

Computer Vision - Lecture 8

Sliding-Window based Object Detection

21.11.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Course Outline

- Image Processing Basics
- Segmentation
 - Segmentation and Grouping
 - Segmentation as Energy Minimization
- Recognition & Categorization
 - Sliding-Window Object Detection
 - Image Classification
- Local Features & Matching
- 3D Reconstruction
- Motion and Tracking

RWTHAACHEN UNIVERSITY

Recap: MRFs for Image Segmentation

MRF formulation

Unary potentials $\phi(x_i,y_i)$

Pairwise potentials

$$\psi(x_i,x_j)$$

$$E(\mathbf{x}, \mathbf{y}) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} \psi(x_i, x_j)$$

Data (D)

Unary likelihood

Pair-wise Terms

MAP Solution

Recap: Energy Formulation

$$E(\mathbf{x}, \mathbf{y}) = \sum_{i} \phi(x_i, y_i) + \sum_{i,j} \psi(x_i, x_j)$$
Hence

Unary potentials

Pairwise potentials

- Unary potentials ϕ
 - Encode local information about the given pixel/patch
 - How likely is a pixel/patch to belong to a certain class (e.g. foreground/background)?
- Pairwise potentials ψ
 - Encode neighborhood information
 - How different is a pixel/patch's label from that of its neighbor?
 (e.g. based on intensity/color/texture difference, edges)

Recap: How to Set the Potentials?

- Unary potentials
 - E.g. color model, modeled with a Mixture of Gaussians

$$\phi(x_i, y_i; \theta_{\phi}) = \log \sum_{k} \theta_{\phi}(x_i, k) p(k|x_i) \mathcal{N}(y_i; \bar{y}_k, \Sigma_k)$$

⇒ Learn color distributions for each label

Recap: How to Set the Potentials?

Pairwise potentials

Potts Model

$$\psi(x_i, x_j; \theta_{\psi}) = \theta_{\psi} \delta(x_i \neq x_j)$$

- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.
- Extension: "Contrast sensitive Potts model"

$$\psi(x_i, x_j, g_{ij}(\mathbf{y}); \theta_{\psi}) = -\theta_{\psi} g_{ij}(\mathbf{y}) \delta(x_i \neq x_j)$$

where

$$g_{ij}(\mathbf{y}) = e^{-\beta \|y_i - y_j\|^2}$$
 $\beta = \frac{1}{2} \left(\text{avg} \left(\|y_i - y_j\|^2 \right) \right)^{-1}$

⇒ Discourages label changes except in places where there is also a large change in the observations.

RWTHAACHEN UNIVERSITY

Recap: Graph-Cuts Energy Minimization

- Solve an equivalent graph cut problem
 - 1. Introduce extra nodes: source and sink
 - 2. Weight connections to source/sink (t-links) by $\phi(x_i=s)$ and $\phi(x_i=t)$, respectively.
 - 3. Weight connections between nodes (n-links) by $\psi(x_i,\,x_j)$.
 - 4. Find the minimum cost cut that separates source from sink.
 - ⇒ Solution is equivalent to minimum of the energy.

- > Dual to the well-known max flow problem
- Very efficient algorithms available for regular grid graphs (1-2 MPixels/s)
- Globally optimal result for 2-class problems

Recap: When Can s-t Graph Cuts Be Applied?

$$E(L) = \sum_p E_p(L_p) + \sum_{pq \in N} E(L_p, L_q)$$
 t-links
$$L_p \in \{s, t\}$$

• s-t graph cuts can only globally minimize binary energies that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

$$\longleftrightarrow E(s,s) + E(t,t) \le E(s,t) + E(t,s)$$
Submodularity ("convexity")

- Submodularity is the discrete equivalent to convexity.
 - > Implies that every local energy minimum is a global minimum.
 - ⇒ Solution will be globally optimal.

Topics of This Lecture

- Object Recognition and Categorization
 - Problem Definitions
 - Challenges
- Sliding-Window based Object Detection
 - Detection via Classification
 - Global Representations
 - Classifier Construction
- Classification with SVMs
 - Support Vector Machines
 - HOG Detector
- Classification with Boosting
 - AdaBoost
 - Viola-Jones Face Detection

Object Recognition: Challenges

- Viewpoint changes
 - Translation
 - Image-plane rotation
 - Scale changes
 - Out-of-plane rotation
- Illumination
- Noise
- Clutter
- Occlusion

Appearance-Based Recognition

Basic assumption

- Objects can be represented by a set of images ("appearances").
- For recognition, it is sufficient to just compare the 2D appearances.
- No 3D model is needed.

⇒ Fundamental paradigm shift in the 90's

Global Representation

Idea

Represent each object (view) by a global descriptor.

- For recognizing objects, just match the descriptors.
- Some modes of variation are built into the descriptor, the others have to be incorporated in the training data.
 - E.g., a descriptor can be made invariant to image-plane rotations.
 - Other variations:

Viewpoint changes

Translation Scale changes

Out-of-plane rotation

Illumination

Noise

Clutter

Occlusion

Appearance based Recognition

Recognition as feature vector matching

Appearance based Recognition

With multiple training views

Identification vs. Categorization

Identification vs. Categorization

Find this particular object

Recognize ANY cow

RWTHAACHEN UNIVERSITY

Object Categorization - Potential Applications

There is a wide range of applications, including.

Autonomous robots

Navigation, driver safety

Consumer electronics

Content-based retrieval and analysis for images and videos

0.0T 001P01MR01 S
Ex: 674000
Average
Se: 890/9
Im: 8/29
Cor: A54.2
512 x 512
Mag: 1.00
R
ET: 1
TR: 18.0
TE: 10.1
H
5.0thk/-4.0sp
W:163 L:82
DFOV: 22.0 x 22.0

Medical image analysis

How many object categories are there? VERSITY

Challenges: Robustness

Illumination

Object pose

Clutter

Occlusions

Intra-class appearance

Viewpoint

Challenges: Robustness

- Detection in crowded, real-world scenes
 - Learn object variability
 - Changes in appearance, scale, and articulation
 - Compensate for clutter, overlap, and occlusion

Topics of This Lecture

- Object Categorization
 - Problem Definition
 - Challenges
- Sliding-Window based Object Detection
 - Detection via Classification
 - Global Representations
 - Classifier Construction
- Classification with SVMs
 - Support Vector Machines
 - HOG Detector
- Classification with Boosting
 - AdaBoost
 - Viola-Jones Face Detection

Detection via Classification: Main Idea

• Basic component: a binary classifier

Detection via Classification: Main Idea

 If the object may be in a cluttered scene, slide a window around looking for it.

 Essentially, this is a brute-force approach with many local decisions.

24

What is a Sliding Window Approach?

Search over space and scale

- Detection as subwindow classification problem
- "In the absence of a more intelligent strategy, any global image classification approach can be converted into a localization approach by using a sliding-window search."

Detection via Classification: Main Idea

Fleshing out this pipeline a bit more, we need to:

- 1. Obtain training data
- 2. Define features
- 3. Define classifier

Feature extraction: Global Appearance

Simple holistic descriptions of image content

- Grayscale / color histogram
- Vector of pixel intensities

Eigenfaces: Global Appearance Description

This can also be applied in a sliding-window framework...

Training images

Eigenvectors computed from covariance matrix

Generate low-dimensional representation of appearance with a linear subspace.

Project new images to "face space".

Detection via distance
TO eigenspace

Identification via distance
IN eigenspace

RWTHAACHEN UNIVERSITY

Feature Extraction: Global Appearance

Pixel-based representations are sensitive to small shifts

 Color or grayscale-based appearance description can be sensitive to illumination and intra-class appearance variation

Cartoon example: an albino koala

Gradient-based Representations

- Idea
 - Consider edges, contours, and (oriented) intensity gradients

Gradient-based Representations

- Idea
 - Consider edges, contours, and (oriented) intensity gradients

- Summarize local distribution of gradients with histogram
 - Locally orderless: offers invariance to small shifts and rotations
 - Localized histograms offer more spatial information than a single global histogram (tradeoff invariant vs. discriminative)
 - Contrast-normalization: try to correct for variable illumination

Gradient-based Representations: Histograms of Oriented Gradients (HoG)

- Map each grid cell in the input window to a histogram counting the gradients per orientation.
- Code available: http://pascal.inrialpes.fr/soft/olt/

[Dalal & Triggs, CVPR 2005]

Classifier Construction

How to compute a decision for each subwindow?

Image feature

Discriminative Methods

 Learn a decision rule (classifier) assigning image features to different classes

Classifier Construction: Many Choices... UNIVERSITY

Linear Classifiers

Linear Classifiers

 Find linear function to separate positive and negative examples

 \mathbf{x}_n positive: $\mathbf{w}^{\mathrm{T}}\mathbf{x}_n + b \geq 0$

 \mathbf{x}_n negative: $\mathbf{w}^T\mathbf{x}_n + b < 0$

Which line is best?

37

Support Vector Machines (SVMs)

- Discriminative classifier based on optimal separating hyperplane (i.e. line for 2D case)
- Maximize the margin between the positive and negative training examples

Support Vector Machines

Want line that maximizes the margin.

Packages available for that...

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

Finding the Maximum Margin Line

Finding the Maximum Margin Line

• Solution:
$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

Classification function:

$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^T \mathbf{x} + b)$$
 If $f(\mathbf{x}) < 0$, classify as neg., if $f(\mathbf{x}) > 0$, classify as pos.
$$= \operatorname{sign}\left(\sum_{n=1}^{N} a_n t_n \mathbf{x}_n^T \mathbf{x} + b\right)$$

- Notice that this relies on an inner product between the test point ${\bf x}$ and the support vectors ${\bf x}_n$
- (Solving the optimization problem also involves computing the inner products $\mathbf{x}_n^T \mathbf{x}_m$ between all pairs of training points)

- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

- What if the features are not 2d?
 - Generalizes to d-dimensions replace line with "hyperplane"
- What if the data is not linearly separable?
- What if we have more than just two categories?

- What if the features are not 2d?
 - Generalizes to d-dimensions replace line with "hyperplane"
- What if the data is not linearly separable?
 - Non-linear SVMs with special kernels
- What if we have more than just two categories?

Non-Linear SVMs: Feature Spaces

 General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:

More on that in the Machine Learning lecture...

Nonlinear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_i) = \varphi(\mathbf{x}_i) \cdot \varphi(\mathbf{x}_i)$$

 This gives a nonlinear decision boundary in the original feature space:

$$\sum_{n} a_n t_n K(\mathbf{x}_n, \mathbf{x}) + b$$

Some Often-Used Kernel Functions

Linear:

$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$$

Polynomial of power p:

$$K(x_i,x_j) = (1 + x_i^T x_j)^p$$

Gaussian (Radial-Basis Function):

$$K(\mathbf{x_i}, \mathbf{x_j}) = \exp(-\frac{\|\mathbf{x_i} - \mathbf{x_j}\|^2}{2\sigma^2})$$

- What if the features are not 2d?
 - Generalizes to d-dimensions replace line with "hyperplane"
- What if the data is not linearly separable?
 - Non-linear SVMs with special kernels
- What if we have more than just two categories?

Multi-Class SVMs

 Achieve multi-class classifier by combining a number of binary classifiers

One vs. all

- > Training: learn an SVM for each class vs. the rest
- Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

One vs. one

- Training: learn an SVM for each pair of classes
- Testing: each learned SVM "votes" for a class to assign to the test example

SVMs for Recognition

- 1. Define your representation for each example.
- 2. Select a kernel function.
- 3. Compute pairwise kernel values between labeled examples
- 4. Pass this "kernel matrix" to SVM optimization software to identify support vectors & weights.
- 5. To classify a new example: compute kernel values between new input and support vectors, apply weights, check sign of output.

Topics of This Lecture

- Object Categorization
 - Problem Definition
 - Challenges
- Sliding-Window based Object Detection
 - Detection via Classification
 - Global Representations
 - Classifier Construction
- Classification with SVMs
 - Support Vector Machines
 - HOG Detector
- Classification with Boosting
 - AdaBoost
 - Viola-Jones Face Detection

Pedestrian Detection

 Detecting upright, walking humans using sliding window's appearance/texture; e.g.,

SVM with Haar wavelets [Papageorgiou & Poggio, IJCV 2000]

Space-time rectangle features [Viola, Jones & Snow, ICCV 2003]

SVM with HoGs [Dalal & Triggs, CVPR 2005]

Image Window

- Optional: Gamma compression
 - Goal: Reduce effect of overly strong gradients
 - Replace each pixel color/intensity by its square-root

$$x \mapsto \sqrt{x}$$

⇒ Small performance improvement

Gamma compression

†
Image Window

Gradient computation

- Compute gradients on all color channels and take strongest one
- Simple finite difference filters work best (no Gaussian smoothing)

$$\begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

- Spatial/Orientation binning
 - Compute localized histograms of oriented gradients
 - Typical subdivision:
 8×8 cells with 8 or 9 orientation bins

Weighted vote in spatial & orientation cells

Compute gradients

Gamma compression

Image Window

HOG Cell Computation Details

- Gradient orientation voting
 - Each pixel contributes to localized gradient orientation histogram(s)
 - Vote is weighted by the pixel's gradient magnitude

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

- Block-level Gaussian weighting
 - An additional Gaussian weight is applied to each 2×2 block of cells
 - Each cell is part of 4 such blocks, resulting in 4 versions of the histogram.

HOG Cell Computation Details (2)

- Important for robustness: Tri-linear interpolation
 - Each pixel contributes to (up to) 4 neighboring cell histograms
 - Weights are obtained by bilinear interpolation in image space:

$$h(x_1, y_1) \leftarrow w \cdot \left(1 - \frac{x - x_1}{x_2 - x_1}\right) \left(1 - \frac{y - y_1}{y_2 - y_1}\right)^{-1}$$

$$h(x_1, y_2) \leftarrow w \cdot \left(1 - \frac{x - x_1}{x_2 - x_1}\right) \left(\frac{y - y_1}{y_2 - y_1}\right)$$

$$h(x_2, y_1) \leftarrow w \cdot \left(\frac{x - x_1}{x_2 - x_1}\right) \left(1 - \frac{y - y_1}{y_2 - y_1}\right)$$

$$h(x_2, y_2) \leftarrow w \cdot \left(\frac{x - x_1}{x_2 - x_1}\right) \left(\frac{y - y_1}{y_2 - y_1}\right)$$

 Contribution is further split over (up to) 2 neighboring orientation bins via linear interpolation over angles.

 $(x_1,y_1) \mid (x_2,y_1)$

(x,y)

 $(x_1,y_2) \mid (x_2,y_2)$

- 2-Stage contrast normalization
 - L2 normalization, clipping, L2 normalization

- Feature vector construction
 - Collect HOG blocks into vector

- SVM Classification
 - Typically using a linear SVM

Pedestrian Detection with HOG

- Train a pedestrian template using a linear SVM
- At test time, convolve feature map with template

N. Dalal and B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR 2005

Slide credit: Svetlana Lazebnik

Non-Maximum Suppression

RWTHAACHEN UNIVERSITY

Pedestrian detection with HoGs & SVMs

Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

References and Further Reading

- Read the HOG paper
 - N. Dalal, B. Triggs, <u>Histograms of Oriented Gradients for Human Detection</u>, CVPR, 2005.
- HOG Detector
 - Code available: http://pascal.inrialpes.fr/soft/olt/