,y),y)

What about when cameras’ optical axes are not parallel?
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Slide credit: Kristen Grauman B. Leibe



Stereo Image Rectification

e In practice, it is
convenient if image
scanlines are the
epipolar lines.

e Algorithm A’

» Reproject image planes onto a common
plane parallel to the line between optical
centers

> Pixel motion is horizontal after this transformation

» Two homographies (3 x 3 transforms), one for each
input image reprojection
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Slide adapted from Li Zhang C. Loop & Z. Zhang, Computing Rectifying Homographies for Stereo Vision. CVPR’99



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

RWTHAACHEN
UNIVERSITY

Computer Vision WS 16/17

66
Source: Alyosha Efros
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Topics of This Lecture

e Stereopsis & 3D Reconstruction
~ Correspondence search
» Additional correspondence constraints
» Possible sources of error
- Applications

B. Leibe
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Stereo Reconstruction

e Main Steps
» Calibrate cameras
» Rectify images
»  Compute disparity
- Estimate depth

B. Leibe

Slide credit: Kristen Grauman
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Correspondence Problem

Slide credit: Kristen Grauman

Right image

B. Leibe

e Hypothesis 1
© Hypothesis 2
O Hypothesis 3

Multiple match
hypotheses satisfy
epipolar constraint,
but which is
correct?

69
Figure from Gee & Cipolla 1999
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RWTH
Dense Correspondence Search
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e For each pixel in the first image
> Find corresponding epipolar line in the right image

» Examine all pixels on the epipolar line and pick the best match
(e.g. SSD, correlation)

» Triangulate the matches to get depth information

e This is easiest when epipolar lines are scanlines
= Rectify images first

adapted from Svetlana Lazebnik, Li Zhang
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Example: Window Search

e Data from University of Tsukuba

Slide credit: Kristen Grauman B. Leibe

Ground truth
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Example: Window Search

e Data from University of Tsukuba

Window-based matching Ground truth
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Slide credit: Kristen Grauman B. Leibe



Effect of Window Size

W = 20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with
about the same disparity.
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Figures from Li Zhang

Slide credit: Kristen Grauman B. Leibe
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Alternative: Sparse Correspondence Search
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e |dea: Restrict search to sparse set of detected features

e Rather than pixel values (or lists of pixel values) use
feature descriptor and an associated feature distance

e Still narrow search further by epipolar geometry
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What would make good features? -

Slide credit: Kristen Grauman B. Leibe
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Dense vs. Sparse

e Sparse
» Efficiency

> Can have more reliable feature matches, less
sensitive to illumination than raw pixels

> But...

- Have to know enough to pick good features
- Sparse information

e Dense
> Simple process

~ More depth estimates, can be useful for surface
reconstruction

> But...
- Breaks down in textureless regions anyway
- Raw pixel distances can be brittle
- Not good with very different viewpoints

Slide credit: Kristen Grauman
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Occlusions
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Slide credit: Kristen Grauman
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Possible Sources of Error?

e Low-contrast / textureless image regions
e Occlusions
e Camera calibration errors

e Violations of brightness constancy (e.g., specular
reflections)

e Large motions

Slide credit: Kristen Grauman B. Leibe
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Application: View Interpolation

Right Image
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Slide credit: Svetlana Lazebnik
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Application: View Interpolation

Left Image
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Slide credit: Svetlana Lazebnik
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Slide credit: Svetlana Lazebnik

Disparity
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Application: View Interpolation
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Slide credit: Svetlana Lazebnik



Computer Vision WS 16/17

Application: Free-Viewpoint Video

http://www.liberovision.com

B. Leibe

R\WNTH



http://www.liberovision.com/

Summary: Stereo Reconstruction

e Main Steps
~ Calibrate cameras
> Rectify images
» Compute disparity
~ Estimate depth

calibrated cameras... - =
e Next lecture

> Uncalibrated cameras

~ Camera parameters
Revisiting epipolar geometry
» Robust fitting

Y

N~
—
S~~~
(o)
—
n
=
c
©
i
>
2
>
o
=
@)
@)

Slide credit: Kristen Grauman B. Leibe
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References and Further Reading

e Background information on epipolar geometry and
stereopsis can be found in Chapters 10.1-10.2 and
11.1-11.3 of

Computer
D. Forsyth, J. Ponce, o ;
Computer Vision - A Modern Approach.

Prentice Hall, 2003

e More detailed information (if you really
want to implement 3D reconstruction
algorithms) can be found in Chapters 9
and 10 of

R. Hartley, A. Zisserman
Multiple View Geometry in Computer Vision i J— ;
2nd Ed., Cambridge Univ. Press, 2004 ——
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