

Computer Vision - Lecture 16

Deep Learning Applications

11.01.2017

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Announcements

- Seminar registration period starts on Friday
 - We will offer a lab course in the summer semester "Deep Robot Learning"
 - Topic: Deep reinforcement learning for robot control
 - Either UAV or grasping robot
 - If you're interested, you can register at http://www.graphics.rwth-aachen.de/apse
 - Registration period: 13.01.2016 29.01.2016
 - Quick poll: Who would be interested in that?

Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Object Categorization I
 - Sliding Window based Object Detection
- Local Features & Matching
 - Local Features Detection and Description
 - Recognition with Local Features
 - Indexing & Visual Vocabularies
- Object Categorization II
 - Bag-of-Words Approaches & Part-based Approaches
 - Deep Learning Methods
- 3D Reconstruction

RWTHAACHEN UNIVERSITY

Recap: Convolutional Neural Networks

- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278-2324, 1998.

Recap: CNN Structure

- Feed-forward feature extraction
 - 1. Convolve input with learned filters
 - 2. Non-linearity
 - 3. Spatial pooling
 - 4. (Normalization)
- Supervised training of convolutional filters by back-propagating classification error

Recap: Intuition of CNNs

Convolutional net

- Share the same parameters across different locations
- Convolutions with learned kernels

Learn *multiple* filters

- E.g. 1000×1000 image 100 filters 10×10 filter size
- ⇒ only 10k parameters
- Result: Response map
 - \rightarrow size: $1000 \times 1000 \times 100$
 - Only memory, not params!

6

Recap: Convolution Layers

Naming convention:

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - Form a single $[1 \times 1 \times depth]$ depth column in output volume.

5×5 filters

Recap: Activation Maps

Each activation map is a depth slice through the output volume.

Recap: Pooling Layers

Single depth slice

X	1	1	2	4			
	5	6	7	8			
	3	2	1	0			
	1	2	3	4			
-							

max pool with 2x2 filters and stride 2

6	8
3	4

• Effect:

- Make the representation smaller without losing too much information
- Achieve robustness to translations

Recap: Effect of Multiple Convolution Layers

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Recap: AlexNet (2012)

- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - More data (10⁶ images instead of 10³)
 - GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep</u> Convolutional Neural Networks, NIPS 2012.

Recap: VGGNet (2014/15)

Main ideas

- Deeper network
- Stacked convolutional layers with smaller filters (+ nonlinearity)
- Detailed evaluation of all components

Results

Improved ILSVRC top-5 error rate to 6.7%.

	ConvNet Configuration								
A	A-LRN	В	C	D	Е				
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight				
layers	layers	layers	layers	layers	layers				
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64				
	LRN	conv3-64	conv3-64	conv3-64	conv3-64				
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128				
		conv3-128	conv3-128	conv3-128	conv3-128				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256				
			conv1-256	conv3-256	conv3-256				
					conv3-256				
			pool						
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512				
			conv1-512	conv3-512	conv3-512				
					conv3-512				
			pool 4096	Mainl					
		maini	y used						
FC-4096									
FC-1000									
soft-max									

Recap: GoogLeNet (2014)

- Ideas:
 - Learn features at multiple scales

(b) Inception module with dimension reductions

13

RWTHAACHEN UNIVERSITY

Recap: Residual Networks

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

Core component

- Skip connections bypassing each layer
- Better propagation of gradients to the deeper layers
- This makes it possible to train (much) deeper networks.

Transfer Learning with CNNs

1. Train on ImageNet

Transfer Learning with CNNs

1. Train on ImageNet

3. If you have medium sized dataset, "finetune" instead: use the old weights as initialization, train the full network or only some of the higher layers.

Retrain bigger portion of the network

conv-512
maxpool

FC-4096

16

FC-4096

FC-1000

softmax

Topics of This Lecture

- Object Detection with CNNs
 - > R-CNN
 - Fast R-CNN
 - Faster R-CNN
- Semantic Image Segmentation
- Human Pose Estimation
- Face/Person Identification
 - DeepFace
 - FaceNet

The Learned Features are Generic

state of the art level (pre-CNN)

- Experiment: feature transfer
 - Train network on ImageNet
 - Chop off last layer and train classification layer on CalTech256
 - ⇒ State of the art accuracy already with only 6 training images

Object Detection Performance

Object Detection: R-CNN

R-CNN: Regions with CNN features

1. Input image

2. Extract region proposals (~2k)

Compute CNN features

4. Classify regions

Key ideas

- Extract region proposals (Selective Search)
- Use a pre-trained/fine-tuned classification network as feature extractor (initially AlexNet, later VGGNet) on those regions

R. Girshick, J. Donahue, T. Darrell, and J. Malik, <u>Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation</u>, CVPR 2014

Classification

- Linear model with class-dependent weights
 - Linear SVM

$$f_c(x_{fc7}) = w_c^T x_{fc7}$$

- where
 - x_{fc7} = features from the network (fully-connected layer 7)
 - -c = object class

Bounding Box Regressors

- Prediction of the 2D box
 - Necessary, since the proposal region might not fully coincide with the (annotated) object bounding box
 - > Perform regression for location (x^*,y^*) , width w^* and height h^*

$$\frac{x^* - x}{w} = w_{c,x}^T x_{pool5}$$

$$\frac{y^* - y}{h} = w_{c,y}^T x_{pool5}$$

$$\ln \frac{w^*}{w} = w_{c,w}^T x_{pool5}$$

$$\ln \frac{h^*}{h} = w_{c,w}^T x_{pool5}$$

Where x_{pool5} are the features from the pool5 layer of the network.

Problems with R-CNN

- Ad hoc training objectives
 - Fine tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)
- Training (3 days) and testing (47s per image) is slow.
 - Many separate applications of region CNNs
- Takes a lot of disk space
 - Need to store all precomputed CNN features for training the classifiers
 - Easily 200GB of data

Fast R-CNN

Forward Pass

Fast R-CNN

Forward Pass

Fast R-CNN

Forward Pass

Fast R-CNN Training

Backward Pass

Region Proposal Networks (RPN)

Idea

- Remove dependence on external region proposal algorithm.
- Instead, infer region proposals from same CNN.
- \Rightarrow Feature sharing
- ⇒ Object detection in a single pass becomes possible.
- Faster R-CNN = Fast R-CNN + RPN

Faster R-CNN

- One network, four losses
 - Joint training

35

Faster R-CNN (based on ResNets)

K. He, X. Zhang, S. Ren, J. Sun, <u>Deep Residual Learning for Image Recognition</u>, CVPR 2016.

B. Leibe

Faster R-CNN (based on ResNets)

K. He, X. Zhang, S. Ren, J. Sun, <u>Deep Residual Learning for Image Recognition</u>, CVPR 2016.

B. Leibe

Summary

Object Detection

- > Find a variable number of objects by classifying image regions
- Before CNNs: dense multiscale sliding window (HoG, DPM)
- Avoid dense sliding window with region proposals
- R-CNN: Selective Search + CNN classification / regression
- Fast R-CNN: Swap order of convolutions and region extraction
- > Faster R-CNN: Compute region proposals within the network
- Deeper networks do better

Topics of This Lecture

- Object Detection with CNNs
 - > R-CNN
 - > Fast R-CNN
 - Faster R-CNN
- Semantic Image Segmentation
- Human Pose Estimation
- Face/Person Identification
 - DeepFace
 - FaceNet

Semantic Image Segmentation

- Perform pixel-wise prediction task
 - Usually done using Fully Convolutional Networks (FCNs)
 - All operations formulated as convolutions
 - Advantage: can process arbitrarily sized images

CNNs vs. FCNs

CNN

FCN

- Intuition
 - Think of FCNs as performing a sliding-window classification, producing a heatmap of output scores for each class

Semantic Image Segmentation

Encoder-Decoder Architecture

- Problem: FCN output has low resolution
- > Solution: perform upsampling to get back to desired resolution
- Use skip connections to preserve higher-resolution information

RWTHAACHEN UNIVERSITY

Other Tasks: Semantic Segmentation

[Farabet et al. ICML 2012, PAMI 2013]

Semantic Segmentation

[Pohlen, Hermans, Mathias, Leibe, arXiv 2016]

- More recent results
 - Based on an extension of ResNets

Topics of This Lecture

- Object Detection with CNNs
 - > R-CNN
 - > Fast R-CNN
 - > Faster R-CNN
- Semantic Image Segmentation
- Human Pose Estimation
- Face/Person Identification
 - DeepFace
 - FaceNet

FCNs for Human Pose Estimation

Input data

Image

Keypoints

Labels

Task setup

- Annotate images with keypoints for skeleton joints
- Define a target disk around each keypoint with radius r
- Set the ground-truth label to 1 within each such disk
- Infer heatmaps for the joints as in semantic segmentation

Heat Map Predictions from FCN

Test Image Right Ankle Right Knee Right Hip Right Wrist Right Elbow Right Shoulder

Example Results: Human Pose Estimation

[Rafi, Gall, Leibe, BMVC 2016] 48

Topics of This Lecture

- Object Detection with CNNs
 - > R-CNN
 - > Fast R-CNN
 - > Faster R-CNN
- Semantic Image Segmentation
- Human Pose Estimation
- Face/Person Identification
 - DeepFace
 - FaceNet

Other Tasks: Face Verification

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, <u>DeepFace: Closing the Gap to Human-Level Performance in Face Verification</u>, CVPR 2014

Slide credit: Svetlana Lazebnik

Discriminative Face Embeddings

- Learning an embedding using a Triplet Loss Network
 - Present the network with triplets of examples

Negative

Apply triplet loss to learn an embedding $f(\cdot)$ that groups the positive example closer to the anchor than the negative one.

$$||f(x_i^a) - f(x_i^p)||_2^2 < ||f(x_i^a) - f(x_i^n)||_2^2$$

⇒ Used with great success in Google's FaceNet face recognition

RWTHAACHEN UNIVERSITY

Vector Arithmetics in Embedding Space

- Learned embeddings often preserve linear regularities between concepts
 - Analogy questions can be answered through simple algebraic operations with the vector representation of words.
 - ightharpoonup E.g., vec("King") vec("Man") + vec("Woman") \approx vec("Queen")

woman

woman

smiling man

B. Leibe

Commercial Recognition Services

• E.g., clarifai

Try it out with your own media

Upload an image or video file under 100mb or give us a direct link to a file on the web.

*By using the demo you agree to our terms of service

- Be careful when taking test images from Google Search
 - Chances are they may have been seen in the training set...

Commercial Recognition Services

References and Further Reading

- RCNN and related ideas:
 - Girshick et al., <u>Region-based Convolutional Networks for Accurate Object Detection and Semantic Segmentation</u>, PAMI, 2014.
 - > Zhu et al., segDeepM: <u>Exploiting Segmentation and Context in Deep Neural Networks for Object Detection</u>, 2015.
- Fast RCNN and related ideas:
 - He et al., <u>Spatial Pyramid Pooling in Deep Convolutional Networks</u> for Visual Recognition, 2014.
 - Girshick, Ross, Fast R-CNN, 2015.
- Faster RCNN and related ideas:
 - Szegedy et al., Scalable, High-Quality Object Detection, 2014.
 - Ren et al., <u>Faster R-CNN: Towards Real-Time Object Detection with</u> Region Proposal Networks, 2015.