

Computer Vision - Lecture 17

Epipolar Geometry & Stereo Basics

16.01.2017

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Local Features & Matching
- Object Categorization
- 3D Reconstruction
 - Epipolar Geometry and Stereo Basics
 - Camera calibration & Uncalibrated Reconstruction
 - Multi-view Stereo
- Optical Flow

RWTHAACHEN UNIVERSITY

Recap: R-CNN for Object Deteection

Recap: Faster R-CNN

One network, four losses

Remove dependence on external region proposal algorithm.

Classification

loss

Instead, infer region proposals from same CNN.

- Feature sharing
- Joint training
- ⇒ Object detection in a single pass becomes possible.

Recap: Fully Convolutional Networks

"tabby cat" **CNN** convolutionalization **FCN** tabby cat heatmap 384 384 256 409 409 1000

Intuition

Think of FCNs as performing a sliding-window classification, producing a heatmap of output scores for each class

Recap: Semantic Image Segmentation

Encoder-Decoder Architecture

- Problem: FCN output has low resolution
- Solution: perform upsampling to get back to desired resolution
- Use skip connections to preserve higher-resolution information

Recap: FCNs for Human Pose Estimation

Input data

Image

Keypoints

Labels

Task setup

- Annotate images with keypoints for skeleton joints
- Define a target disk around each keypoint with radius r
- Set the ground-truth label to 1 within each such disk
- Infer heatmaps for the joints as in semantic segmentation

Other Tasks: Face Verification

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, <u>DeepFace: Closing the Gap to Human-Level Performance in Face Verification</u>, CVPR 2014

Slide credit: Svetlana Lazebnik

Discriminative Face Embeddings

- Learning an embedding using a Triplet Loss Network
 - Present the network with triplets of examples

Negative |

Apply triplet loss to learn an embedding $f(\cdot)$ that groups the positive example closer to the anchor than the negative one.

$$||f(x_i^a) - f(x_i^p)||_2^2 < ||f(x_i^a) - f(x_i^n)||_2^2$$

⇒ Used with great success in Google's FaceNet face recognition

Vector Arithmetics in Embedding Space

- Learned embeddings often preserve linear regularities between concepts
 - Analogy questions can be answered through simple algebraic operations with the vector representation of words.
 - \rightarrow E.g., vec("King") vec("Man") + vec("Woman") \approx vec("Queen")

woman

smiling man

Topics of This Lecture

- Geometric vision
 - Visual cues
 - Stereo vision
- Epipolar geometry
 - Depth with stereo
 - Geometry for a simple stereo system
 - Case example with parallel optical axes
 - General case with calibrated cameras
- Stereopsis & 3D Reconstruction
 - Correspondence search
 - Additional correspondence constraints
 - Possible sources of error
 - Applications

Geometric vision

- Goal: Recovery of 3D structure
 - What cues in the image allow us to do this?

Slide credit: Svetlana Lazebnik

Shading

Merle Norman Cosmetics, Los Angeles

Shading

Texture

The Visual Cliff, by William Vandivert, 1960

Shading

Texture

Focus

From The Art of Photography, Canon

Shading

Texture

Focus

Perspective

RWTHAACHEN UNIVERSITY

Visual Cues

Shading

Texture

Focus

Figures from L. Zhang

Perspective

Motion

Our Goal: Recovery of 3D Structure

- We will focus on perspective and motion
- We need multi-view geometry because recovery of structure from one image is inherently ambiguous

21

To Illustrate This Point...

• Structure and depth are inherently ambiguous from single views.

RWTHAACHEN UNIVERSITY

tereo Vision

http://www.well.com/~jimg/stereo/stereo_list.html

Slide credit: Kristen Grauman

 Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

 Generic problem formulation: given several images of the same object or scene, compute a representation of

 Narrower formulation: given a calibrated binocular stereo pair, fuse it to produce a depth image

Image 1

Image 2

Dense depth map

Slide credit: Svetlana Lazebnik, Steve Scitz

- Narrower formulation: given a calibrated binocular stereo pair, fuse it to produce a depth image.
 - Humans can do it

Stereograms: Invented by Sir Charles Wheatstone, 1838

- Narrower formulation: given a calibrated binocular stereo pair, fuse it to produce a depth image.
 - Humans can do it

Autostereograms: http://www.magiceye.com

28

- Narrower formulation: given a calibrated binocular stereo pair, fuse it to produce a depth image.
 - Humans can do it

Autostereograms: http://www.magiceye.com

Application of Stereo: Robotic Exploration

Nomad robot searches for meteorites in Antartica

Real-time stereo on Mars

30

Stide Credit: Steve Seitz

Topics of This Lecture

- Geometric vision
 - Visual cues
 - Stereo vision
- Epipolar geometry
 - Depth with stereo
 - Geometry for a simple stereo system
 - Case example with parallel optical axes
 - General case with calibrated cameras
- Stereopsis & 3D Reconstruction
 - Correspondence search
 - Additional correspondence constraints
 - Possible sources of error
 - Applications

Depth with Stereo: Basic Idea

- Basic Principle: Triangulation
 - Gives reconstruction as intersection of two rays
 - Requires
 - Camera pose (calibration)
 - Point correspondence

Camera Calibration

Extrinsic parameters: Camera frame ↔ Reference frame

Intrinsic parameters: Image coordinates relative to camera ↔ Pixel coordinates

Parameters

- > Extrinsic: rotation matrix and translation vector
- Intrinsic: focal length, pixel sizes (mm), image center point, radial distortion parameters

We'll assume for now that these parameters are given and fixed.

RWTHAACHEN UNIVERSITY

Geometry for a Simple Stereo System

• First, assuming parallel optical axes, known camera parameters (i.e., calibrated cameras):

Slide credit: Kristen Grauman

Geometry for a Simple Stereo System

 Assume parallel optical axes, known camera parameters (i.e., calibrated cameras). We can triangulate via:

Similar triangles (p_l, P, p_r) and (O_1, P, O_r) :

$$\frac{T - (x_r - x_l)}{Z - f} = \frac{T}{Z}$$

$$Z = f \frac{T}{x_r - x_l}$$

RWTHAACHEN UNIVERSITY

Depth From Disparity

Image I(x,y)

Disparity map D(x,y)

Image I'(x',y')

$$(x',y') = (x+D(x,y),y)$$

General Case With Calibrated Cameras

• The two cameras need not have parallel optical axes.

Stereo Correspondence Constraints

• Given p in the left image, where can the corresponding point p' in the right image be?

Stereo Correspondence Constraints

• Given p in the left image, where can the corresponding point p' in the right image be?

Stereo Correspondence Constraints

Stereo Correspondence Constraints

 Geometry of two views allows us to constrain where the corresponding pixel for some image point in the first view must occur in the second view.

- Epipolar constraint: Why is this useful?
 - Reduces correspondence problem to 1D search along conjugate epipolar lines.

Epipolar Geometry

- Epipolar Plane
- Epipoles

- Baseline
- Epipolar Lines

Epipolar Geometry: Terms

- Baseline
 - Line joining the camera centers
- Epipole
 - Point of intersection of baseline with the image plane
- Epipolar plane
 - Plane containing baseline and world point
- Epipolar line
 - Intersection of epipolar plane with the image plane
- Properties
 - All epipolar lines intersect at the epipole.
 - An epipolar plane intersects the left and right image planes in epipolar lines.

Epipolar Constraint

- Potential matches for p have to lie on the corresponding epipolar line l.
- Potential matches for p' have to lie on the corresponding epipolar line l.

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Example

Example: Converging Cameras

As position of 3D point varies, epipolar lines "rotate" about the baseline

Example: Motion Parallel With Image Plane

Example: Forward Motion

- Epipole has same coordinates in both images.
- Points move along lines radiating from e: "Focus of expansion"

Let's Formalize This!

 For a given stereo rig, how do we express the epipolar constraints algebraically?

For this, we will need some linear algebra.

But don't worry! We'll go through it step by step...

RWTHAACHEN UNIVERSITY

Stereo Geometry With Calibrated Cameras

- If the rig is calibrated, we know:
 - How to rotate and translate camera reference frame 1 to get to camera reference frame 2.
 - Rotation: 3 x 3 matrix; translation: 3 vector.

51

Rotation Matrix

$$\mathbf{R}_x(lpha) = egin{bmatrix} 1 & 0 & 0 \ 0 & \coslpha & -\sinlpha \ 0 & \sinlpha & \coslpha \end{bmatrix}$$
 Express 3D rotation as series of rotations around coordinate axes

$$\mathbf{R}_y(eta) = egin{bmatrix} \coseta & 0 & \sineta \ 0 & 1 & 0^{\mathrm{R} = \mathbf{R}_x \mathbf{R}_y \mathbf{R}_z} \ -\sineta & 0 & \coseta \end{bmatrix}$$
 Overall rotation is

$$\mathbf{R}_z(\gamma) = egin{bmatrix} \cos \gamma & -\sin \gamma & 0 \ \sin \gamma & \cos \gamma & 0 \ 0 & 0 & 1 \end{bmatrix}$$

by angles α , β , γ

product of these elementary rotations:

3D Rigid Transformation

$$egin{bmatrix} X' \ Y' \ Z' \end{bmatrix} = egin{bmatrix} r_{11} & r_{12} & r_{13} \ r_{21} & r_{22} & r_{23} \ r_{31} & r_{32} & r_{33} \end{bmatrix} egin{bmatrix} X \ Y \ Z \end{bmatrix} + egin{bmatrix} T_x \ T_y \ T_z \end{bmatrix}$$

$$X' = RX + T$$

Stereo Geometry With Calibrated Cameras

 Camera-centered coordinate systems are related by known rotation R and translation T:

$$X' = RX + T$$

Excursion: Cross Product

$$ec{a} imes ec{b} = ec{c}$$
 $ec{a} \cdot ec{c} = 0$ $ec{b} \cdot ec{c} = 0$

- Vector cross product takes two vectors and returns a third vector that's perpendicular to both inputs.
- So here, c is perpendicular to both a and b, which means the dot product is 0.

From Geometry to Algebra

Matrix Form of Cross Product

$$\vec{a} \times \vec{b} = [a_{\times}] \, \vec{b}$$

From Geometry to Algebra

Essential Matrix

$$\mathbf{X}' \cdot \left(\mathbf{T} \times \mathbf{R} \mathbf{X}\right) = 0$$

$$\mathbf{X}' \cdot \left(\mathbf{T}_x \ \mathbf{R}\mathbf{X}\right) = 0$$

Let
$$\mathbf{E} = \mathbf{T}_{x}\mathbf{R}$$

$$\mathbf{X}'^T \mathbf{E} \mathbf{X} = 0$$

• This holds for the rays p and p' that are parallel to the camera-centered position vectors X and X', so we have:

$$\mathbf{p'}^T \mathbf{E} \mathbf{p} = 0$$

 E is called the essential matrix, which relates corresponding image points [Longuet-Higgins 1981]

59

Essential Matrix and Epipolar Lines

$$\mathbf{p'}^{\mathrm{T}}\mathbf{E}\mathbf{p} = 0$$

Epipolar constraint: if we observe point p in one image, then its position p in second image must satisfy this equation.

 $m{l}' = m{Ep}$ is the coordinate vector representing the epipolar line for point p

(i.e., the line is given by: $l'^{\top}\mathbf{x} = 0$)

 $oldsymbol{l} oldsymbol{l} = oldsymbol{E}^T oldsymbol{p}'$ is the coordinate vector representing the epipolar line for point p'

Essential Matrix: Properties

- Relates image of corresponding points in both cameras, given rotation and translation.
- Assuming intrinsic parameters are known

$$\mathbf{E} = \mathbf{T}_{x}\mathbf{R}$$

Essential Matrix Example: Parallel Cameras

$$\mathbf{R} =$$

$$T =$$

$$\mathbf{E} = [\mathbf{T}_{\mathbf{x}}]\mathbf{R} =$$

$$\mathbf{p'}^{\mathrm{T}}\mathbf{E}\mathbf{p} = 0$$

For the parallel cameras, image of any point must lie on same horizontal line in each image plane.

RWTHAACHEN UNIVERSITY

Essential Matrix Example: Parallel Cameras

$$\mathbf{R} = \mathbf{I}$$

$$\mathbf{T} = [-d, 0, 0]^{\mathrm{T}}$$

$$\mathbf{E} = [\mathbf{T}_{\mathbf{x}}] \mathbf{R} = \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{d} \\ \mathbf{0} & \mathbf{d} & \mathbf{0} \end{bmatrix}$$

$$\mathbf{p'}^{\mathsf{T}}\mathbf{E}\mathbf{p} = \mathbf{0} \qquad \begin{bmatrix} x' & y' & f \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & d \\ 0 & -d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ f \end{bmatrix} = 0$$

For the parallel cameras, image of any point must lie on same horizontal line in each image plane.

$$\Leftrightarrow \begin{bmatrix} x' \ y' \ f \end{bmatrix} \begin{bmatrix} 0 \\ df \\ -dy \end{bmatrix} = 0$$
$$\Leftrightarrow y = y'$$

More General Case

Image I(x,y)

Disparity map D(x,y)

Image I'(x',y')

$$(x',y') = (x+D(x,y),y)$$

What about when cameras' optical axes are not parallel?

Stereo Image Rectification

 In practice, it is convenient if image scanlines are the epipolar lines.

- Reproject image planes onto a common plane parallel to the line between optical centers
- Pixel motion is horizontal after this transformation
- > Two homographies (3×3) transforms, one for each input image reprojection

Stereo Image Rectification: Example

66 fros

Source: Alyosha Efros

Topics of This Lecture

- Geometric vision
 - Visual cues
 - Stereo vision
- Epipolar geometry
 - Depth with stereo
 - Geometry for a simple stereo system
 - Case example with parallel optical axes
 - General case with calibrated cameras
- Stereopsis & 3D Reconstruction
 - Correspondence search
 - Additional correspondence constraints
 - Possible sources of error
 - Applications

Stereo Reconstruction

- Main Steps
 - Calibrate cameras
 - Rectify images
 - Compute disparity
 - Estimate depth

Correspondence Problem

Multiple match hypotheses satisfy epipolar constraint, but which is correct?

69

Dense Correspondence Search

- For each pixel in the first image
 - Find corresponding epipolar line in the right image
 - Examine all pixels on the epipolar line and pick the best match (e.g. SSD, correlation)
 - Triangulate the matches to get depth information
- This is easiest when epipolar lines are scanlines
 - ⇒ Rectify images first

Example: Window Search

Data from University of Tsukuba

Scene Ground truth

Example: Window Search

Data from University of Tsukuba

Window-based matching (best window size)

Ground truth

Effect of Window Size

$$W=3$$

W = 20

Want window large enough to have sufficient intensity variation, yet small enough to contain only pixels with about the same disparity.

Alternative: Sparse Correspondence Search

- Idea: Restrict search to sparse set of detected features
- Rather than pixel values (or lists of pixel values) use feature descriptor and an associated feature distance
- Still narrow search further by epipolar geometry

What would make good features?

Dense vs. Sparse

Sparse

- Efficiency
- Can have more reliable feature matches, less sensitive to illumination than raw pixels
- But...
 - Have to know enough to pick good features
 - Sparse information

Dense

- Simple process
- More depth estimates, can be useful for surface reconstruction
- > **But...**
 - Breaks down in textureless regions anyway
 - Raw pixel distances can be brittle
 - Not good with very different viewpoints

Difficulties in Similarity Constraint

Untextured surfaces

Occlusions

B. Leibe

Possible Sources of Error?

- Low-contrast / textureless image regions
- Occlusions
- Camera calibration errors
- Violations of brightness constancy (e.g., specular reflections)
- Large motions

Right Image

Left Image

Disparity

Application: Free-Viewpoint Video

http://www.liberovision.com

Summary: Stereo Reconstruction

Main Steps

- Calibrate cameras
- Rectify images
- Compute disparity
- Estimate depth

Left

Right

Next lecture

- **Uncalibrated cameras**
- Camera parameters
- Revisiting epipolar geometry
- Robust fitting

Computer

References and Further Reading

 Background information on epipolar geometry and stereopsis can be found in Chapters 10.1-10.2 and 11.1-11.3 of

> D. Forsyth, J. Ponce, Computer Vision - A Modern Approach. Prentice Hall, 2003

 More detailed information (if you really want to implement 3D reconstruction algorithms) can be found in Chapters 9 and 10 of

> R. Hartley, A. Zisserman Multiple View Geometry in Computer Vision 2nd Ed., Cambridge Univ. Press, 2004

