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Sliding-Window based Object Detection
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Recap: MRFs for Image Segmentation

¢ MRF formulation

= Minimize the energy

Unary E(x,y)= X O, y:)

potentials

é(xi, vi)

Pairwise potentials
¥(zi, ;)

Data (D)

ide adapted from Phil Torr,

Unary likelihood Pair-wise Terms

MAP Solution s
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Recap: How to Set the Potentials?

¢ Unary potentials
» E.g. color model, modeled with a Mixture of Gaussians

B(ir yi 0p) = log D O (i, k)p(kla:) N (yss T» Tx)
"

= Learn color distributions for each label

lap =1,yp)

B(xp = 0,yp)

B. Leibe

Course Outline

¢ Image Processing Basics

¢ Segmentation
» Segmentation and Grouping
» Segmentation as Energy Minimization
¢ Recognition & Categorization
» Sliding-Window Object Detection
» Image Classification
e Local Features & Matching
¢ 3D Reconstruction

¢ Motion and Tracking

Computer Vision WS 16/17

Recap: Energy Formulation

¢ Energy function

[— i
Unary Pairwise
potentials potentials

¢ Unary potentials ¢
» Encode local information about the given pixel/patch

» How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

¢ Pairwise potentials ¢

» Encode neighborhood information

» How different is a pixel/patch’s label from that of its neighbor?
(e.g. based on intensity/color/texture difference, edges)
B. Leibe
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Recap: How to Set the Potentials?

¢ Pairwise potentials

~ Potts Model
W(wi, w55 0p) = Oyd(x; # ;)
- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.

» Extension: “Contrast sensitive Potts model”
(@i, x5, 91 ()i 0y) = —bugi; (V)o(zi # x;5)
where

2 1 gy —
9uyly) = Pl g = = (ave (o~ i)

= Discourages label changes except in places where there is also a
large change in the observations.
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Recap: Graph-Cuts Energy Minimization

* Solve an equivalent graph cut problem

1. Introduce extra nodes: source and sink

2. Weight connections to source/sink (t-links)
by ¢(z; = s) and ¢(z; = t), respectively.

3. Weight connections between nodes (n-links)
by ¥(z;, z;).

4. Find the minimum cost cut that separates
source from sink.

= Solution is equivalent to minimum of the energy.

x
£

t
([
. /..,

¢ s-t Mincut can be solved efficiently
» Dual to the well-known max flow problem

» Very efficient algorithms available for regular
grid graphs (1-2 MPixels/s)
» Globally optimal result for 2-class problems
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Topics of This Lecture

¢ Object Recognition and Categorization
» Problem Definitions
» Challenges

¢ Sliding-Window based Object Detection
» Detection via Classification
» Global Representations
» Classifier Construction

¢ Classification with SVMs
» Support Vector Machines
» HOG Detector

¢ Classification with Boosting
» AdaBoost
» Viola-Jones Face Detection

Computer Vision WS 16/17

B. Leibe

Appearance-Based Recognition

¢ Basic assumption
» Objects can be represented )

by a set of images \ (25\
3D object

(“appearances”). s -
4;' ‘Nerx /

» For recognition, it is

sufficient to just compare

the 2D appearances.
= Fundamental paradigm shift in the 90’s

3

» No 3D model is needed.
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Recap: When Can s-t Graph Cuts Be Applied?

Unary potentials Pairwise potentials

2 Ep(Ly) + DB, L)
* ttinks PN ks L, e{s,t}

¢ s-t graph cuts can only globally minimize binary energies
that are submodular.

E(L) =

[Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

‘ E(L) can be minimized ‘ < [E(.9)+EY <E(s.)+E(9)]
by s-t graph cuts

Submodularity  (“convexity”)

¢ Submodularity is the discrete equivalent to convexity.
» Implies that every local energy minimum is a global minimum.
= Solution will be globally optimal.

B. Leibe

Object Recognition: Challenges

¢ Viewpoint changes
» Translation
» Image-plane rotation
» Scale changes
» Out-of-plane rotation

¢ Illumination

« Noise A
e Clutter
¢ Occlusion S 2D image
10
B. Leibe
TWTH/CHEN
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Global Representation

¢ Idea
» Represent each object (view) by a global descriptor.

B B

» For recognizing objects, just match the descriptors.
» Some modes of variation are built into the descriptor, the others
have to be incorporated in the training data.
- E.g., a descriptor can be made invariant to image-plane rotations.
- Other variations:

Viewpoint changes Illumination
— Translation Noise
— Scale changes Clutter
— Out-of-plane rotation  Occlusion

B. Leibe
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Appearance based Recognition

¢ Recognition as feature vector matching

Test image

Known objects
13

B. Leibe

Identification vs. Categorization

B. Leibe
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ide adapted from Kristen Grauman,

RWTHAA :
Object Categorization - Potential Applicatibns' o

There is a wide range of applications, including.

g

Autonomous robots Consumer electronics

Navigation, driver safety

(T Tube}

Gogle 27

= 0 63

Content-based retrieval and analysis for
images and videos

Medical image
analysis 17

Appearance based Recognition

¢ With multiple training views

™) e
-/ -
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Identification vs. Categorization

o Find this particular object o Recogmze ANY car
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B. Leibe

How many object categories are there?"-"'"'
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Biederman 1987

Source: Fei-Fei Li, Rob Fergus, Antonio Torralba.
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Challenges: Robustness

o [ Tt

!

« Detection in crowded, real-world scenes

» Learn object variability

- Changes in appearance, scale, and articulation
» Compensate for clutter, overlap, and occlusion

B. Leibe

U
Detection via Classification: Main Idea

¢ Basic component: a binary classifier

ide credit: Kristen Grauman

B. Leibe

Car/non-car
—
Classifier

!

NoYemtaarcar.

21
[Leibe, Seemann, Schiele, CVPR'05
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Challenges: Robustness

Clutter

i
Occlusions Intra-class Viewpoint

appearance

ide credit: Kristen Grauman

20

Topics of This Lecture

¢ Sliding-Window based Object Detection
» Detection via Classification
» Global Representations
» Classifier Construction

B. Leibe

22
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Detection via Classification: Main Idea

« If the object may be in a cluttered scene, slide a window
around looking for it.

Car/non-car
| —
Classifier

¢ Essentially, this is a brute-force approach with many
local decisions.

ide credit: Kristen Grauman 5. Leibe

24
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What is a Sliding Window Approach?

¢ Search over space and scale

g E DYB ATS
LdpyBats

| P JUDYBATS

ﬁ .ﬁ'ﬁ...&:ﬁ

* Detection as subwindow classification problem

« “In the absence of a more intelligent strategy, any
global image classification approach can be converted

into a local ization approach by using a sliding-window
search.”’

Computer Vision WS 16/17

B. Leibe

Feature extraction:
Global Appearance

T

Feature
extraction

B

LA A odiodid

Simple holistic descriptions of image content
» Grayscale / color histogram
» Vector of pixel intensities

Computer Vision WS 16/17

ide credit: Kristen Grauman 5. Leibe
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Feature Extraction: Global Appearance

* Pixel-based representations are sensitive to small shifts

¢ Color or grayscale-based appearance description can be

5 sensitive to illumination and intra-class appearance
7| variation
E - Cartoon example:
2 9 an albino koala
S 2
B
E
3
13
38
29
ide credit: Kristen Grauman B. Leibe

RWTH/CHED
Detection via Classification: Main Idea
Fleshing out this
pipeline a bit more,
we need to:

1. Obtain training data
2. Define features
3. Define classifier

- EI
T i
..mxr‘ —
==y

Training examples

—| Car/non-car
Classifier

Feature
extraction

Computer Vision WS 16/17

26

ide credit: Kristen Grauman B. Laibe
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Eigenfaces: Global Appearance Description
This can also be apphed in a sliding-window framework...

Generate low-
dimensional
representation
of appearance
with a linear

pJoi )(D}

Eigenvectors computed
Trammg images from covariance matrix Subspace.

Project new

e -

T
- images to “face
+ space”.

Detection via distance
TO eigenspace

Computer Vision WS 16/17

Identification via distance
IN eigenspace

[Turk & Pentland, 19&?

ide credit: Kristen Grauman B. Leibe
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Gradient-based Representations

¢ Idea
» Consider edges, contours, and (oriented) intensity gradients
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Gradient-based Representations

¢ |dea
» Consider edges, contours, and (oriented) intensity gradients
R

e Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations

» Localized histograms offer more spatial information than a single
global histogram (tradeoff invariant vs. discriminative)

» Contrast-normalization: try to correct for variable illumination

B. Leibe

Slide credit: Kristen Grauman

RWTH//CHE
Classifier Construction

¢ How to compute a decision for each subwindow?

non-car car non-car

Image feature

ide credit: Kristen Grauman 5. Leibe

RWTH//CHE
Classifier Construction: Many Choices...

Nearest Neighbor

rks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Berg, Berg, Malik 2005,
Chum, Zisserman 2007,
Boiman, Shechtman, Irani 2008, ...

Boosting Support Vector Machines | | Randomized Forests
o

.. u,r’{r.
I 1

;

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006,

Benenson 2012, ...

ide adapted from Kristen Grauman,

°
Vapnik, Scholkopf 1995,
Papageorgiou, Poggio ‘01,
Dalal, Triggs 2005,
Vedaldi, Zisserman 2012

B. Leibe

Amit, Geman 1997,
Breiman 2001,

Lepetit, Fua 2006,
Gall, Lempitsky 2009,...
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Gradient-based Representations:
Histograms of Oriented Gradients (HoG)
Orientation Voting
=— Overlapping Blocks

Input Image Gradient Image

< = S oy Local Normalization

ide credit: Kristen Grauman

Map each grid cell in the input
window to a histogram counting the
gradients per orientation.

¢ Code available:
http://pascal.inrialpes.fr/soft/olt/

[Dalal & Triggs, CVPR 2005

RWTHACHEN
Discriminative Methods

¢ Learn a decision rule (classifier) assigning image features
to different classes

Decision
boundary

bra
Non-zebra
([

B. Leibe

ide adapted from Svetlana | azebnik
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RWTHTHEN
Linear Classifiers
)
\ ° T s [wl] - {ﬂh}
Wy )
)
)
w )
e o ® e o w ] + way +b =10
D
° ® ° i
b T
w'x+b=0
°
)
' 36
ide adapted from: Kricten Grauman B. Leibe



http://pascal.inrialpes.fr/soft/olt/

~
=
S
=]
[
=
=
2
@
>
g
=
a
=
I}
o

Computer Vision WS 16/17

Linear Classifiers

* Find linear function to separate positive and negative
examples

X, positive: w'x, + b > 0
x, negative: w'x, +b <0

RWTHAACHE

Support Vector Machines

¢ Want line that maximizes the margin.

x, negative (1, = -1): w'x, +b <

x, positive (t,=1): w'x, +b>1
1

For support, vectors, w'x, +b=+1

@ Quadratic optimization problem)

o
[ ]
Which line
is best?
37
Slide credit: Kristen Grauman B. Leibe

Minimize %w’ w

Subject to t,(w'x, +b) > 1

Support vectors Margin
C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
Data Mining and Knowledge Discover 8

Packages available for that...

39
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Finding the Maximum Margin Line
N

W= E aptnXy,

n=1

¢ Solution:

e Classification function:

flx) =

N
= sign (Xa“f, D)

n=1

sign(w’x + b)

» Notice that this relies on an inner product between the test
point x and the support vectors x,,

» (Solving the optimization problem also involves computing the
inner products x,”x,, between all pairs of training points)

C. Bur: orial on Sup
Data ge

port Vector Machines for Pattern Recognition,
Discove 98

If f(x) < 0, classify as neg.,
if f(x) > 0, classify as pos.

Computer Vision WS 16/17
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Support Vector Machines (SVMs)

« Discriminative classif;
based on optimal

« Maximize the margin
between the positive
and negative training
examples

ide credit: Kristen Grauman 8. Leibe

RWTHACHE

separating hyperplane
(i.e. line for 2D case)

ier|

Finding the Maximum Margin Line
N

e Solution: w = Z aptpXy,
n=

Learned
weight

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
Data Mining and K ge Discovery, 1998

RWTHACHE
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Questions

¢ What if the features are not 2d?
¢ What if the data is not linearly separable?
¢ What if we have more than just two categories?

ide credit: Kristen Grauman 5. Leibe

2



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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Questions

¢ What if the features are not 2d?
» Generalizes to d-dimensions - replace line with “hyperplane”

* What if the data is not linearly separable?
¢ What if we have more than just two categories?

43
B. Leibe

RWTH//CHE
Non-Linear SVMs: Feature Spaces
¢ General idea: The original input space can be mapped to

some higher-dimensional feature space where the
training set is separable:

More on that in the Machine Learning lecture...

45

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

RWTH//CHE
Some Often-Used Kernel Functions

¢ Linear:
K (X, X))= %; T;

¢ Polynomial of power p:

K(xix)= (1+ % Tx)P

¢ Gaussian (Radial-Basis Function):

X XH2
i =%

2 )
20

K(Xirxj) :eXp(_

47

Slide from Andrew Moore’s tutorial: http

Questions

¢ What if the features are not 2d?
» Generalizes to d-dimensions - replace line with “hyperplane”

¢ What if the data is not linearly separable?
» Non-linear SVMs with special kernels

* What if we have more than just two categories?
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ide credit: Kristen Grauman B. Leibe
RWTH CHET
Nonlinear SVMs
o The kernel trick: instead of explicitly computing the
lifting transformation ¢(x), define a kernel function K
such that
K(x;,x;) = o(x;) - 9(x;)
¢ This gives a nonlinear decision boundary in the original
% feature space:
g > antnK (%, %) +b
E "
S
e
2
£
© C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, 46
Data Mining and Knowledge Discovery, 1998
RWTH CHET

Questions

¢ What if the features are not 2d?
» Generalizes to d-dimensions - replace line with “hyperplane”

¢ What if the data is not linearly separable?
» Non-linear SVMs with special kernels

¢ What if we have more than just two categories?
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ide credit: Kristen Grauman 5. Leibe



http://www.autonlab.org/tutorials/svm.html
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.autonlab.org/tutorials/svm.html
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Multi-Class SVMs

¢ Achieve multi-class classifier by combining a number of
binary classifiers

e Oneyvs. all
> Training: learn an SVM for each class vs. the rest
» Testing: apply each SVM to test example and assign to
it the class of the SVM that returns the highest
decision value
¢ Onevs. one
» Training: learn an SVM for each pair of classes
» Testing: each learned SVM “votes” for a class to
assign to the test example

49

Slide credit: Kristen Grauman B. Leibe
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RWTH//CHE
Topics of This Lecture
¢ Classification with SVMs
» Support Vector Machines
» HOG Detector
B. Leibe 51
RWTH//CHE

HOG Descriptor Processing Chain

Image Window

ide adapted from Navoeet Dalal
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SVMs for Recognition

1.Define your representation for each
example.

2.Select a kernel function.

3.Compute pairwise kernel values
between labeled examples

4.Pass this “kernel matrix” to SVM
optimization software to identify
support vectors & weights.

5.7To classify a new example: compute
kernel values between new input
and support vectors, apply weights,
check sign of output.

ide credit: Kristen Grauman 8. Leibe

Pedestrian Detection

¢ Detecting upright, walking humans using sliding window’s
appearance/texture; e.g.,

s ARIRRTRHEN
RYRREERERIY
NERNEN

[Papageorgiou & Poggio, 1JCV
2000]

Space-time rectangle
features [Viola, Jones &

Triggs, CVPR 2005]
Snow, ICCV 2003]

ide credit: Kristen Grauman B. Leibe
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SVM with HoGs [Dalal &
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HOG Descriptor Processing Chain

e Optional: Gamma compression

» Goal: Reduce effect of overly
strong gradients

~ Replace each pixel color/intensity
by its square-root

= Small performance improvement

RWTHACHE

Gamma compression

¥
Image Window

ide adanted from Navneet Dalal
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HOG Descriptor Processing Chain

¢ Gradient computation
» Compute gradients on all color
channels and take strongest one
» Simple finite difference filters
work best (no Gaussian smoothing)

-1
[-1 0 1] 0
1

‘ Compute gradients ‘
1
‘ Gamma compression ‘

Image Window

Computer Vision WS 16/17

Slide adapted from Navneet Dalal

HOG Cell Computation Details

¢ Gradient orientation voting .

» Each pixel contributes to localized T
gradient orientation histogram(s) i

~ Vote is weighted by the pixel’s W L
gradient magnitude —— |

/ 6 = tan— 1(3f/3f)
k IV = /(ZD)° + (&L

¢ Block-level Gaussian weighting
» An additional Gaussian weight is
applied to each 2x 2 block of cells
» Each cell is part of 4 such blocks,
resulting in 4 versions of the
histogram.

Computer Vision WS 16/17
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HOG Descriptor Processing Chain

¢ 2-Stage contrast normalization
» L2 normalization, clipping, L2 normalization

Contrast normalize over
overlapping spatlal cells

SR
o SN\
‘\\\\\ > onentatuf)n cells
Compute gradients

1
Gamma compression
f
Image Window

‘ Weighted vote in spatial & ‘
\ |
\ |
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ide adapted from Navoeet Dalal
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HOG Descriptor Processing Chain

¢ Spatial/Orientation binning
» Compute localized histograms of
oriented gradients
» Typical subdivision:
8x 8 cells with 8 or 9 orientation bins

Weighted vote in spatial &
orientation cells
T
‘ Compute gradients ‘
T
‘ Gamma compression ‘

Image Window

Computer Vision WS 16/17

ide adapted from Navneet Dalal

RWTH/ACHEN
HOG Cell Computation Details (2)

¢ Important for robustness: Tri-linear interpolation
» Each pixel contributes to (up to) 4
neighboring cell histograms
Weights are obtained by bilinear
interpolation in image space:

h(an, ) — w- (1 _ _.) (1 _ u)
Tz — I Y2—4% l

(#2,91)

(-?‘1‘ 311)

v

- (r, ) & w- (1 B ) (”_ h )

E A (1) | (w2,02)

» hf‘e_»i,ulku'-(ﬁ) (17 y-un ) ‘

=2 Pg — i Y2 —in

c P—— —

e () ()

s &y — I Y2 —in

£ » Contribution is further split over

3 (up to) 2 neighboring orientation bins

5] via linear interpolation over angles. o
() T

HOG Descriptor Processing Chain

¢ Feature vector construction
» Collect HOG blocks into vector

Collect HOGs over

‘ detection window ‘
T

‘ Contrast normalize over ‘

\ |

\ |

overlapping spat1al cells

Weighted vote in spatial &
orientation cells
Compute ;rad1ents
Gamma co:npresswn
Image V‘;indow
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ide adanted from Navneet Dalal

10



Computer Vision WS 16/17

Computer Vision WS 16/17

RWTH/ACHEN
HOG Descriptor Processing Chain

Object/Non-object
t
Linear SVM
T
Collect HOGs over
detecnon window

¢ SVM Classification
» Typically using a linear SVM

Contrast normahze over
overlapping spatlal cells

SR
EEOANNYAS
‘\\\\\ > orientation cells

Compute gradlents
1
Gamma compression

\ |
‘ Weighted vote in spatial & ‘
\ |
\ |

Image Window

Slide adapted from Navneet Dalal

Non-Maximum Suppression

Clip detection score

After multi-scale dense scan

Map each detection to 3D
[x,y,scale] space
Goal

s| | v
e

B as

X
Apply robust mode detection,
e.g. mean shift

Fusion of multiple detections

Non-maximum suppression

B. Leibe

lmage source: Navoeet DalalPhD Thesi:
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References and Further Reading

¢ Read the HOG paper
» N. Dalal, B. Triggs,

Histograms of Oriented Gradients for Human Detection,
CVPR, 2005.

¢ HOG Detector
» Code available: http://pascal.inrialpes.fr/soft/olt/
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RWTHACHEN
Pedestrian Detection with HOG

¢ Train a pedestrian template using a linear SVM
¢ At test time, convolve feature map with template

HOG feature map Template

Detector response map

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005

ide credit: Svetlana lazebnik

RWTHACHEN
Pedestrian detection with HoGs & SVMs

* Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005

64

ide credit: Kristen Grauman B. Leibe
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http://lear.inrialpes.fr/pubs/2005/DT05
http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
http://pascal.inrialpes.fr/soft/olt/

