Computer Vision - Lecture 16

Deep Learning Applications

11.01.2017

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de
Announcements

- Seminar registration period starts on Friday
 - We will offer a lab course in the summer semester “Deep Robot Learning”
 - Topic: Deep reinforcement learning for robot control
 - Either UAV or grasping robot
 - If you’re interested, you can register at http://www.graphics.rwth-aachen.de/apse
 - Registration period: 13.01.2016 - 29.01.2016

- Quick poll: Who would be interested in that?
Course Outline

• Image Processing Basics
• Segmentation & Grouping
• Object Recognition
• Object Categorization I
 ➢ Sliding Window based Object Detection
• Local Features & Matching
 ➢ Local Features - Detection and Description
 ➢ Recognition with Local Features
 ➢ Indexing & Visual Vocabularies
• Object Categorization II
 ➢ Bag-of-Words Approaches & Part-based Approaches
 ➢ Deep Learning Methods
• 3D Reconstruction
Recap: Convolutional Neural Networks

- Neural network with specialized connectivity structure
 - Stack multiple stages of feature extractors
 - Higher stages compute more global, more invariant features
 - Classification layer at the end

Slide credit: Svetlana Lazebnik
Recap: CNN Structure

- Feed-forward feature extraction
 1. Convolve input with learned filters
 2. Non-linearity
 3. Spatial pooling
 4. (Normalization)

- Supervised training of convolutional filters by back-propagating classification error
Recap: Intuition of CNNs

- **Convolutional net**
 - Share the same parameters across different locations
 - Convolutions with learned kernels

- **Learn multiple filters**
 - E.g. 1000×1000 image
 - 100 filters
 - 10×10 filter size
 - \Rightarrow only 10k parameters

- **Result: Response map**
 - size: $1000 \times 1000 \times 100$
 - Only memory, not params!
Recap: Convolution Layers

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - Form a single $[1 \times 1 \times \text{depth}]$ depth column in output volume.
Recap: Activation Maps

Each activation map is a depth slice through the output volume.

Activation maps

5x5 filters

Slide adapted from FeiFei Li, Andrej Karpathy
Recap: Pooling Layers

- Effect:
 - Make the representation smaller without losing too much information
 - Achieve robustness to translations

max pool with 2x2 filters and stride 2

Slide adapted from FeiFei Li, Andrej Karpathy
Recap: Effect of Multiple Convolution Layers

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Slide credit: Yann LeCun
Recap: AlexNet (2012)

- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - More data (10^6 images instead of 10^3)
 - GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

Recap: VGGNet (2014/15)

- **Main ideas**
 - Deeper network
 - Stacked convolutional layers with smaller filters (+ nonlinearity)
 - Detailed evaluation of all components

- **Results**
 - Improved ILSVRC top-5 error rate to 6.7%.
Recap: GoogLeNet (2014)

- **Ideas:**
 - Learn features at multiple scales
 - Modular structure

Inception module + copies

Auxiliary classification outputs for training the lower layers (deprecated)

Image source: Szegedy et al.
Recap: Residual Networks

- **Core component**
 - Skip connections bypassing each layer
 - Better propagation of gradients to the deeper layers
 - This makes it possible to train (much) deeper networks.

\[
H(x) = F(x) + x
\]
Transfer Learning with CNNs

1. Train on ImageNet

2. If small dataset: fix all weights (treat CNN as fixed feature extractor), retrain only the classifier

I.e., swap the Softmax layer at the end
Transfer Learning with CNNs

1. Train on ImageNet

3. If you have medium sized dataset, “finetune” instead: use the old weights as initialization, train the full network or only some of the higher layers.

Retrain bigger portion of the network
Topics of This Lecture

• Object Detection with CNNs
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN

• Semantic Image Segmentation

• Human Pose Estimation

• Face/Person Identification
 - DeepFace
 - FaceNet
The Learned Features are Generic

- **Experiment: feature transfer**
 - Train network on ImageNet
 - Chop off last layer and train classification layer on CalTech256
 \[\Rightarrow \text{State of the art accuracy already with only 6 training images} \]

Graph:
- **X-axis:** Training Images per-class
- **Y-axis:** Accuracy (%)
- **Legend:**
 - **Our Model**
 - **Bo et al**
 - **Sohn et al**

State of the art level (pre-CNN)
Object Detection Performance

![Graph showing the performance of object detection over years, with two distinct phases: Before deep convnets and Using deep convnets. Key points include Faster RCNN and Fast RCNN.]
Object Detection: R-CNN

R-CNN: Regions with CNN features

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features
4. Classify regions

Key ideas
- Extract region proposals (Selective Search)
- Use a pre-trained/fine-tuned classification network as feature extractor (initially AlexNet, later VGGNet) on those regions

R-CNN Pipeline

Input image
R-CNN Pipeline

Regions of Interest (RoI) from a proposal method (~2k)

Input image

Slide credit: Ross Girshick
R-CNN Pipeline

- Warped image regions
- Regions of Interest (RoI) from a proposal method (~2k)

Slide credit: Ross Girshick
R-CNN Pipeline

ConvNet

ConvNet

ConvNet

Forward each region through ConvNet

Warped image regions

Regions of Interest (RoI) from a proposal method (~2k)

Input image

Slide credit: Ross Girshick
R-CNN Pipeline

ConvNet → SVMs → ConvNet → SVMs → SVMs

Classify regions with SVMs
Forward each region through ConvNet
Warped image regions
Regions of Interest (RoI) from a proposal method (~2k)

Input image

Slide credit: Ross Girshick
R-CNN Pipeline

Classify regions with SVMs

Forward each region through ConvNet

Warped image regions

Regions of Interest (RoI) from a proposal method (~2k)

Input image

B. Leibe

Slide credit: Ross Girshick
Classification

- **Linear model with class-dependent weights**
 - Linear SVM
 \[f_c(x_{fc7}) = w_c^T x_{fc7} \]
 - where
 - \(x_{fc7} \) = features from the network (fully-connected layer 7)
 - \(c \) = object class

Slide credit: Ross Girshick, Kaustav Kundu
Bounding Box Regressors

- Prediction of the 2D box
 - Necessary, since the proposal region might not fully coincide with the (annotated) object bounding box
 - Perform regression for location \((x^*, y^*)\), width \(w^*\) and height \(h^*\)
 \[
 \frac{x^* - x}{w} = w_{c,x}^T x_{pool5}
 \]
 \[
 \frac{y^* - y}{h} = w_{c,y}^T x_{pool5}
 \]
 \[
 \frac{\ln(w^*)}{w} = w_{c,w}^T x_{pool5}
 \]
 \[
 \frac{\ln(h^*)}{h} = w_{c,h}^T x_{pool5}
 \]
 - Where \(x_{pool5}\) are the features from the pool5 layer of the network.

Slide credit: Ross Girshick, Kaustav Kundu
Problems with R-CNN

- **Ad hoc training objectives**
 - Fine tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)

- **Training (3 days) and testing (47s per image) is slow.**
 - Many separate applications of region CNNs

- **Takes a lot of disk space**
 - Need to store all precomputed CNN features for training the classifiers
 - Easily 200GB of data

Slide credit: Ross Girshick
Fast R-CNN

- Forward Pass
Fast R-CNN

- Forward Pass

Slide credit: Ross Girshick
Fast R-CNN

- Forward Pass

Slide credit: Ross Girshick
Fast R-CNN Training

- Backward Pass
Region Proposal Networks (RPN)

- **Idea**
 - Remove dependence on external region proposal algorithm.
 - Instead, infer region proposals from same CNN.

 \[\Rightarrow \text{Feature sharing} \]
 \[\Rightarrow \text{Object detection in a single pass becomes possible.} \]

- **Faster R-CNN = Fast R-CNN + RPN**
Faster R-CNN

- One network, four losses
 - Joint training

Classification loss
Bounding-box regression loss

Region Proposal Network
Proposal
Features
CNN
Bounding-box regression loss
Classification loss
...
Faster R-CNN (based on ResNets)

Faster R-CNN (based on ResNets)

Summary

- Object Detection
 - Find a variable number of objects by classifying image regions
 - Before CNNs: dense multiscale sliding window (HoG, DPM)
 - Avoid dense sliding window with region proposals
 - R-CNN: Selective Search + CNN classification / regression
 - Fast R-CNN: Swap order of convolutions and region extraction
 - Faster R-CNN: Compute region proposals within the network
 - Deeper networks do better
Topics of This Lecture

- Object Detection with CNNs
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN

- Semantic Image Segmentation

- Human Pose Estimation

- Face/Person Identification
 - DeepFace
 - FaceNet
Semantic Image Segmentation

- Perform pixel-wise prediction task
 - Usually done using **Fully Convolutional Networks** (FCNs)
 - All operations formulated as convolutions
 - Advantage: can process arbitrarily sized images
CNNs vs. FCNs

- **CNN**

- **FCN**

- **Intuition**
 - Think of FCNs as performing a sliding-window classification, producing a heatmap of output scores for each class.
Semantic Image Segmentation

- **Encoder-Decoder Architecture**
 - Problem: FCN output has low resolution
 - Solution: perform upsampling to get back to desired resolution
 - Use skip connections to preserve higher-resolution information
Other Tasks: Semantic Segmentation

[Farabet et al. ICML 2012, PAMI 2013]
Semantic Segmentation

- More recent results
 - Based on an extension of ResNets

[Pohlen, Hermans, Mathias, Leibe, arXiv 2016]
Topics of This Lecture

- Object Detection with CNNs
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN

- Semantic Image Segmentation

- Human Pose Estimation

- Face/Person Identification
 - DeepFace
 - FaceNet
FCNs for Human Pose Estimation

- Input data
 Image

- Task setup
 - Annotate images with keypoints for skeleton joints
 - Define a target disk around each keypoint with radius r
 - Set the ground-truth label to 1 within each such disk
 - Infer heatmaps for the joints as in semantic segmentation

Slide adapted from Georgia Gkioxari
Heat Map Predictions from FCN

<table>
<thead>
<tr>
<th>Test Image</th>
<th>Right Ankle</th>
<th>Right Knee</th>
<th>Right Hip</th>
<th>Right Wrist</th>
<th>Right Elbow</th>
<th>Right Shoulder</th>
</tr>
</thead>
</table>
Example Results: Human Pose Estimation

[Rafi, Gall, Leibe, BMVC 2016]
Topics of This Lecture

- Object Detection with CNNs
 - R-CNN
 - Fast R-CNN
 - Faster R-CNN

- Semantic Image Segmentation

- Human Pose Estimation

- Face/Person Identification
 - DeepFace
 - FaceNet
Other Tasks: Face Verification

Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR 2014

Slide credit: Svetlana Lazebnik
Discriminative Face Embeddings

- Learning an embedding using a Triplet Loss Network
 - Present the network with triplets of examples
 - Negative
 - Anchor
 - Positive
 - Apply triplet loss to learn an embedding $f(\cdot)$ that groups the positive example closer to the anchor than the negative one.

$$\| f(x_i^a) - f(x_i^P) \|_2^2 < \| f(x_i^a) - f(x_i^n) \|_2^2$$

- Used with great success in Google’s FaceNet face recognition
Vector Arithmetics in Embedding Space

• Learned embeddings often preserve linear regularities between concepts
 - Analogy questions can be answered through simple algebraic operations with the vector representation of words.
 - E.g., \(\text{vec(“King”) - vec(“Man”) + vec(“Woman”) } \approx \text{vec(“Queen”) }\)
 - E.g.,

```
smiling woman
neutral woman
neutral man
smiling man
```

B. Leibe

[Mikolov, NIPS 2013], [Radford, ICLR 2016]
Commercial Recognition Services

- E.g., clarifai

Try it out with your own media

Upload an image or video file under 100mb or give us a direct link to a file on the web.

- Paste a url here...
- USE THE URL
- CHOOSE A FILE INSTEAD

*By using the demo you agree to our terms of service

- Be careful when taking test images from Google Search
 - Chances are they may have been seen in the training set...
Commercial Recognition Services

Image source: clarifai.com
References and Further Reading

- **RCNN and related ideas:**

- **Fast RCNN and related ideas:**

- **Faster RCNN and related ideas:**