Computer Vision - Lecture 4

Gradients & Edges

02.11.2016

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de
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Announcements

e Exercise sheet 2 is available
> Thresholding, Morphology
> Gaussian smoothing
> Image gradients
- Edge Detection
= Deadline: Sunday night, 13.11. (in two weeks).

¢ Reminder

~ You’re encouraged to form teams of up to 3 people!

> Hints:
- Turn in everything as a single zip archive.
- Use the provided Matlab framework.

- For each exercise, you need to implement the corresponding
apply function. If the screen output matches the expected output

(shown in class), you will know that your solution is correct.

- Matlab helps you to find errors (red lines under your code)!
B. Leibe
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Course Outline

 Image Processing Basics
> Image Formation
> Binary Image Processing
> Linear Filters
» Edge & Structure Extraction

e Segmentation

e Local Features & Matching

e Object Recognition and Categorization
e 3D Reconstruction

 Motion and Tracking
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Topics of This Lecture

e Recap: Linear Filters

e Multi-Scale representations
~ How to properly rescale an image?

e Filters as templates
» Correlation as template matching

 Image gradients
> Derivatives of Gaussian

e Edge detection
> Canny edge detector
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Recap: Gaussian Smoothing

e Gaussian kernel
1 @24y
Gy = e 252
2ol

e Rotationally symmetric

e Weights nearby pixels more
than distant ones

~ This makes sense as
‘probabilistic’ inference
about the signal

e A Gaussian gives a good model
of a fuzzy blob

N~
—i
~
o
—i
n
=
c
2
L
>
8
-}
o
=
(@]
O

6

B. Leibe Image Source: Forsyth & Ponce



RWNTH
Recap: Smoothing with a Gaussian

e Parameter ¢ is the “scale” / “width” / “spread” of the
Gaussian kernel and controls the amount of smoothing.

N~
A,
O
—
%)
E 0 10 20 30 0 10 20 30 0 10 20 30
:% for sigma=1:3:10
E h = fspecial ('gaussian', fsize, sigma);
% out = imfilter (im, h);
g imshow (out) ;
o ause;
g P
end 7

Slide credit: Kristen Grauman B. Leibe



Recap: Effect of Filtering

 Noise introduces high frequencies.
To remove them, we want to apply a —0 /-"\

“low-pass” filter.

e The ideal filter shape in the
frequency domain would be a box.
But this transfers to a spatial sinc, S
which has infinite spatial support.

transfers to a frequency sinc, which e

e A compact spatial box filter I’
creates artifacts. . -

e A Gaussian has compact support in

both domains. This makes it a
convenient choice for a low-pass N 4

filter.
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Recap: Low-Pass vs. High-Pass

Low-pass
filtered
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B. Leibe Image Source: S. Chenney
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Topics of This Lecture

e Multi-Scale representations
» How to properly rescale an image?
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Motivation: Fast Search Across Scales
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B. Leibe Image Source: Irani & Basri
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Recap: Sampling and Aliasing

Fourier _
Transform Mag nitude
- 4 Apectrum
- - /-\ -
Sample Copy and
Shili
Y
Sampled IFouner _
signal Irnnqlnrm Magnitude
A Spectrum
fitees VAN
Cut out by
multiplication
A ) with box filter
ccurately Inverse
H':n..:u onstructed Fourier
Signal Transform
- Magnitude
Specirum
1 Ll . L =

12

Image Source: Forsyth & Ponce
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RO ONVERSITY
Recap: Sampling and Aliasing

Fourier

i Transform Magnitude

Signal - /-K Spectrum
1 o - d -

Sample Copy and
Shift
Sam pled FFourier .

Signal Tramsform Magnitude

] M
1 T T + i —p -
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Image Source: Forsyth & Ponce
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Recap: Sampling and Aliasing

Fourier _
i Transform Magnitude
Signal = Spectrum
T T - l .
Sample Copy and
Shift
Sam pled IFourer )
Signal Transfonm Magnitude
o Spectrum
Tty _ | _
Cut out by
multiplication
Inaccurately Inverse with box filter
Reconstructed Fourier
Signal Transform
- 4 Magmtude
p— Spectrum
T r o - —
: 14
B. Leibe

Image Source: Forsyth & Ponce
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Recap: Resampling with Prior Smoothing

256 x 256 128 x 128 64 x 64 32 x 32 16 x 16
= A e nmn - |||||| l_l - Artifacts!

no
=S smoothing
0.0.0‘O.I‘O'I

Gaussian
g=1

Gaussian
=2

e Note: We cannot recover the high frequencies, but we

can avoid artifacts by smoothing before resampling.
15

B. Leibe Image Source: Forsyth & Ponce



O ONVERSITY
The Gaussian Pyramid
Low resolution g Ci=(G* Qa_USSian) 2

) * WW.
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B. Leibe Source: Irani & Basri
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Gaussian Pyramid - Stored Information

-

-

All the extra
levels add very
little overhead
for memory or
computation!
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Source: lrani & Basri
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Summary: Gaussian Pyramid

e Construction: create each level from previous one
> Smooth and sample

e Smooth with Gaussians, in part because

> a Gaussian*Gaussian = another Gaussian
. G(oy) * G(oy) = G(sqrt(c, 2 * o, 2))

e Gaussians are low-pass filters, so the representation is
redundant once smoothing has been performed.

= There is no need to store smoothed images at the
full original resolution.

Slide credit: David Lowe B. Leibe
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The Laplacian Pyramid
L: =G, —expand(G,,,)

Gaussian Pyramid Laplacian Pyramid

G, =L, +expand(G

i+1

ﬁ

Computer Vision WS 16/17

Why is this useful?
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Laplacian ~ Difference of Gaussian

VAN

DoG = Difference of Gaussians
Cheap approximation - no derivatives needed.
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Topics of This Lecture

e Filters as templates
> Correlation as template matching

ﬁ
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Note: Filters are Templates

e Applying a filter at some point e |nsight

can be seen as taking a dot- . Filters look like the effects
product between the image they are intended to find.
and some vector.

~ Filters find effects they
e Filtering the image is a set of look like.

dot products.
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Template
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Slide credit: Kristen Grauman B. Leibe
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Where’s Waldo?

l%'i“- /“ﬁ PO e Pogt

:»
€

Template
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Detected template 24
Slide credit: Kristen Grauman B. Leibe
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Where’s Waldo?
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Slide credit: Kristen Grauman B. Leibe



Correlation as Template Matching

e Think of filters as a dot product of the filter vector with
the image region
- Now measure the angle between the vectors

a-b
|al|b|

> Angle (similarity) between vectors can be measured by

a-b=|al|b|cos@ COS 0 =

™~ normalizing the length of each vector to 1 and taking the dot
< product.

2

E a

79}

= 0 5

@

= Template

£ D

©) Image region Vector interpretation

26
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Topics of This Lecture

e Image gradients
> Derivatives of Gaussian
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Derivatives and Edges...

20 =
30
zj_
i §
50 1o}
1st derivative U
i I
a0 - -0
e} ] Maxima of first
n A an 40 50 (51) 70 a0 o b R R
/ derivative
» B T T R S R ]

10F

—
2nd derivative

“zero crossings”
of second
derivative

L L L L L L L L
1] 1o 20 3o 40 a0 GO 70 a0 a0 100
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Differentiation and Convolution

e For the 2D function f(X,y), the partial derivative is:
o (xy) o F(x+ey)-F(xy)

8)( &g—0 E

e For discrete data, we can approximate this using finite
differences:

or(xy)  T(x+1Ly)-T(xY)
OX 1

e To implement the above as convolution, what would be
the associated filter?

1 (-1

Slide credit: Kristen Grauman B. Leibe
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Partial Derivatives of an Image
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Slide credit: Kristen Grauman B. Leibe
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Assorted Finite Difference Filters

-1 10 111711
Prewitt: M, =1-1]0]1 M, = gl o] o
-1|a - -11]-1
-0l 1] 2] 1
Sobel: M, = [-2]0]2 | My, = ol o0
-l o]l -1 -2 ] -1
011 1
Roberts: M. = |3 v My = T

>> My = fspecial(‘sobel’);

>> outim = imfilter (double(im), My);
>> imagesc (outim) ;

>> colormap gray;
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Slide credit: Kristen Grauman B. Leibe



Image Gradient

e The gradient of an image:
_ [9f Of
V= [Gx’ 8y]
e The gradient points in the direction of most rapid intensity change

B M . vr = %4

vi= [0

e The gradient direction (orientation of edge normal) is given by:
__ —1(9f ,0f
6 = tan (a_y / 8—33)
e The edge strength is given by the gradient magnitude
9 2
VA= /(D7 + (D)

Slide credit: Steve Seitz B. Leibe
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Effect of Noise

e Consider a single row or column of the image
~ Plotting intensity as a function of position gives a signal

f(@)

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A f(x)

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Slide credit: Steve Seitz B. Leibe
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Solution: Smooth First

Sigma = 50

S~
Signal

= |
1800 2000

~ : T
B h*f g h ........ ]
— c :
” 3 A i
= 1800 2000
g § T T T T | T T | T
o 5] = 5
= az(hxf)§
) =S I . ]
4+ D 1 | | | | | |
= 0 200 400 600 800 1400 1600 1800 2000
e
(@] . N
& Where is the edge? Look for peaks in (%(h *x f)

34

Slide credit: Steve Seitz B. Leibe
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RWNTH
Derivative Theorem of Convolution
ge(hx [) = (55h)  f
e Differentiation property of convolution.

Sigma = 50

.................................................

S
Signal

|
1800 2000

|
1600

| | | | | | |
0 200 400 600 800 1000 1200 1400

@
Py
Kernel

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Convolution

(Zh)* f

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Slide credit: Steve Seitz B. Leibe
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Derivative of Gaussian Filter
g*h)*l

o°(ne1) (1

0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133

1 e 1 * 0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133

0.0030 0.0133 0.0219 0.0133 0.0030

Why is this preferable?
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Slide adapted from Kristen Grauman
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Derivative of Gaussian Filters

"

x-direction y-direction

A -

B. Leibe
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Source: Svetlana Lazebnik
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Laplacian of Gaussian (LoG)

Sigma = 50

e Consider %;(h*f)

+
Signal

] ] ] ] ] ] ] ]
400 600 800 1000 1200 1400 1600 1800 2000

.................................................................................

400 600 800 1000 1200 1400 1600 1800 2000

i 5O\
8$2h g
1] 2[;[}
82 :
(Wh) * f g“‘ """" -
0 2[;[}

Where is the edge?

Slide credit: Steve Seitz

400 600 800 1000 1200 1400 1600 1800 2000

Zero-crossings of bottom graph
B. Leibe
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RWTH
Summary: 2D Edge Detection Filters

r 4 4 "
"\.\
A
JRAT
FYORD
11
y '\:':
ST :
A {"«\ \ . Laplacian of Gaussian
A s
”’%gf':f’:‘m{’:‘ﬂt i A
A NS
s m’%ﬁ?’%’*&‘c"ﬁ*&’ 3
s %&&&‘%}:‘ 07
552, 5 S

Gaussian

1 _ulte?

haolu. vy = ——¢ 202
O'( ’ ) 27_[_0_2

e VZis the Laplacian operator:

o2 92
v2f — 8:13]; | 8y£

. 39
Slide credit: Kristen Grauman B. Leibe



Topics of This Lecture

e Edge detection
> Canny edge detector
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Edge Detection

e Goal: map image from 2D array of pixels to a set of
curves or line segments or contours.

e Why?

v

e

_ﬁl %;‘_‘E_ﬂ.
X o) o

Figure from J. Shotton et al., PAMI 2007

e Main idea: look for strong gradients, post-process

Slide credit: Kristen Grauman, David Lowe

B. Leibe
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Designing an Edge Detector

e Criteria for an “optimal” edge detector:

» Good detection: the optimal detector should minimize the
probability of false positives (detecting spurious edges caused by
noise), as well as that of false negatives (missing real edges).

» Good localization: the edges detected should be as close as
possible to the true edges.

~ Single response: the detector should return one point only for
each true edge point; that is, minimize the number of local

% maxima around the true edge.

—

0 B i - T
c C [ ] 11
2 B 1 ] O

5 C i Hi

= O O i HiER

g True Poor robustness Poor Too many
O edge to noise localization responses

b. Leibe Source: Li Fei-Fei



Gradients — Edges

Primary edge detection steps
1. Smoothing: suppress noise
2. Edge enhancement: filter for contrast

3. Edge localization

» Determine which local maxima from filter output are actually
edges vs. noise

> Thresholding, thinning

e Two issues

> At what scale do we want to extract structures?
- How sensitive should the edge extractor be?

N~
—i
~
o
—i
n
=
c
2
L
>
8
-}
o
=
(@]
O

44

adapted from Kristen Grauman B. Leibe



Scale: Effect of o on Derivatives

o = 3 pixels

e The apparent structures differ depending on Gaussian’s
scale parameter.

= Larger values: larger-scale edges detected
= Smaller values: finer features detected
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Slide credit: Kristen Grauman B. Leibe
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Sensitivity: Recall Thresholding

e Choose a threshold t

e Set any pixels less than t
to zero (off).

e Set any pixels greater than
or equal t to one (on).

- [i’j]:{l, if F[i, j]>t

0, otherwise

B. Leibe
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Computer Vision WS 16/17

Original Image

Slide credit: Kristen Grauman



Gradient Magnitude Image
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Slide credit: Kristen Grauman
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Thresholding with a Lower Threshqld

. o
- . L;: i "'\__
 —
Lo A :
e S

Slide credit: Kristen Grauman

‘-._,Ji| -
B. Leibe
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Thresholding with a

/ 5

[
\ .
/
\ N, p
Sy

Slide credit: Kristen Grauman
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Higher Threshold
S

B. Leibe
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Canny Edge Detector

 Probably the most widely used edge detector in
computer vision

e Theoretical model: step-edges corrupted by additive
Gaussian noise

e Canny has shown that the first derivative of the
Gaussian closely approximates the operator that
optimizes the product of signal-to-noise ratio and
localization.

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

N~
—i
~
o
—i
n
=
c
2
L
>
8
-}
o
=
(@]
O

51
B. Leibe Source: Li Fei-Fei


http://www.graphics.pku.edu.cn/members/chenyisong/lectures/readings/Canny86pami.pdf

CHEN
UNIVERSITY
The Canny Edge Detector

Original image (Lenna)
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Slide credit: Kristen Grauman B. Leibe
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The Canny Edge Detector

Gradient magnitude

Slide credit: Kristen Grauman B. Leibe
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RWTH
The Canny Edge Detector

How to turn
these thick
regions of
the gradient
Into curves?

N~
—
~—
o
—
n
=
c
2
L
>

Slide credit: Kristen Grauman B. Leibe



Non-Maximum Suppression

e Check if pixel is local maximum along gradient direction,
select single max across width of the edge
» Requires checking interpolated pixels p and r
= Linear interpolation based on gradient direction
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B. Leibe Source: Forsyth & Ponce



RWTH
The Canny Edge Detector

Problem: pixels
along this edge
didn’t survive
the thresholding.
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Thinning
(non-maximum suppression)

. 57
Slide credit: Kristen Grauman B. Leibe
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Solution: Hysteresis Thresholding

e Hysteresis: A lag or momentum factor
* Idea: Maintain two thresholds &, , and k,,,

- Use k;, ;, to find strong edges to start edge chain

- Use k;,,, to find weak edges which continue edge chain
e Typical ratio of thresholds is roughly

khz’gh / klo'w =2
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B. Leibe Source: D. Lowe, S. Seitz
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Hysteresis Thresholding

l khlll 1‘

o
e
)
=
c
2
L
>
S courtesy of G. Loy
g High threshold Low threshold Hysteresis threshold
S (strong edges) (weak edges)
B. Leibe 59

Source: L. Fei-Fei



Summary: Canny Edge Detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width

4. Linking and thresholding (hysteresis):
» Define two thresholds: low and high

> Use the high threshold to start edge curves and the low
threshold to continue them

e MATLAB:

>> edge (image, ‘canny’);
>> help edge
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B. Leibe Source: D. Lowe, L. Fei-Fei
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Object Boundaries vs. Edges

Background Texture

Slide credit: Kristen Grauman B. Leibe

Shadows
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Edge Detection is Just the Beginning...

Image Human segmentation Gradient magnitude

Lyf ShaEmNr

= N : \,-\,\w

A BN Bl ]
LA W0 R
;«;ff:i@n@r:—fw e
* e N
‘ Q R EA Gy
N T D :

e Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

N~
—
S~~~
(o)
—
%2
=
c
£
i
>
2
>
o
&
o
@)

62
B. Leibe Source: L. Lazebnik



http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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RWNTH
References and Further Reading

e Background information on linear filters and their
connection with the Fourier transform can be found in
Chapter 7 of F&P. Additional information on edge
detection is available in Chapter 8.

> D. Forsyth, J. Ponce,
Computer Vision - A Modern Approach.
Prentice Hall, 2003

Computer
Vision

A MODERN APPROACH

B. Leibe
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