Computer Vision - Lecture 8

Sliding-Window based Object Detection

21.11.2016

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Course Outline

 Image Processing Basics

e Segmentation
> Segmentation and Grouping
> Segmentation as Energy Minimization

e Recognition & Categorization
> Sliding-Window Object Detection
> Image Classification

e Local Features & Matching
e 3D Reconstruction
e Motion and Tracking



RWNTH
Recap: MRFs for Image Segmentation

e MRF formulation

= Minimize the energy

E(x,y)= Z d(zi, i)
+2_ (@i z;)

Unary
potentials

oG AT

@D(:Ci, xj)

Data (D) Unary likelihood Pair-wise Terms MAP Solution
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Slide adapted from Phil Torr



Recap: Energy Formulation

o Energy function

Z¢ xzayz +Z¢ ZEMIEJ

7] -
Unary Pa1rw15e
potentials potentials

e Unary potentials ¢

~ Encode local information about the given pixel/patch

~ How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

« Pairwise potentials N

> Encode neighborhood information

- How different is a pixel/patch’s label from that of its neighbor?

(e.g. based on intensity/color/texture difference, edges)
B. Leibe
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RWTH
Recap: How to Set the Potentials? "

e Unary potentials
~ E.g. color model, modeled with a Mixture of Gaussians

D(Ti, Yis 0p) logZ% iy k)p(K|2)N (Y5 Uk, L)

= Learn color distributions for each label
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RWTH
Recap: How to Set the Potentials?

e Pairwise potentials
~ Potts Model
(i, 253 0p) = Opo(z; # T5)

- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.

> Extension: “Contrast sensitive Potts model”
(i, 5, 9ij(¥); Op) = —0pgi;(¥)0 (i # 1)
where
gij(y) = e Plui—will® 5= % (ave (v — v5117)

= Discourages label changes except in places where there is also a
large change in the observations.
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Recap: Graph-Cuts Energy Minimization

e Solve an equivalent graph cut problem
. Introduce extra nodes: source and sink
. Weight connections to source/sink (t-links)

= Solution is equivalent to minimum of the energy.

e s-t Mincut can be solved efficiently

>

>

. Weight connections between nodes (n-links)

. Find the minimum cost cut that separates

by ¢(x, = s) and ¢(z; = t), respectively.

by (x;, 333')-

source from sink.

Dual to the well-known max flow problem

Very efficient algorithms available for regular
grid graphs (1-2 MPixels/s)

Globally optimal result for 2-class problems
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RWTH
Recap: When Can s-t Graph Cuts Be Applied?

Unary potentials Pairwise potentials

E(L) Z E. (L) + > E(L,, L)
t-links Pt n-links Lp E{S’t}

e s-t graph cuts can only globally minimize binary energies
that are SmeOdUlar. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

E(L) can be minimized | &= |E(S,S)+E(t,t) <E(S,t)+E(t,S)
by s-t graph cuts

Submodularity (“convexity”)

e Submodularity is the discrete equivalent to convexity.

> Implies that every local energy minimum is a global minimum.
= Solution will be globally optimal.

B. Leibe



Topics of This Lecture

e Object Recognition and Categorization
~ Problem Definitions
~ Challenges

e Sliding-Window based Object Detection
~ Detection via Classification
~ Global Representations
» Classifier Construction

e Classification with SVMs
» Support Vector Machines
> HOG Detector

e (Classification with Boosting
> AdaBoost
> Viola-Jones Face Detection
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Object Recognition: Challenges

e Viewpoint changes
> Translation
> Image-plane rotation
~ Scale changes
> Out-of-plane rotation

e |llumination
e Noise

e Clutter

e Occlusion

T~ | 2D image

B. Leibe

10
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Appearance-Based Recognition

e Basic assumption

~ Objects can be represented
by a set of images
(“appearances”).

> For recognition, it is
sufficient to just compare
the 2D appearances.

> No 3D model is needed.

3D object

= Fundamental paradigm shift in the 90’s

11
B. Leibe
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Global Representation

e Idea

» Represent each object (view) by a global descriptor.

» For recognizing objects, just match the descriptors.

> Some modes of variation are built into the descriptor, the others
have to be incorporated in the training data.

- E.g., a descriptor can be made invariant to image-plane rotations.

- Other variations:

Viewpoint changes
— Translation
— Scale changes
— Out-of-plane rotation

B. Leibe

[llumination
Noise
Clutter
Occlusion

12



Appearance based Recognition

e Recognition as feature vector matching

Test image
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Known objects
13

B. Leibe
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Appearance based Recognition

e With multiple training views

Test image \

B. Leibe

FFPFFFERE
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Ildentification vs. Categorization
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Ildentification vs. Categorization

e Recognize ANY cow

B '
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RWTH
Object Categorization - Potential Applications

There is a wide range of applications, including.

Autonomous robots Navigation, driver safety = Consumer electronics

Images Video News Maps Desktop more» You Tuhe gf%gﬁag{;ﬂMRm
Goo gle s whes | ) ot nace Nerzoe
Images Moderate SafeSearch is on Broadcast Yourself ™ s Categories Se: 890/9 -
| 2

Images Showing: |Allimage sizes v

Videos being wnched right now..

|
H 0104 | |

Content-based retrieval and analysis for
images and videos

5.0thk/-4.05p v
W:163 L:82

Medical image
analysis 17
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Slide adapted from Kristen Grauman



RWTHAACHEN

How many object categories are there?"=*'!

:\
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Biederman 1987

Source: Fei-Fei Li, Rob Fergus, Antonio Torralba.
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Challenges: Robustness

Intra-class
appearance

Occlusions

Slide credit: Kristen Grauman

Vi‘ewpoint

20
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e Detection in crowded, real-world scenes
~ Learn object variability
- Changes in appearance, scale, and articulation
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B. Leibe [Leibe, Seemann, Schiele, CVPR’05]
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Topics of This Lecture

e Sliding-Window based Object Detection
~ Detection via Classification
~ Global Representations
» Classifier Construction

B. Leibe
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Detection via Classification: Main Idea

e Basic component: a binary classifier

Slide credit: Kristen Grauman

B. Leibe

r

.

Car/non-car
Classifier

~\

J

!

NoYesytcaKcar.
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Detection via Classification: Main Idea

e |f the object may be in a cluttered scene, slide a window
around looking for it.

( )

Car/non-car

Classifier
\_ )

e Essentially, this is a brute-force approach with many
local decisions.
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Slide credit: Kristen Grauman B. Leibe
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What is a Sliding Window Approach?

e Search over space and scale

JUDYBATS

mlﬂYBATS
JUDYBATS
o0 0 ;40 ﬂ‘ﬁ ® 'éJ

e Detection as subwindow classification problem

e “In the absence of a more intelligent strategy, any
global image classification approach can be converted
into ahlocallzatlon approach by using a sliding-window
search.”

B. Leibe

25
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Detection via Classification: Main Idea

Fleshing out this
pipeline a bit more,
we need to:

1. Obtain training data
2. Define features
3. Define classifier

Slide credit: Kristen Grauman

Training examples

vl

) ~ ™
° —»| Car/non-car
\: Classifier
\_ y,
Feature
\extraction Y
B. Leibe
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Feature
extraction
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B. Leibe
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> Grayscale / color histogram

Simple holistic descriptions of image content
» Vector of pixel intensities

Feature extraction
Global Appearance

Slide credit: Kristen Grauman
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RWNTH
Eigenfaces: Global Appearance Description

This can also be applied in a sliding-window framework...

¥ 4 Generate low-
“facd  dimensional
@H & representation
of appearance
' with a linear
subspace.

Eigenvectors computed
from covariance matrix

N~

—i

= Project new

2 images to “face
»

= space”.

]

>

@

= Detection via distance Identification via distance

§ TO eigenspace IN eigenspace

Slide credit: Kristen Grauman B. Leibe [Turk & Pentland, 19&%3]
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Gradient-based Representations

e |dea
~ Consider edges, contours, and (oriented) intensity gradients

Slide credit: Kristen Grauman B. Leibe

30



Gradient-based Representations

e |dea
~ Consider edges, contours, and (oriented) intensity gradients

- g “4 Y L il y q
' == o 44 = & of. Ve
. = : e - - | . TP, £
: e - P g
" g - - <
o % & % . S - R et :
o 2 i e AR e B

e Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations

> Localized histograms offer more spatial information than a single
global histogram (tradeoff invariant vs. discriminative)

> Contrast-normalization: try to correct for variable illumination
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Slide credit: Kristen Grauman B. Leibe



R\NTH
Gradient-based Representations:

Histograms of Oriented Gradients (HoG)

Orientation Voting

~
.

T e

~ = Opverlapping Blocks

\‘\\‘

-
27

Input Image Gradient Image

—~_ _Local Normalization

e Map each grid cell in the input
window to a histogram counting the
gradients per orientation.

e (Code available:
http://pascal.inrialpes.fr/soft/olt/
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Slide credit: Kristen Grauman [Dalal & Triggs, CVPR 2005]


http://pascal.inrialpes.fr/soft/olt/
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Classifier Construction

e How to compute a decision for each subwindow?

car non-car car non-car car non-car

o
: ! '
= Image feature
=
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Slide credit: Kristen Grauman B. Leibe
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Discriminative Methods

e Learn a decision rule (classifier) assigning image features
to different classes

..........................
-------
us .
,,,,,,
....
0

Decision \0'/Zebra
boundary
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Slide adapted from Svetlana Lazebnik B. Leibe
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Nearest Neighbor

e
o™

.
- L L]
on '.
.
L » -
" .

Berg, Berg, Malik 2005,
Chum, Zisserman 2007,
Boiman, Shechtman, Irani 2008, ...

Classifier Construction: Many Choices...

Neural networks

ps 18@10x10
S4:1 maps 16@5x5

Rowley, Baluja, Kanade 1998

Boosting

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006,

Benenson 2012, ...

Slide adapted from Kristen Grauman

Support Vector Machines

Vapnik, Scholkopf 1995,
Papageorgiou, Poggio ‘01,
Dalal, Triggs 2005,
Vedaldi, Zisserman 2012

B. Leibe

Randomizedeorests
FaN

Amit, Geman 1997,

Breiman 2001,

Lepetit, Fua 2006,
Gall, Lempitsky 2009,...

35



Linear Classifiers

@
\ ’ . e [w1] a [xll
W9 9
@
@
W @
@ ® ° ® ® w1x1+w2x2+b—0
@
S o \ ® $
o ® T
= w x+b=0
g
>
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3
S
B. Leibe

36
Slide adapted from: Kristen Grauman
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Linear Classifiers

e Find linear function to separate positive and negative

examples
® PR |
o x,, positive: w'x, 4+ 0> 0
® x,, hegative: wix, + b <0
@
@
@
® o e o
@ . \
@
@
° @
Which line
@ is best?
@

Slide credit: Kristen Grauman B. Leibe
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Support Vector Machines (SVMs)

e Discriminative classifier
based on optimal
separating hyperplane
(i.e. line for 2D case)

« Maximize the margin
between the positive
and negative training
examples
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B. Leibe

Slide credit: Kristen Grauman



Support Vector Machines

e Want line that maximizes the margin.

4
%, N
‘1;,_ S, % x, positive (¢, =1): wix, +b>1
S o 7\ ® x, hegative (¢, =-1): wix, + b <-1

For support, vectors, wan +b=+1

O
1 =

< O @ Quadratic optimization problem
7))

=

= Minimize %WTW

= Subject to tn(wan +b)>1

)

é Support vectors ® S Margin Packages available for that...
(@]

O

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, 39
Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the Maximum Margin Line

N
e Solution: W = Z AnltnXn
—

Learned Support
weight vector
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

RWTH
Finding the Maximum Margin Line

N
e Solution: W = Z AnltnXn
n=1

e (Classification function:

: T If f(x) < 0, classify as neg.,
f(x) = sign(w’x+0) if f(x) > 0, classify as pos.
N
= sign (Z ant, ng — b)
n=1

» Notice that this relies on an inner product between the test
point x and the support vectors x,,

> (Solving the optimization problem also involves computing the
inner products x_‘x_between all pairs of training points)
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, 41
Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

N~
—
S~~~
(o)
—
%2
=
c
©
i
>
2
>
o
&
o
@)

Questions

e What if the features are not 2d?
e What if the data is not linearly separable?
e What if we have more than just two categories?

Slide credit: Kristen Grauman B. Leibe

42
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Questions

e What if the features are not 2d?
~ Generalizes to d-dimensions - replace line with “hyperplane”

e What if the data is not linearly separable?
e What if we have more than just two categories?

43
B. Leibe



Questions

e What if the features are not 2d?
~ Generalizes to d-dimensions - replace line with “hyperplane”

e What if the data is not linearly separable?
> Non-linear SVMs with special kernels

e What if we have more than just two categories?
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Slide credit: Kristen Grauman B. Leibe
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Non-Linear SVMs: Feature Spaces

e General idea: The original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

K
o
.t
.-t

o ‘.
0 .
- 'l. |
o
. R
e o
e .t

ot
K3
. :
l .,
v,
b n
>
o
8
K

More on that in the Machine Learning lecture...

45

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



http://www.autonlab.org/tutorials/svm.html
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Nonlinear SVMs

e The kernel trick: instead of explicitly computing the
lifting transformation ¢(x), define a kernel function K
such that

K(x;, Xj) = o(x;) - (P(Xj)

e This gives a nonlinear decision boundary in the original
feature space:

Z antnK(Xpn,x) + b

n

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, 46
Data Mining and Knowledge Discovery, 1998


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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RWNTH
Some Often-Used Kernel Functions

e Linear:
K(Xi,%;)=X; TX;

e Polynomial of power p:
KX, ;)= (1+ X; ;)P

e Gaussian (Radial-Basis Function): ,
i x|

20~

)

K(Xi’xj) = exp(—

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

47


http://www.autonlab.org/tutorials/svm.html

Questions

e What if the features are not 2d?
~ Generalizes to d-dimensions - replace line with “hyperplane”

e What if the data is not linearly separable?
> Non-linear SVMs with special kernels

e What if we have more than just two categories?
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Slide credit: Kristen Grauman B. Leibe
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Multi-Class SVMs

e Achieve multi-class classifier by combining a number of
binary classifiers

e One vs. all
» Training: learn an SVM for each class vs. the rest

> Testing: apply each SVM to test example and assign to
it the class of the SVM that returns the highest
decision value

e One vs. one
> Training: learn an SVM for each pair of classes

> Testing: each learned SVM “votes” for a class to
assign to the test example

49

Slide credit: Kristen Grauman B. Leibe



SVMs for Recognition

1.Define your representation for each

example.

2.Select a kernel function.

NON-FACES

O | - L=
~ 0O _Odg _

oo Ol n L]
L o ﬁ D
3.Compute pairwise kernel values o Mo
= ] NG .
between labeled examples So wEC
o0 2 i

4 .Pass this “kernel matrix” to SVM S =
optimization software to identify 090 P00 m!
support vectors & weights. —

5.To classify a new example: compute
kernel values between new input
and support vectors, apply weights,
check sign of output.

N~
—i
~
o
—i
n
=
c
2
L
>
8
-}
o
=
(@]
O

Slide credit: Kristen Grauman B. Leibe
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Topics of This Lecture

e Classification with SVMs
> Support Vector Machines
> HOG Detector

B. Leibe
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Pedestrian Detection

e Detecting upright, walking humans using sliding window’s
appearance/texture; e.g.,

o d Y ~ : -
SVM with Haar wavelets Space-tlme rectangle SVM with HoGs [Dalal &
[Papageorgiou & Poggio, IJCV features [Viola, Jones & Triggs, CVPR 2005]
2000] Snow, ICCV 2003]

Slide credit: Kristen Grauman B. Leibe

52



CHEN
UNIVERSITY
HOG Descriptor Processing Chain
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Image Window

53
Slide adapted from Navneet Dalal



HOG Descriptor Processing Chain

e Optional: Gamma compression

~ Goal: Reduce effect of overly
strong gradients

~ Replace each pixel color/intensity
by its square-root

T T

= Small performance improvement

Gamma compression

T
Image Window
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54

Slide adapted from Navneet Dalal



HOG Descriptor Processing Chain

e Gradient computation

» Compute gradients on all color
channels and take strongest one

» Simple finite difference filters
work best (no Gaussian smoothing)

Image Window

—1

-1 0 1] 0
= |1
©
—i
%2
=
c
= Compute gradients
S 1
< Gamma compression
2 ¢
£
o
O

55

Slide adapted from Navneet Dalal
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HOG Descriptor Processing Chain

e Spatial/Orientation binning

» Compute localized histograms of
oriented gradients

~ Typical subdivision:
8‘><8 cells with 8 or 9 orientation bins

Slide adapted from Navneet Dalal

Weighted vote in spatial &
orientation cells

?

Compute gradients

?

Gamma compression

T
Image Window
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HOG Cell Computation Details

e Gradient orientation voting

» Each pixel contributes to localized
gradient orientation histogram(s)

~ Vote is weighted by the pixel’s
gradient magnitude

/ § = tan—! (%/%
k VA= (D7 + (3D

e Block-level Gaussian weighting

~ An additional Gaussian weight is
applied to each 2x2 block of cells

~ Each cell is part of 4 such blocks,
resulting in 4 versions of the
histogram.
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HOG Cell Computation Details (2)

e Important for robustness: Tri-linear interpolation
> Each pixel contributes to (up to) 4

neighboring cell histograms (z1,71) | (22,91)
1, 91 2, J1

~ Weights are obtained by bilinear .
interpolation in image space:

h(iﬁlayl)(—’blﬁ(l— x_wl)(l— y—y1)
T2 — I Y2 — 1

M) w0 (1_ :13—$1)(y_yl)
Lo — I Y2 — 1

h($2ay1)<—w'(m_$l)(1_y_yl) \
2 —I1 Y2 — 1

bazae) - (211 ) (L0
T2 — X1 Y2 —

> Contribution is further split over
(up to) 2 neighboring orientation bins
via linear interpolation over angles.
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HOG Descriptor Processing Chain

e 2-Stage contrast normalization

> L2 normalization, clipping, L2 normalization

Slide adapted from Navneet Dalal

Contrast normalize over
overlapping spatial cells

?

Weighted vote in spatial &
orientation cells

?

Compute gradients

T

Gamma compression

T
Image Window
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HOG Descriptor Processing Chain

e Feature vector construction
> Collect HOG blocks into vector

Collect HOGs over
detection window
T

Contrast normalize over
overlapping spatial cells

I~ t

—

S Weighted vote in spatial &
7) orientation cells
= i

C .

2 Compute gradients
S i

< Gamma compression
2 _ f

= ~s Image Window

O T
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HOG Descriptor Processing Chain

e SVM Classification Object/ NOTn-0bJect
~ Typically using a linear SVM Linear SYM

T
Collect HOGs over
detection window
T
Contrast normalize over
overlapping spatial cells
T
Weighted vote in spatial &
orientation cells
T
Compute gradients

T
Gamma compression

T
_-— Image Window
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Pedestrian Detection with HOG

e Train a pedestrian template using a linear SVM
e At test time, convolve feature map with template

HOG feature map Template Detector response map

~ A XK
-

P o e

4
{
!
X
4
|

N e «—So// \

e, e WS

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005
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Slide credit: Svetlana Lazebnik


http://lear.inrialpes.fr/pubs/2005/DT05
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Non-Maximum Suppression

After multi-scale dense scan

Goal

Fusion of multiple detections

. Leibe

Clip detection score

Map each detection to 3D
[x,y,scale] space

Y

Apply robust mode detection,
e.g. mean shift

Non-maximum suppression
63

Image source: Navneet Dalal, PhD Thesis
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RWNTH
Pedestrian detection with HoGs & SVMs

e Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005

Slide credit: Kristen Grauman B. Leibe


http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
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References and Further Reading

e Read the HOG paper
> N. Dalal, B. Triggs,

Histograms of Oriented Gradients for Human Detection,
CVPR, 2005.

e HOG Detector
> Code available: http://pascal.inrialpes.fr/soft/olt/
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https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
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