Computer Vision - Lecture 5

Structure Extraction

07.11.2016

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Course Outline

 Image Processing Basics
> Image Formation
> Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

e Segmentation

e Local Features & Matching

e Object Recognition and Categorization
e 3D Reconstruction

 Motion and Tracking

B. Leibe



Topics of This Lecture

e Recap: Edge detection
> Image gradients
» Canny edge detector

e Fitting as template matching
> Distance transform
> Chamfer matching
~ Application: traffic sign detection

e Fitting as parametric search
» Line detection

Hough transform

~ Extension to circles

> Generalized Hough transform
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RO ONVERSITY
Recap: The Gaussian Pyramid
Low resolution g Ci=(G* Qa_USSian) 2
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High resolution

4

Source: lrani & Basri

B. Leibe



Recap: Derivatives and Edges...

1st derivative
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RWTH
Recap: 2D Edge Detection Filters — sengse
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Slide credit: Kristen Grauman B. Leibe



RWTH
Recap: Canny Edge Detector Srercies
-6/

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width

4. Linking and thresholding (hysteresis):
» Define two thresholds: low and high

> Use the high threshold to start edge curves and the low
threshold to continue them

e MATLAB:

>> edge (image, ‘canny’) ;
>> help edge
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B. Leibe adapted from D. Lowe, L. Fei-Fei
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Edges vs. Boundaries

P e

Edges are useful signals
to indicate occluding
boundaries, shape.
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Here the raw edge ..but qu often boundaries of interest
output is not so bad... are fragmented, and we have extra
“clutter” edge points. 8

Slide credit: Kristen Grauman
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Fitting

e Want to associate a model with observed features

[Figure from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary
shape.

Slide credit: Kristen Grauman B. Leibe
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Topics of This Lecture

e Fitting as template matching
> Distance transform
> Chamfer matching
» Application: traffic sign detection
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RWTHAACHEN
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Fitting as Template Matching

e We’ve already seen that correlation filtering can be
used for template matching in an image.

e Let’s try this idea with “edge templates”.
> Example: traffic sign detection in (grayvalue) video.

Templates
B. Leibe
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RWTHAACHEN
UNIVERSITY
Edge Templates

e Correlation filtering
~ Correlation between edge pixels in template and image

Do) = = S Tlosille 0+

> Unfortunately, this doesn’t work at all... Why?
= Zero correlation score if the edge template is 1 pixel off...

12

B. Leibe
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Edge Templates

e Better: Chamfer Distance
~ Average distance to nearest edge pixel

Z de(x + u,y + v)

‘u ’U‘ Tu,v]=1

DChamfer (w y

= More robust to small shifts and size variations.

e How can we compute this efficiently?

B. Leibe

RWTHAACHEN
UNIVERSITY
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How Can This Be Made Efficient?

e Fast edge-based template matching
~ Distance transform of the edge image

Original Gradient Distance|transform

Value at (X,Y) tells how
far that position is from
the nearest edge point
(or other binary image
structure)

>> help bwdist
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Edges

Slide credit: Kristen Grauman B. Leibe
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RWTH
Distance Transform Algorithm (1D)

e Two-pass O(n) algorithm for 1D L, norm

1. Initialize: For all j

- D[j] « 1p[j] // O if j is in P, infinity otherwise

2. Forward: For j from 1 up to n-1
- D[j] <~ min( D[j], D[j-1]+1) +1( 0

3. Backward: For j from n-2 down to O
> D[j] < min( D[j], D[j+1]+1) 0|+1

0| 0|l 0 |oo|ow| o o0
ol0[1(0[1(2(3 1
110(1(0(1|12]|1 1

Adapted from D. Huttenlocher B. Leibe
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Distance Transform Algorithm (2D)

e 2D case analogous to 1D

> Initialization

» Forward and backward pass

- Fwd pass finds closest above and to the left

- Bwd pass finds closest below and to the right

Adapted from D. Huttenlocher
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Chamfer Matching

e Chamfer Distance

» Average distance to nearest edge pixel

1
Dr:h_.r;,-mfH'(T: I) = ? Z df(ﬂ

A=

~ This can be computed efficiently by correlating the edge
template with the distance-transformed image

Edge image Distance transform image18
B. Leibe [D. Gavrila, DAGM’99]



Chamfer Matching

e Efficient implementation
> Instead of correlation, sample fixed number

of points on template contour. £
= Chamfer score boils down to series of DT lookups. R
D[,_,h__w;.”f&,_],,(T: I) = m Z {]I (t) ..0 ...0 0.. ‘o.
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Edge image Distance transform image1 i
B. Leibe [D. Gavrila, DAGM’99]




Chamfer Matching Results
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Edge image Distance transform image, ,
B. Leibe [D. Gavrila, DAGM’99]
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Chamfer Matching for Pedestrian Detect%on ‘

e Organize templates in tree structure for fast matching
I_|

A ﬂ .
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21
B. Leibe [D. Gavrila, V. Philomin, ICCV’99, PAMI’07]
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Chamfer Matching for Pedestrian Detection
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B. Leibe [D. Gavrila, V. Philomin, ICCV’99, PAMI’07]
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Summary Chamfer Matching

e Pros

~ Fast and simple method for matching edge-based templates.

» Works well for matching upright shapes with little intra-class
variation.

» Good method for finding candidate matches in a longer
recognition pipeline.

e Cons

~» Chamfer score averages over entire contour, not very
discriminative in practice.
= Further verification needed.

» Low matching cost in cluttered regions with many edges.
= Many false positive detections.

> In order to detect rotated & rescaled shapes, need to match

with rotated & rescaled templates = can get very expensive.

B. Leibe
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Topics of This Lecture

e Fitting as parametric search
» Line detection

Hough transform

~ Extension to circles

> Generalized Hough transform
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RWTH
Fitting as Search in Parametric Space

e Choose a parametric model to represent a set of
features

e Membership criterion is not local

» Can’t tell whether a point belongs to a given model just by
looking at that point.

e Three main questions:
> What model represents this set of features best?
> Which of several model instances gets which feature?
> How many model instances are there?

e Computational complexity is important

» It is infeasible to examine every possible set of parameters and
every possible combination of features
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25
B. Leibe Source: L. Lazebnik
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Example: Line Fitting

e Why fit lines?

> Many objects are characterized by presence of straight lines

e Wait, why aren’t we done just by running edge detection?
26
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Slide credit: Kristen Grauman B. Leibe
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Slide credit: Kristen Grauman

Extra edge points (clutter),
multiple models:

» Which points go with
which line, if any?

e Only some parts of each
line detected, and some
parts are missing:

> How to find a line that
bridges missing evidence?

 Noise in measured edge
points, orientations:

> How to detect true underlying
parameters?

B. Leibe
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Fitting Lines

e Given points that belong to a line,
what is the line?

e How many lines are there?
e Which points belong to which lines?

e The Hough Transform is a voting
technique that can be used to answer
all of these

e Main idea:

1. Vote for all possible lines on which each
edge point could lie.

2. Look for lines that get many votes.
3. Noise features will cast votes too, but
their votes should be inconsistent

Slide credit: Kristen Grauman B. Leibe
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RWTH
Finding Lines in an Image: Hough Space

y A b A
y = mox =+ bo
ﬁ
Dol °
X m, m
Image space Hough (parameter) space

e Connection between image (X,y) and Hough (m,b) spaces

> A line in the image corresponds to a point in Hough space.
~ To go from image space to Hough space:

- Given a set of points (X,Y), find all (m,b) such thaty =mx + b
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Slide credit: Steve Seitz B. Leibe



RWTH
Finding Lines in an Image: Hough Space

y A b A
Yo ® b= —xom —+ yo
ﬁ
X, X m
Image space Hough (parameter) space

e Connection between image (X,y) and Hough (m,b) spaces
> A line in the image corresponds to a point in Hough space.
~ To go from image space to Hough space:
- Given a set of points (X,Y), find all (m,b) such thaty =mx + b
- What does a point (X;, Y,) in the image space map to?

- Answer: the solutions of b = -x,m + y,
- This is a line in Hough space.
Slide credit: Steve Seitz B. Leibe
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RWNTH
Finding Lines in an Image: Hough Space

y A b A
e X :
Yo . (X1, Y1) b= —azom + yo
b=-xm+y,
Xo X m
Image space Hough (parameter) space

e What are the line parameters for the line that contains
both (X,, Yo) and (X4, ¥4)?

> It is the intersection of the lines
b =-x,m+Yy, and
b=-—xm+y,
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Slide credit: Steve Seitz B. Leibe



RWTH
Finding Lines in an Image: Hough Space

y1l b
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e e e
// N~
X m
Image space Hough (parameter) space

e How can we use this to find the most likely parameters

(m,b) for the most prominent line in the image space?

» Let each edge point in image space vote for a set of possible
parameters in Hough space.

> Accumulate votes in discrete set of bins; parameters with the
most votes indicate line in image space.
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Slide credit: Steve Seitz B. Leibe



Polar Representation for Lines

e Issues with usual (m,b) parameter space: can take on
infinite values, undefined for vertical lines.

[0,0] . X . d : perpendicular distance

q from line to origin

@ : angle the perpendicular
makes with the x-axis

Xcosfd—ysind=d

e Point in image space
= Sinusoid segment in
Hough space
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Slide adapted from Steve Seitz



RWTH
Hough Transform Algorithm

H: accumulator array (votes)

Using the polar parameterization:
Xcos@d+ysinfd=d

Basic Hough transform algorithm 0
1. Initialize H[d,d] = 0.
2. For each edge point (X,y) in the image

for 8=0to 180 // some quantization d
d =xcosé@+ysing
H[d, 0] += 1
3. Find the value(s) of (d,6) where H[d, ] is maximal.
4. The detected line in the image is given byd = Xc0s& + ysin
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e Time complexity (in terms of number of votes)?

. 35
Slide credit: Steve Seitz B. Leibe
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Example: HT for Straight Lines

X 0

Image space Votes
edge coordinates

Bright value = high vote count
Black = no votes

Slide credit: David Lowe B. Leibe
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Real-World Examples
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Slide credit: Kristen Grauman
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RWTH
Impact of Noise on Hough Transform

y:ilEI-

=

S .

» s

= X 2
S

2 Image space Votes
5

edge coordinates

What difficulty does this present for an implementation?

, 41
Slide credit: David Lowe B. Leibe



RWTH
Impact of Noise on Hough Transform

Image space Votes
edge coordinates
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Here, everything appears to be “noise”, or random edge
points, but we still see peaks in the vote space.

. 42
Slide credit: David Lowe B. Leibe
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Extensions

Extension 1: Use the image gradient
1. Same
2. for each edge point I[X,y] in the image
@ = gradient at (X,y)
d =xcos@—-ysing

H[d,d +=1
3. same
4. same

(Reduces degrees of freedom)

Slide credit: Kristen Grauman B. Leibe
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Extensions

Extension 1: Use the image gradient
1. same
2. for each edge point I[X,y] in the image
compute unique (d,6) based on image gradient at (X,y)
H[d,d] +=1
3. same
4. same
(Reduces degrees of freedom)

Extension 2

> Give more votes for stronger edges (use magnitude of gradient)
Extension 3

» Change the sampling of (d,6) to give more/less resolution

Extension 4

- The same procedure can be used with circles, squares, or any other

shape... | »
Slide credit: Kristen Grauman B. Leibe
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Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For a fixed radius r, unknown gradient direction

A b1
B
0 — - >
Image space Hough space a

Slide credit: Kristen Grauman B. Leibe
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Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For a fixed radius r, unknown gradient direction

A

b
- :
S : Intersection:
— i i
% : most votes for
= : center occur
=  here.
o : -
o
E 0 - -
g— X l
5 Image space Hough space

. 46
Slide credit: Kristen Grauman B. Leibe



Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For an unknown radius I, unknown gradient direction

/
A I
M|
N~
—
© R
© .
%2
=
S O b
Kz
E 0 XF a
(D)
= Image space Hough space
5
O

47

Slide credit: Kristen Grauman B. Leibe



Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For an unknown radius I, unknown gradient direction

A I

¥l o
< 00“‘ \
— .
© . R
— . d
0 :
=
E o b
2 (x,y}
E 0 XF a
(D)
= Image space ’ Hough space
5
O

. 48
Slide credit: Kristen Grauman B. Leibe
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Hough Transform for Circles

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For an unknown radius I, known gradient direction

Image space Hough space
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. 49
Slide credit: Kristen Grauman B. Leibe
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Hough Transform for Circles

For every edge pixel (X,y) :

For each possible radius value r:

For each possible gradient direction 6:

/] or use estimated gradient
a=X-—rcos(0)

b=y+rsin(6)
Hl[a,b,r] +=1
end

end

Slide credit: Kristen Grauman B. Leibe
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Example: Detecting Circles with Houg

Crosshair indicates results of Hough transform,
bounding box found via motion differencing.

N~
=
O
—
7))
=
c
£
2
>
[2
>
o
&
O
@)

. 51
Slide credit: Kristen Grauman B. Leibe
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RWTH
Example: Detecting Circles with Hough

Original Edges Votes: Penny

Note: a different Hough transform (with separate accumu-
lators) was used for each circle radius (quarters vs. penny).

. 52
Slide credit: Kristen Grauman B. Leibe Coin finding sample images from: Vivek Kwatra
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RWTH
Example: Detecting Circles with Hough

CombOregimketections Edges Votes: Quarter

_ 53
Slide credit: Kristen Grauman B. Leibe Coin finding sample images from: Vivek Kwatra



Voting: Practical Tips

e Minimize irrelevant tokens first (take edge points with
significant gradient magnitude)

e Choose a good grid / discretization

» Too coarse: large votes obtained when too many different lines
correspond to a single bucket

> Too fine: miss lines because some points that are not exactly
collinear cast votes for different buckets

e Vote for neighbors, also (smoothing in accumulator
array)

e Utilize direction of edge to reduce free parameters by 1

e To read back which points voted for “winning” peaks,
keep tags on the votes.
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Slide credit: Kristen Grauman B. Leibe
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RWTH
Hough Transform: Pros and Cons

Pros

e All points are processed independently, so can cope with
occlusion

e Some robustness to noise: noise points unlikely to
contribute consistently to any single bin

e Can detect multiple instances of a model in a single pass

Cons

e Complexity of search time increases exponentially with
the number of model parameters

 Non-target shapes can produce spurious peaks in
parameter space

e Quantization: hard to pick a good grid size

. 55
Slide credit: Kristen Grauman B. Leibe



A INVERSITY
Generalized Hough Transform

e What if want to detect arbitrary shapes defined by
boundary points and a reference point?

At each boundary point,
compute displacement

vector: I =a — ;.

For a given model shape:
store these vectors in a
table indexed by gradient

orientation 6.

Image space

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]
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Slide credit: Kristen Grauman B. Leibe



N~
—i
~
o
—i
n
=
c
2
L
>
8
-}
o
=
(@]
O

Generalized Hough Transform

To detect the model shape in a hew image:
e For each edge point
- Index into table with its gradient orientation &
> Use retrieved I vectors to vote for position of reference point

e Peak in this Hough space is reference point with most
supporting edges

Assuming translation is the only transformation here,
i.e., orientation and scale are fixed.

Slide credit: Kristen Grauman B. Leibe
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Example: Generalized Hough Transform

/< v

Slide credit: Svetlana Lazebnik

—>

f

+ Say we’ve already
stored a table of

< displacement vectors

as a function of edge

orientation for this

>\model shape.

AN

.4_

¢t

:Madel shape
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RWNTH
Example: Generalized Hough Transform

/< + * Now we want to look
at some edge points

< detected in a new

image, and vote on

the position of that
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Slide credit: Svetlana Lazebnilesplacemen';- MﬁgtOl’S for model points
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Example: Generalized Hough Transform
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Slide credit: Svetlana Lazebni
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Example: Generalized Hough Transform
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Slide credit: Svetlana Lazeme{ange of voting locations for test point
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Example: Generalized Hough Transform
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Slide credit: Svetlana Lazebnik
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Example: Generalized Hough Transform
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Slide credit: Svetlana Lazebnik
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Example: Generalized Hough Transfon'n
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E{ange of voting locations for test point

Slide credit: Svetlana Lazebni
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Example: Generalized Hough Transform
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Slide credit: Svetlana Lazebnik



Application in Recognition

e Instead of indexing displacements by gradient
orientation, index by “visual codeword”.

-

Visual codeword with
displacement vectors
Training image

B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved
Categorization and Segmentation, International Journal of Computer Vision, Vol. 77(1-
3), 2008.
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B. Leibe


http://www.vision.ee.ethz.ch/bleibe/papers/leibe-interleaved-ijcv07final.pdf

il r s E 3
Application in Recognition R

e Instead of indexing displacements by gradient

Test image

e We’ll hear more about this method in a later lecture...
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References and Further Reading

e Background information on edge detection can be found
in Chapter 8 of

~ D. Forsyth, J. Ponce,
Computer Vision - A Modern Approach.
Prentice Hall, 2003

Computer
Vision
e Read Ballard & Brown’s description of |
the Generalized Hough Transform in

Chapter 4.3 of

> D.H. Ballard & C.M. Brown,
Computer Vision, Prentice Hall, 1982
(available from the class homepage)
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