Computer Vision - Lecture 12

Recognition with Local Features

05.12.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de
Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition
- Object Categorization I
 - Sliding Window based Object Detection
- Local Features & Matching
 - Local Features - Detection and Description
 - Recognition with Local Features
 - Indexing & Visual Vocabularies
- Object Categorization II
- 3D Reconstruction
- Motion and Tracking
Recap: Local Feature Matching Outline

1. Find a set of distinctive keypoints
2. Define a region around each keypoint
3. Extract and normalize the region content
4. Compute a local descriptor from the normalized region
5. Match local descriptors
Recap: Automatic Scale Selection

- Function responses for increasing scale (scale signature)

\[f(I_{i_1..i_m}(x, \sigma)) \]

\[f(I_{i_1..i_m}(x', \sigma')) \]

Slide credit: Krystian Mikolajczyk
Recap: Laplacian-of-Gaussian (LoG)

- **Interest points:**
 - Local maxima in scale space of Laplacian-of-Gaussian

\[
L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow \sigma^3
\]

\[
L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow \sigma^4
\]

\[
L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow \sigma^5
\]

\[
L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow \sigma^2
\]

\[
L_{xx}(\sigma) + L_{yy}(\sigma) \rightarrow \sigma
\]

\[\Rightarrow \text{List of } (x, y, \sigma)\]
Recap: Harris-Laplace [Mikolajczyk ‘01]

1. Initialization: Multiscale Harris corner detection
2. Scale selection based on Laplacian (same procedure with Hessian \(\Rightarrow\) Hessian-Laplace)

Harris points

Harris-Laplace points

Slide adapted from Krystian Mikolajczyk
Recap: SIFT Feature Descriptor

- **Scale Invariant Feature Transform**
- **Descriptor computation:**
 - Divide patch into 4x4 sub-patches: 16 cells
 - Compute histogram of gradient orientations (8 reference angles) for all pixels inside each sub-patch
 - Resulting descriptor: 4x4x8 = 128 dimensions

Slide credit: Svetlana Lazebnik
Topics of This Lecture

• Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - Alignment: linear transformations
 - Affine estimation
 - Homography estimation

• Dealing with Outliers
 - RANSAC
 - Generalized Hough Transform

• Indexing with Local Features
 - Inverted file index
 - Visual Words
 - Visual Vocabulary construction
 - tf-idf weighting
Recognition with Local Features

- Image content is transformed into local features that are invariant to translation, rotation, and scale.
- Goal: Verify if they belong to a consistent configuration.

Local Features, e.g. SIFT
Concepts: Warping vs. Alignment

Warping: Given a source image and a transformation, what does the transformed output look like?

Alignment: Given two images with corresponding features, what is the transformation between them?

Slide credit: Kristen Grauman
Parametric (Global) Warping

Transformation T is a coordinate-changing machine:

$$p' = T(p)$$

What does it mean that T is global?

- It’s the same for any point p
- It can be described by just a few numbers (parameters)

Let’s represent T as a matrix:

$$p' = Mp, \quad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
What Can be Represented by a 2×2 Matrix?

- **2D Scaling?**
 \[
 x' = s_x \times x \\
 y' = s_y \times y
 \]

- **2D Rotation around (0,0)?**
 \[
 x' = \cos \theta \times x - \sin \theta \times y \\
 y' = \sin \theta \times x + \cos \theta \times y
 \]

- **2D Shearing?**
 \[
 x' = x + sh_x \times y \\
 y' = sh_y \times x + y
 \]
What Can be Represented by a 2×2 Matrix?

- **2D Mirror about y axis?**
 \[
 x' = -x \\
 y' = y
 \]
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix} =
 \begin{bmatrix}
 -1 & 0 \\
 0 & 1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]

- **2D Mirror over (0,0)?**
 \[
 x' = -x \\
 y' = -y
 \]
 \[
 \begin{bmatrix}
 x' \\
 y'
 \end{bmatrix} =
 \begin{bmatrix}
 -1 & 0 \\
 0 & -1
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 y
 \end{bmatrix}
 \]

- **2D Translation?**
 \[
 x' = x + t_x \\
 y' = y + t_y
 \]
 \[
 \text{NO!}
 \]
2D Linear Transforms

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix} \begin{bmatrix}
 x \\
 y
\end{bmatrix}
\]

- Only linear 2D transformations can be represented with a 2×2 matrix.
- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
Homogeneous Coordinates

Q: How can we represent translation as a 3x3 matrix using homogeneous coordinates?

\[\begin{align*}
x' &= x + t_x \\
y' &= y + t_y
\end{align*} \]

A: Using the rightmost column:

\[
\text{Translation} = \begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix}
\]
Basic 2D Transformations

- Basic 2D transformations as 3x3 matrices

Translation

\[
\begin{bmatrix}
{x'} \\
y' \\
1
\end{bmatrix} = \begin{bmatrix}
1 & 0 & t_x \\
0 & 1 & t_y \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Rotation

\[
\begin{bmatrix}
{x'} \\
y' \\
1
\end{bmatrix} = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Scaling

\[
\begin{bmatrix}
{x'} \\
y' \\
1
\end{bmatrix} = \begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Shearing

\[
\begin{bmatrix}
{x'} \\
y' \\
1
\end{bmatrix} = \begin{bmatrix}
1 & sh_x & 0 \\
sh_y & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]
2D Affine Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

- **Affine transformations** are combinations of ...
 - Linear transformations, and
 - Translations

- *Parallel lines remain parallel*
Projective Transformations

\[
\begin{bmatrix}
 x' \\
 y' \\
 w'
\end{bmatrix} =
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\]

- Projective transformations:
 - Affine transformations, and
 - Projective warps

- Parallel lines do not necessarily remain parallel
Alignment Problem

- We have previously considered how to fit a model to image evidence
 - E.g., a line to edge points
- In alignment, we will fit the parameters of some transformation according to a set of matching feature pairs (“correspondences”).

Slide credit: Kristen Grauman
Let’s Start with Affine Transformations

- Simple fitting procedure (linear least squares)
- Approximates viewpoint changes for roughly planar objects and roughly orthographic cameras
- Can be used to initialize fitting for more complex models
Fitting an Affine Transformation

- Affine model approximates perspective projection of planar objects
Fitting an Affine Transformation

- Assuming we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
x'_i \\
y'_i
\end{bmatrix} = \begin{bmatrix}
m_1 & m_2 \\
m_3 & m_4
\end{bmatrix} \begin{bmatrix}
x_i \\
y_i
\end{bmatrix} + \begin{bmatrix}
t_1 \\
t_2
\end{bmatrix}
\]
Recall: Least Squares Estimation

- **Set of data points:** \((X_1, X_1'), (X_2, X_2'), (X_3, X_3')\)
- **Goal:** a linear function to predict \(X\)'s from \(X\)s:
 \[Xa + b = X'\]
- **We want to find** \(a\) and \(b\).
- **How many** \((X, X')\) **pairs do we need?**
 \[X_1a + b = X_1'
 \]
 \[X_2a + b = X_2'
 \]
- **What if the data is noisy?**
 \[
 \begin{bmatrix}
 X_1 & 1 \\
 X_2 & 1 \\
 X_3 & 1 \\
 \vdots & \vdots
 \end{bmatrix}
 \begin{bmatrix}
 a \\
 b
 \end{bmatrix}
 =
 \begin{bmatrix}
 X_1' \\
 X_2' \\
 X_3' \\
 \vdots
 \end{bmatrix}
 \]
 Overconstrained problem
 \[\min ||Ax - B||^2\]
 \[\Rightarrow\text{Least-squares minimization}\]

Solution:
\[x = A^+B\]

Matlab:
\[x = A\backslash B\]
Fitting an Affine Transformation

- Assuming we know the correspondences, how do we get the transformation?

\[
\begin{bmatrix}
 x'_i \\
 y'_i
\end{bmatrix}
= \begin{bmatrix}
 m_1 & m_2 \\
 m_3 & m_4
\end{bmatrix}
\begin{bmatrix}
 x_i \\
 y_i
\end{bmatrix}
+ \begin{bmatrix}
 t_1 \\
 t_2
\end{bmatrix}
\]
Fitting an Affine Transformation

\[
\begin{bmatrix}
 x_i & y_i & 0 & 0 & 1 & 0 \\
 0 & 0 & x_i & y_i & 0 & 1 \\
 \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
 m_1 \\
 m_2 \\
 m_3 \\
 m_4 \\
 t_1 \\
 t_2 \\
\end{bmatrix}
= \begin{bmatrix}
 \cdots \\
 x'_i \\
 y'_i \\
 \vdots \\
\end{bmatrix}
\]

• How many matches (correspondence pairs) do we need to solve for the transformation parameters?
• Once we have solved for the parameters, how do we compute the coordinates of the corresponding point for \((x_{new}, y_{new})\)?
Homography

- A projective transform is a mapping between any two perspective projections with the same center of projection.
 - I.e. two planes in 3D along the same sight ray

- Properties
 - Rectangle should map to arbitrary quadrilateral
 - Parallel lines aren’t
 - but must preserve straight lines

- This is called a homography

\[
\begin{bmatrix}
wx' \\
w'y' \\
w \\
p'
\end{bmatrix}
=
\begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
*
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
l \\
p
\end{bmatrix}
\]

Slide adapted from Alexej Efros

B. Leibe
Homography

- A projective transform is a mapping between any two perspective projections with the same center of projection.
 - i.e. two planes in 3D along the same sight ray
- Properties
 - Rectangle should map to arbitrary quadrilateral
 - Parallel lines aren’t
 - but must preserve straight lines
- This is called a homography

\[
\begin{bmatrix}
w x' \\
w y' \\
w \\
p'
\end{bmatrix} =
\begin{bmatrix}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & H \\
1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
1 \\
p'
\end{bmatrix}
\]

Set scale factor to 1 \(\Rightarrow 8\) parameters left.
Fitting a Homography

- Estimating the transformation

\[
\begin{align*}
\mathbf{X}_A \leftrightarrow \mathbf{X}_B & \quad \mathbf{x}' = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \mathbf{x} \\
\mathbf{y}' & = \mathbf{h} \cdot \mathbf{y} \\
\mathbf{z}' & = \mathbf{h} \cdot \mathbf{z} \\
\end{align*}
\]

Image coordinates

Homogenous coordinates

Matrix notation

\[
\begin{align*}
\mathbf{x}' &= \mathbf{H} \mathbf{x} \\
\mathbf{x}'' &= \frac{1}{\mathbf{z}'} \mathbf{x}'
\end{align*}
\]
Fitting a Homography

- Estimating the transformation

\[
\begin{align*}
\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} &= \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \\
\end{align*}
\]

Image coordinates

Homogenous coordinates

Matrix notation

\[
\begin{align*}
x' &= Hx \\
x'' &= \frac{1}{z'} x'
\end{align*}
\]
Fitting a Homography

- Estimating the transformation

Matrix notation

\[x' = Hx \]

\[x'' = \frac{1}{z'} x' \]

Homogenous coordinates

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} = \begin{bmatrix}
 h_{11} & h_{12} & h_{13} \\
 h_{21} & h_{22} & h_{23} \\
 h_{31} & h_{32} & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

Image coordinates

\[
\begin{bmatrix}
 x'' \\
 y'' \\
 1
\end{bmatrix} = \frac{1}{z'} \begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix}
\]

\[
\begin{align*}
 x_{A_i} &= \frac{h_{11} x_{B_i} + h_{12} y_{B_i} + h_{13}}{h_{31} x_{B_i} + h_{32} y_{B_i} + 1} \\
 x_{A_2} &= \frac{h_{21} x_{B_2} + h_{22} y_{B_2} + h_{23}}{h_{31} x_{B_2} + h_{32} y_{B_2} + 1} \\
 x_{A_3} &= \frac{h_{31} x_{B_3} + h_{32} y_{B_3} + 1}{h_{31} x_{B_3} + h_{32} y_{B_3} + 1}
\end{align*}
\]

Slide credit: Krystian Mikolajczyk
Fitting a Homography

- Estimating the transformation

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} = \begin{bmatrix}
 h_{11} & h_{12} & h_{13} \\
 h_{21} & h_{22} & h_{23} \\
 h_{31} & h_{32} & 1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

\[
x'' = \frac{1}{z'} \begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix}
\]

Image coordinates

Homogenous coordinates

Matrix notation

\[
x' = Hx
\]

\[
x'' = \frac{1}{z'} x'
\]

\[
x_{A_i} = \frac{h_{11} x_{B_i} + h_{12} y_{B_i} + h_{13}}{h_{31} x_{B_i} + h_{32} y_{B_i} + 1}
\]

\[
y_{A_i} = \frac{h_{21} x_{B_i} + h_{22} y_{B_i} + h_{23}}{h_{31} x_{B_i} + h_{32} y_{B_i} + 1}
\]

Slide credit: Krystian Mikolajczyk B. Leibe
Fitting a Homography

- Estimating the transformation

\begin{align*}
\mathbf{x}_{A_1} & \leftrightarrow \mathbf{x}_{B_1} & x_{A_1} &= \frac{h_{11} x_{B_1} + h_{12} y_{B_1} + h_{13}}{h_{31} x_{B_1} + h_{32} y_{B_1} + 1} \\
\mathbf{x}_{A_2} & \leftrightarrow \mathbf{x}_{B_2} & y_{A_1} &= \frac{h_{21} x_{B_1} + h_{22} y_{B_1} + h_{23}}{h_{31} x_{B_1} + h_{32} y_{B_1} + 1} \\
\mathbf{x}_{A_3} & \leftrightarrow \mathbf{x}_{B_3} & x_{A_1} x_{B_1} + x_{A_1} h_{32} y_{B_1} + x_{A_1} = h_{11} x_{B_1} + h_{12} y_{B_1} + h_{13} \\
& \vdots \\

\end{align*}

Slide credit: Krystian Mikolajczyk
Fitting a Homography

- Estimating the transformation

\[\begin{align*}
 \mathbf{x}_{A_1} & \leftrightarrow \mathbf{x}_{B_1} \\
 \mathbf{x}_{A_2} & \leftrightarrow \mathbf{x}_{B_2} \\
 \mathbf{x}_{A_3} & \leftrightarrow \mathbf{x}_{B_3} \\
 \vdots & \\
 \vdots & \\
 h_{11} x_{B_1} + h_{12} y_{B_1} + h_{13} - x_{A_i} h_{31} x_{B_1} - x_{A_i} h_{32} y_{B_1} - x_{A_i} &= 0 \\
 h_{21} x_{B_1} + h_{22} y_{B_1} + h_{23} - y_{A_i} h_{31} x_{B_1} - y_{A_i} h_{32} y_{B_1} - y_{A_i} &= 0
\end{align*} \]

Homogenous coordinates

Image coordinates

Slide credit: Krystian Mikolajczyk
Fitting a Homography

- Estimating the transformation

\[
\begin{align*}
 h_{11} x_{B_1} + h_{12} y_{B_1} + h_{13} - x_{A_1} h_{31} x_{B_1} - x_{A_1} h_{32} y_{B_1} - x_{A_1} &= 0 \\
 h_{21} x_{B_1} + h_{22} y_{B_1} + h_{23} - y_{A_1} h_{31} x_{B_1} - y_{A_1} h_{32} y_{B_1} - y_{A_1} &= 0
\end{align*}
\]

\[
\begin{pmatrix}
 x_{B_1} & y_{B_1} & 1 & 0 & 0 & 0 & -x_{A_1} x_{B_1} & -x_{A_1} y_{B_1} & -x_{A_1} \\
 0 & 0 & 0 & x_{B_1} & y_{B_1} & 1 & -y_{A_1} x_{B_1} & -y_{A_1} y_{B_1} & -y_{A_1}
\end{pmatrix}
\begin{pmatrix}
 h_{11} \\
 h_{12} \\
 h_{13} \\
 h_{21} \\
 h_{22} \\
 h_{23} \\
 h_{31} \\
 h_{32} \\
 1
\end{pmatrix}
= \begin{pmatrix}
 0 \\
 0 \\
 . \\
 . \\
 . \\
 . \\
 1
\end{pmatrix}
\]

\[
Ah = 0
\]

Slide credit: Krystian Mikolajczyk
Fitting a Homography

- Estimating the transformation

Solution:
 - Null-space vector of A

\[
\begin{align*}
A_h &= 0 \\
X_{A_1} &\leftrightarrow X_{B_1} \\
X_{A_2} &\leftrightarrow X_{B_2} \\
X_{A_3} &\leftrightarrow X_{B_3} \\
&\vdots
\end{align*}
\]

Slide credit: Krystian Mikolajczyk
Fitting a Homography

- Estimating the transformation
- Solution:
 - Null-space vector of A
 - Corresponds to smallest singular vector

\[\text{SVD} \]
\[A = UDV^T = U \begin{bmatrix} d_{11} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & d_{99} \end{bmatrix} \begin{bmatrix} v_{11} & \cdots & v_{19} \\ \vdots & \ddots & \vdots \\ v_{91} & \cdots & v_{99} \end{bmatrix} \]

\[h = \begin{bmatrix} v_{19}, \cdots, v_{99} \\ v_{99} \end{bmatrix} \]

Minimizes least square error

Slide credit: Krystian Mikolajczyk
Image Warping with Homographies

Image plane in front

Black area where no pixel maps to

Slide credit: Steve Seitz
Uses: Analyzing Patterns and Shapes

- What is the shape of the b/w floor pattern?
Analyzing Patterns and Shapes

From Martin Kemp *The Science of Art* (manual reconstruction)

Slide credit: Antonio Criminisi
Topics of This Lecture

• Recognition with Local Features
 - Matching local features
 - Finding consistent configurations
 - Alignment: linear transformations
 - Affine estimation
 - Homography estimation

• Dealing with Outliers
 - RANSAC
 - Generalized Hough Transform

• Indexing with Local Features
 - Inverted file index
 - Visual Words
 - Visual Vocabulary construction
 - tf-idf weighting
Problem: Outliers

- Outliers can hurt the quality of our parameter estimates, e.g.,
 - An erroneous pair of matching points from two images
 - A feature point that is noise or doesn’t belong to the transformation we are fitting.

Slide credit: Kristen Grauman
Example: Least-Squares Line Fitting

- Assuming all the points that belong to a particular line are known
Outliers Affect Least-Squares Fit
Outliers Affect Least-Squares Fit
Strategy 1: RANSAC [Fischler81]

- **RAN**dom **SA**mple **C**onsensus

- **Approach:** we want to avoid the impact of outliers, so let’s look for “inliers”, and use only those.

- **Intuition:** if an outlier is chosen to compute the current fit, then the resulting line won’t have much support from rest of the points.
RANSAC

RANSAC loop:

1. Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group

3. Find *inliers* to this transformation

4. If the number of inliers is sufficiently large, re-compute least-squares estimate of transformation on all of the inliers

- Keep the transformation with the largest number of inliers

Slide credit: Kristen Grauman
RANSAC Line Fitting Example

- Task: Estimate the best line
 - How many points do we need to estimate the line?
RANSAC Line Fitting Example

- Task: Estimate the best line

Sample two points
RANSAC Line Fitting Example

- Task: Estimate the best line

Fit a line to them
RANSAC Line Fitting Example

- Task: Estimate the best line

Total number of points within a threshold of line.

Slide credit: Jinxiang Chai
RANSAC Line Fitting Example

- Task: Estimate the best line

Total number of points within a threshold of line.

“7 inlier points”
RANSAC Line Fitting Example

- Task: Estimate the best line

Repeat, until we get a good result.

Slide credit: Jinxiang Chai
RANSAC Line Fitting Example

- Task: Estimate the best line

Repeat, until we get a good result.

“11 inlier points”
RANSAC: How many samples?

• How many samples are needed?
 - Suppose w is fraction of inliers (points from line).
 - n points needed to define hypothesis (2 for lines)
 - k samples chosen.

• Prob. that a single sample of n points is correct: w^n

• Prob. that all k samples fail is: $(1 - w^n)^k$

\Rightarrow Choose k high enough to keep this below desired failure rate.

Slide credit: David Lowe
RANSAC: Computed k ($p=0.99$)

<table>
<thead>
<tr>
<th>Sample size (n)</th>
<th>5%</th>
<th>10%</th>
<th>20%</th>
<th>25%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>19</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>34</td>
<td>72</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>17</td>
<td>26</td>
<td>57</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7</td>
<td>16</td>
<td>24</td>
<td>37</td>
<td>97</td>
<td>293</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>33</td>
<td>54</td>
<td>163</td>
<td>588</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>44</td>
<td>78</td>
<td>272</td>
<td>1177</td>
</tr>
</tbody>
</table>
After RANSAC

- RANSAC divides data into inliers and outliers and yields an estimate computed from minimal set of inliers.
- Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization).
- But this may change inliers, so alternate fitting with re-classification as inlier/outlier.

Slide credit: David Lowe
Example: Finding Feature Matches

- Find best stereo match within a square search window (here 300 pixels²)
- Global transformation model: epipolar geometry

Images from Hartley & Zisserman
Example: Finding Feature Matches

- Find best stereo match within a square search window (here 300 pixels2)
- Global transformation model: epipolar geometry

before RANSAC after RANSAC

Images from Hartley & Zisserman

Slide credit: David Lowe
Problem with RANSAC

- In many practical situations, the percentage of outliers (incorrect putative matches) is often very high (90% or above).
- Alternative strategy: Generalized Hough Transform
Strategy 2: Generalized Hough Transform

- Suppose our features are scale- and rotation-invariant
 - Then a single feature match provides an alignment hypothesis (translation, scale, orientation).
Strategy 2: Generalized Hough Transform

- Suppose our features are scale- and rotation-invariant
 - Then a single feature match provides an alignment hypothesis (translation, scale, orientation).
 - Of course, a hypothesis from a single match is unreliable.
 - Solution: let each match vote for its hypothesis in a Hough space with very coarse bins.

Slide credit: Svetlana Lazebnik
Pose Clustering and Verification with SIFT

• To detect instances of objects from a model base:

1. Index descriptors
 • Distinctive features narrow down possible matches
Indexing Local Features

Model base

New image

Slide credit: Kristen Grauman
Image source: David Lowe
Pose Clustering and Verification with SIFT

• To detect instances of objects from a model base:

1. Index descriptors
 • Distinctive features narrow down possible matches

2. Generalized Hough transform to vote for poses
 • Keypoints have record of parameters relative to model coordinate system

3. Affine fit to check for agreement between model and image features
 • Fit and verify using features from Hough bins with 3+ votes

Slide credit: Kristen Grauman
Image source: David Lowe
Object Recognition Results

Background subtract for model boundaries

Objects recognized

Recognition in spite of occlusion

Slide credit: Kristen Grauman

Image source: David Lowe
Location Recognition

Training

[Lowe, IJCV’04]
Recall: Difficulties of Voting

- Noise/clutter can lead to as many votes as true target.
- Bin size for the accumulator array must be chosen carefully.
- (Recall Hough Transform)
- In practice, good idea to make broad bins and spread votes to nearby bins, since verification stage can prune bad vote peaks.
Summary

• Recognition by alignment: looking for object and pose that fits well with image
 - Use good correspondences to designate hypotheses.
 - Invariant local features offer more reliable matches.
 - Find consistent “inlier” configurations in clutter
 - Generalized Hough Transform
 - RANSAC

• Alignment approach to recognition can be effective if we find reliable features within clutter.
 - Application: large-scale image retrieval
 - Application: recognition of specific (mostly planar) objects
 - Movie posters
 - Books
 - CD covers
References and Further Reading

- A detailed description of local feature extraction and recognition can be found in Chapters 3-5 of Grauman & Leibe (available on the L2P).

- More details on RANSAC can also be found in Chapter 4.7 of Hartley & Zisserman.