

# **Computer Vision - Lecture 3**

**Linear Filters** 

31.10.2016

Bastian Leibe

**RWTH Aachen** 

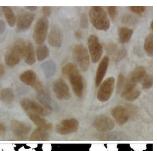
http://www.vision.rwth-aachen.de

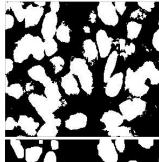
leibe@vision.rwth-aachen.de

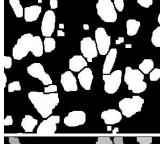


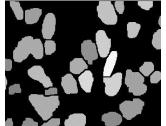
#### Reminder from Last Lecture

- Convert the image into binary form
  - > Thresholding
- Clean up the thresholded image
  - > Morphological operators
- Extract individual objects
  - Connected Components Labeling
- Describe the objects
  - Region properties









#### RWTHAACHEN UNIVERSITY

## **Region Properties**

- From the previous steps, we can obtain separated objects.
- Some useful features can be extracted once we have connected components, including
  - Area
  - Centroid
  - Extremal points, bounding box
  - Circularity
  - Spatial moments





### **Area and Centroid**

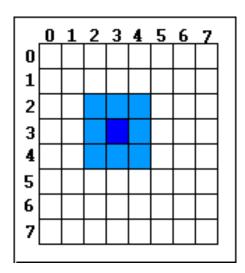
- We denote the set of pixels in a region by R
- Assuming square pixels, we obtain
  - Area:

$$A = \sum_{(x,y)\in R} 1$$

> Centroid:

$$\overline{x} = \frac{1}{A} \sum_{(x,y) \in R} x$$

$$\overline{y} = \frac{1}{A} \sum_{(x,y) \in R} y$$





# **Circularity**

- Measure the deviation from a perfect circle
  - > Circularity:  $C = \frac{\mu_R}{\sigma_R}$

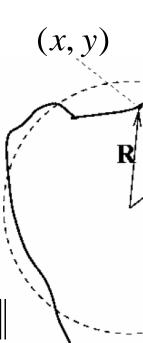
where  $\mu_R$  and  $\sigma_R^2$  are the mean and variance of the distance from the centroid of the shape to the boundary pixels  $(x_k, y_k)$ .



$$\mu_{R} = \frac{1}{K} \sum_{k=0}^{K-1} \| (x_{k}, y_{k}) - (\bar{x}, \bar{y}) \|$$

Variance of radial distance:

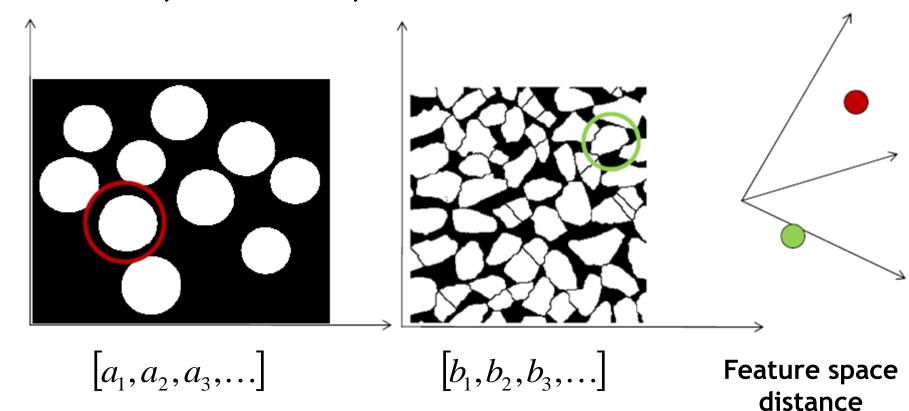
$$\sigma_R^2 = \frac{1}{K} \sum_{k=0}^{K-1} \left\| (x_k, y_k) - (\bar{x}, \bar{y}) \right\| - \mu_R \right\|^2$$





## **Invariant Descriptors**

 Often, we want features independent of location, orientation, scale.





### **Central Moments**

- S is a subset of pixels (region).
- Central (j,k)<sup>th</sup> moment defined as:

$$\mu_{jk} = \sum_{(x,y)\in S} (x - \overline{x})^j (y - \overline{y})^k$$

• Invariant to translation of S.

#### Interpretation:

- > 0th central moment: area
- > 2<sup>nd</sup> central moment: *variance*
- > 3<sup>rd</sup> central moment: *skewness*
- > 4<sup>th</sup> central moment: *kurtosis*



# Moment Invariants ("Hu Moments")

Normalized central moments

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}, \qquad \gamma = \frac{p+q}{2} + 1$$

• From those, a set of *invariant moments* can be defined for object description.

$$\phi_1 = \eta_{20} + \eta_{02}$$

$$\phi_2 = (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2$$

$$\phi_3 = (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2$$

$$\phi_4 = (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2$$

 Robust to translation, rotation & scaling, but don't expect wonders (still summary statistics).



### **Moment Invariants**

$$\phi_5 = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12}) \left[ (\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2 \right]$$

$$+ (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03}) \left[ 3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 \right]$$

$$\phi_6 = (\eta_{20} - \eta_{02}) [(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2] + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03})$$

$$\phi_7 = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12}) \left[ (\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2 \right]$$

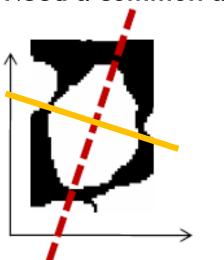
$$+ (3\eta_{12} - \eta_{30})(\eta_{21} + \eta_{03}) \left[ 3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2 \right]$$

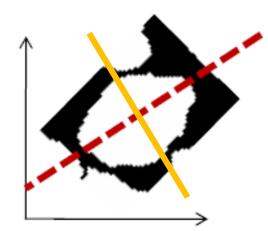
Often better to use  $\log_{10}(\phi_i)$  instead of  $\phi_i$  directly...



#### **Axis of Least Second Moment**

- Invariance to orientation?
  - Need a common alignment





Axis for which the squared distance to 2D object points is minimized (maximized).

Compute Eigenvectors of 2<sup>nd</sup> moment matrix (Matlab: eig(A))

$$\begin{bmatrix} \mu_{20} & \mu_{11} \\ \mu_{11} & \mu_{02} \end{bmatrix} = VDV^{T} = \begin{bmatrix} v_{11} & v_{12} \\ v_{22} & v_{22} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 \\ 0 & \lambda_{2} \end{bmatrix} \begin{bmatrix} v_{11} & v_{12} \\ v_{21} & v_{22} \end{bmatrix}^{T}$$



## **Summary: Binary Image Processing**

#### Pros

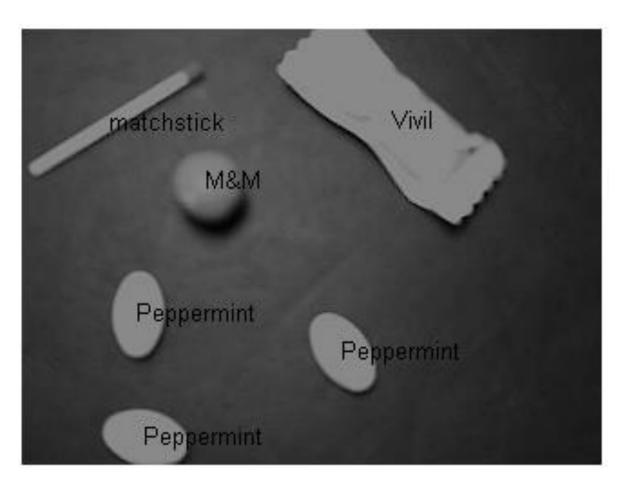
- Fast to compute, easy to store
- Simple processing techniques
- Can be very useful for constrained scenarios

#### Cons

- Hard to get "clean" silhouettes
- Noise is common in realistic scenarios
- Can be too coarse a representation
- Cannot deal with 3D changes



### Demo "Haribo Classification"





Code will be available on L2P...

13

#### RWTHAACHEN UNIVERSITY

### You Can Do It At Home...

#### Accessing a webcam in Matlab:

img=getsnapshot(cam);

```
function out = webcam
% uses "Image Acquisition Toolbox,"
adaptorName = 'winvideo';
vidFormat = 'I420 320x240';
vidObj1= videoinput(adaptorName, 1, vidFormat);
set(vidObj1, 'ReturnedColorSpace', 'rgb');
set(vidObj1, 'FramesPerTrigger', 1);
out = vidObj1 ;
cam = webcam();
```





#### **Course Outline**

- Image Processing Basics
  - Image Formation
  - Binary Image Processing
  - Linear Filters
  - Edge & Structure Extraction
  - Color
- Segmentation
- Local Features & Matching
- Object Recognition and Categorization
- 3D Reconstruction
- Motion and Tracking

#### RWTHAACHEN UNIVERSITY

### **Motivation**

Noise reduction/image restoration







Structure extraction





B. Leibe

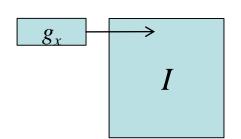


## **Topics of This Lecture**

- Linear filters
  - What are they? How are they applied?
  - Application: smoothing
  - Gaussian filter
  - What does it mean to filter an image?



- Median filter
- Multi-Scale representations
  - How to properly rescale an image?
- Filters as templates
  - Correlation as template matching



#### RWTHAACHEN UNIVERSITY

## **Common Types of Noise**

- Salt & pepper noise
  - Random occurrences of black and white pixels
- Impulse noise
  - Random occurrences of white pixels



Original



Salt and pepper noise

- Gaussian noise
  - Variations in intensity drawn from a Gaussian ("Normal") distribution.



Noise is i.i.d. (independent & identically distributed)



Impulse noise



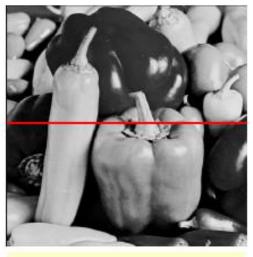
Gaussian noise

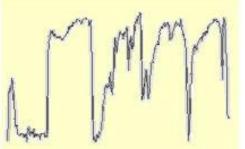
18

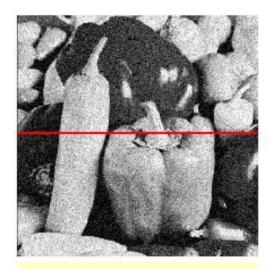
Source: Steve Seitz

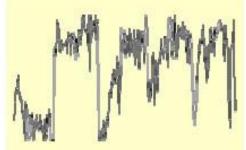


#### **Gaussian Noise**









$$f(x,y) = \overbrace{\widehat{f}(x,y)}^{\text{Ideal Image}} + \overbrace{\eta(x,y)}^{\text{Noise process}}$$

Gaussian i.i.d. ("white") noise: 
$$\eta(x,y) \sim \mathcal{N}(\mu,\sigma)$$

>> noise = randn(size(im)).\*sigma;

>> output = im + noise;

Slide credit: Kristen Grauman

B. Leibe

19

Image Source: Martial Hebert



# First Attempt at a Solution

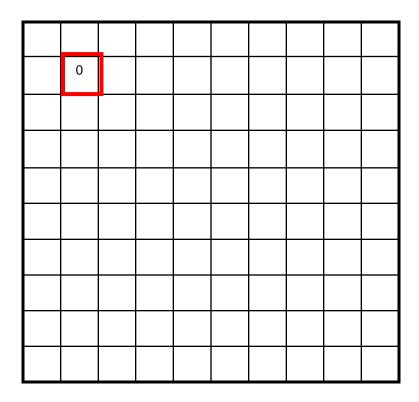
- Assumptions:
  - Expect pixels to be like their neighbors
  - Expect noise processes to be independent from pixel to pixel ("i.i.d. = independent, identically distributed")
- Let's try to replace each pixel with an average of all the values in its neighborhood...





| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

# G[x,y]



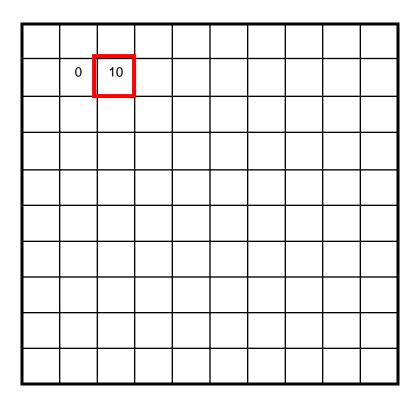
Source: S. Seitz





| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

# G[x,y]



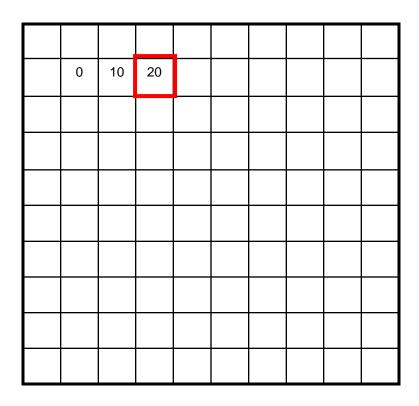
Source: S. Seitz





| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|   |   |    |    |    |    |    |    |   |   |

# G[x,y]

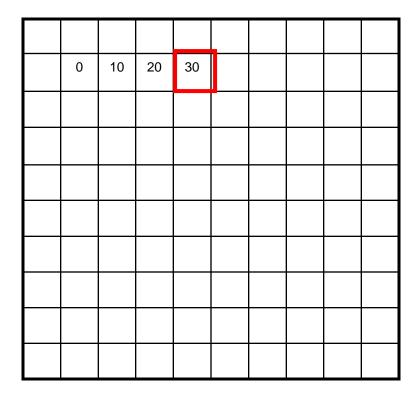






| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

# G[x,y]

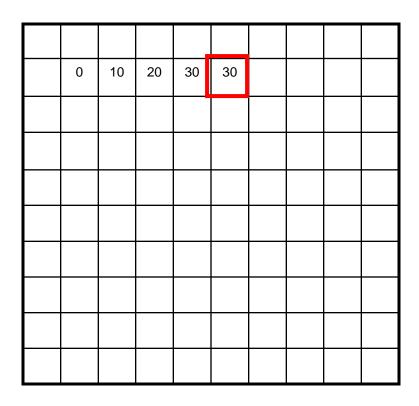






| 0 0 |
|-----|
|     |
| 0   |
|     |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
| 0   |
|     |

# G[x, y]







| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

# G[x,y]

| 0      | 10 | 20 | 30 | 30 | 30 | 20 | 10 |  |
|--------|----|----|----|----|----|----|----|--|
| 0      | 20 | 40 | 60 | 60 | 60 | 40 | 20 |  |
| 0      | 30 | 60 | 90 | 90 | 90 | 60 | 30 |  |
| 0      | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0      | 30 | 50 | 80 | 80 | 90 | 60 | 30 |  |
| 0      | 20 | 30 | 50 | 50 | 60 | 40 | 20 |  |
| 10     | 20 | 30 | 30 | 30 | 30 | 20 | 10 |  |
| <br>10 | 10 | 10 | 0  | 0  | 0  | 0  | 0  |  |
|        |    |    |    |    |    |    |    |  |



## **Correlation Filtering**

• Say the averaging window size is  $2k+1 \times 2k+1$ :

$$G[i,j] = \frac{1}{(2k+1)^2} \sum_{u=-k}^{k} \sum_{v=-k}^{k} F[i+u,j+v]$$

Attribute uniform Loop over all pixels in neighborhood weight to each pixel around image pixel F[i,j]

 Now generalize to allow different weights depending on neighboring pixel's relative position:

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

Non-uniform weights

27



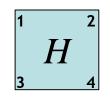
## **Correlation Filtering**

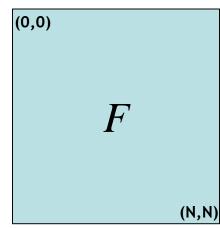
$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

• This is called cross-correlation, denoted  $G = H \otimes F$ 

#### Filtering an image

- Replace each pixel by a weighted combination of its neighbors.
- The filter "kernel" or "mask" is the prescription for the weights in the linear combination.







#### Convolution

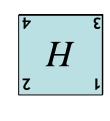
#### Convolution:

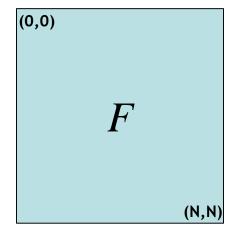
- Flip the filter in both dimensions (bottom to top, right to left)
- Then apply cross-correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

$$G = H \star F$$

$$\uparrow$$
Notation for convolution operator







### Correlation vs. Convolution

#### Correlation

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i+u,j+v]$$

$$G = H \otimes F$$
Note the

Matlab: filter2 imfilter

Note the difference!

#### Convolution

$$G[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} H[u,v]F[i-u,j-v]$$

Matlab: conv2

$$G = H \star F$$

#### Note

▶ If H[-u,-v] = H[u,v], then correlation = convolution.

30



# **Shift Invariant Linear System**

#### Shift invariant:

Operator behaves the same everywhere, i.e. the value of the output depends on the pattern in the image neighborhood, not the position of the neighborhood.

#### Linear:

> Superposition:  $h * (f_1 + f_2) = (h * f_1) + (h * f_2)$ 

> Scaling: h \* (kf) = k(h \* f)



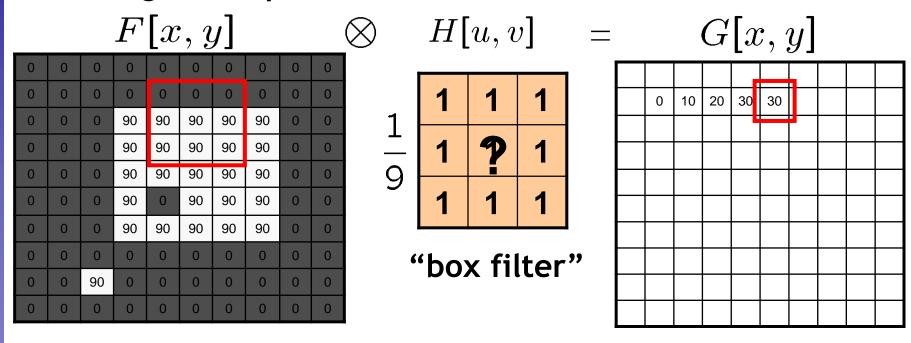
## **Properties of Convolution**

- Linear & shift invariant
- Commutative:  $f \star g = g \star f$
- Associative:  $(f \star g) \star h = f \star (g \star h)$ 
  - > Often apply several filters in sequence:  $(((a \star b_1) \star b_2) \star b_3)$
  - This is equivalent to applying one filter:  $a \star (b_1 \star b_2 \star b_3)$
- Identity:  $f \star e = f$ 
  - > for unit impulse e = [..., 0, 0, 1, 0, 0, ...].
- Differentiation:  $\frac{\partial}{\partial x}(f\star g)=\frac{\partial f}{\partial x}\star g$



## **Averaging Filter**

• What values belong in the kernel H[u,v] for the moving average example?



$$G = H \otimes F$$

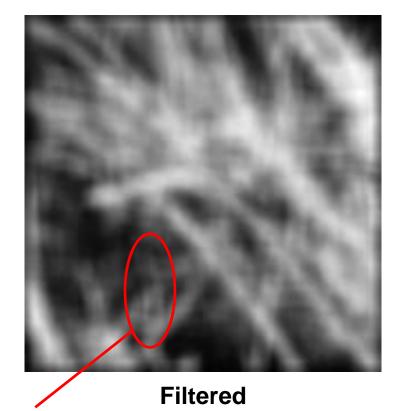


# **Smoothing by Averaging**





**Original** 



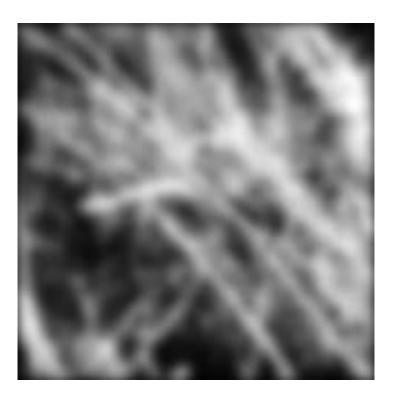
"Ringing" artifacts!



# Smoothing with a Gaussian



**Original** 



**Filtered** 

# Smoothing with a Gaussian - Comparison



**Original** 



**Filtered** 

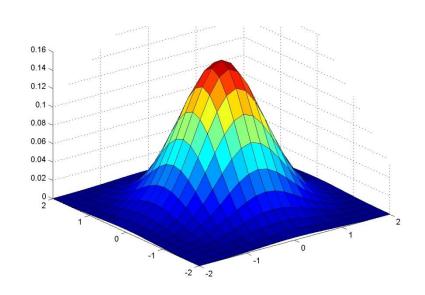


## **Gaussian Smoothing**

Gaussian kernel

aussian kernel
$$G_{\sigma}=rac{1}{2\pi\sigma^{2}}e^{-rac{(x^{2}+y^{2})}{2\sigma^{2}}}$$

- Rotationally symmetric
- Weights nearby pixels more than distant ones
  - This makes sense as 'probabilistic' inference about the signal
- A Gaussian gives a good model of a fuzzy blob



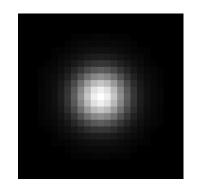
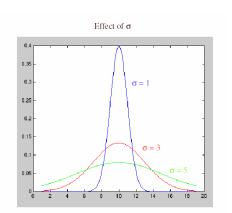


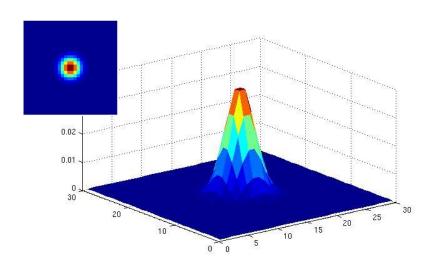
Image Source: Forsyth & Ponce

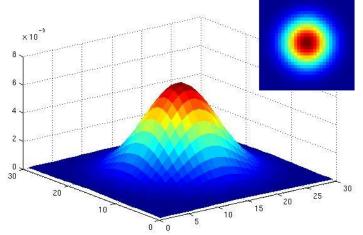


# **Gaussian Smoothing**

- What parameters matter here?
- Variance σ of Gaussian
  - Determines extent of smoothing







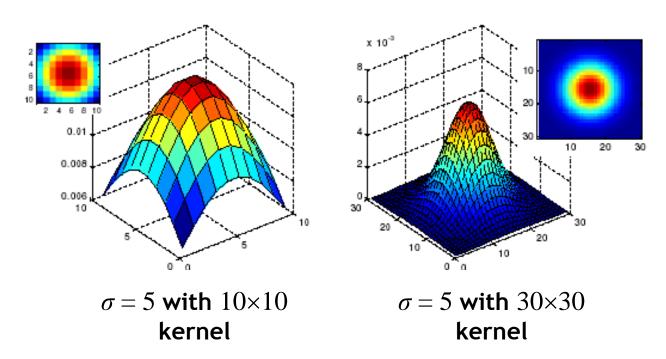
$$\sigma = 2$$
 with  $30 \times 30$  kernel

$$\sigma = 5$$
 with  $30 \times 30$  kernel



# **Gaussian Smoothing**

- What parameters matter here?
- Size of kernel or mask
  - Gaussian function has infinite support, but discrete filters use finite kernels



> Rule of thumb: set filter half-width to about  $3\sigma!$ 



# Gaussian Smoothing in Matlab

```
>> hsize = 10;
>> sigma = 5;
>> h = fspecial('gaussian' hsize, sigma);
>> mesh(h);
>> imagesc(h);
>> outim = imfilter(im, h);
>> imshow(outim);
```



B. Leibe

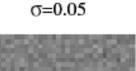


outim

# **Effect of Smoothing**

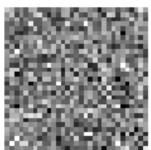
More noise →

 $\sigma = 0.1$ 









 $\sigma=0.2$ 

smoothing

Wider smoothing kernel →







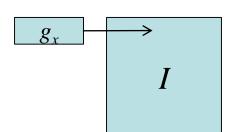
41



# **Efficient Implementation**

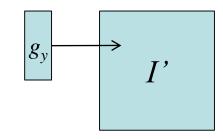
- Both, the BOX filter and the Gaussian filter are separable:
  - First convolve each row with a 1D filter

$$g(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-x^2/(2\sigma^2))$$



> Then convolve each column with a 1D filter

$$g(y) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-y^2/(2\sigma^2))$$



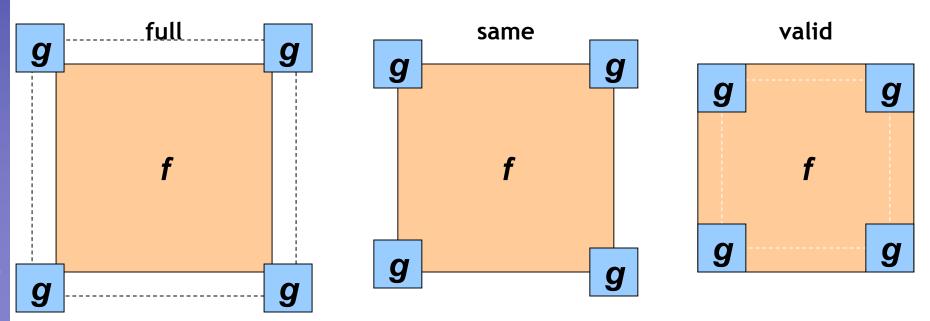
- Remember:
  - Convolution is linear associative and commutative

$$g_x \star g_y \star I = g_x \star (g_y \star I) = (g_x \star g_y) \star I$$



# Filtering: Boundary Issues

- What is the size of the output?
- MATLAB: filter2(g,f,shape)
  - shape = 'full': output size is sum of sizes of f and g
  - shape = 'same': output size is same as f
  - > shape = 'valid': output size is difference of sizes of f and g

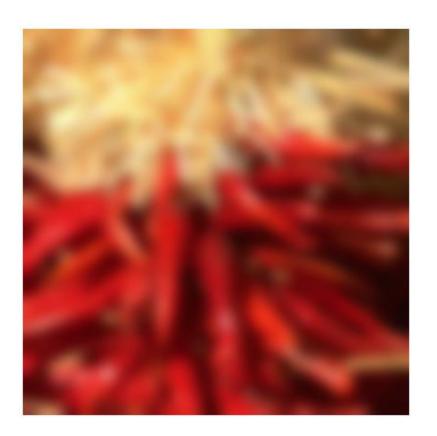


43



# Filtering: Boundary Issues

- How should the filter behave near the image boundary?
  - The filter window falls off the edge of the image
  - Need to extrapolate
  - Methods:
    - Clip filter (black)
    - Wrap around
    - Copy edge
    - Reflect across edge





# Filtering: Boundary Issues

- How should the filter behave near the image boundary?
  - The filter window falls off the edge of the image
  - Need to extrapolate
  - Methods (MATLAB):

```
- Clip filter (black): imfilter(f,g,0)
```

- Wrap around: imfilter(f,g, 'circular')
- Copy edge: imfilter(f,g, 'replicate')
- Reflect across edge: imfilter(f,g, 'symmetric')

Source: S. Marschner



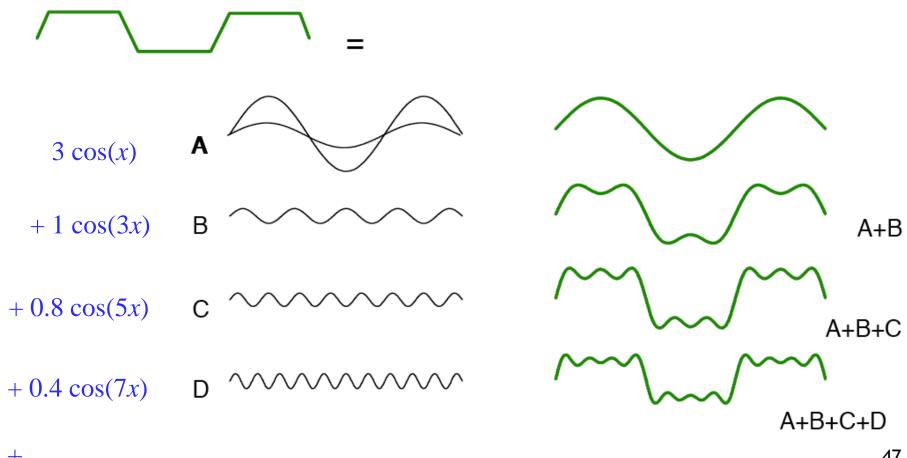
# **Topics of This Lecture**

- Linear filters
  - What are they? How are they applied?
  - Application: smoothing
  - Gaussian filter
  - What does it mean to filter an image?
- Nonlinear Filters
  - Median filter
- Multi-Scale representations
  - How to properly rescale an image?
- Filters as templates
  - Correlation as template matching



# Why Does This Work?

 A small excursion into the Fourier transform to talk about spatial frequencies...

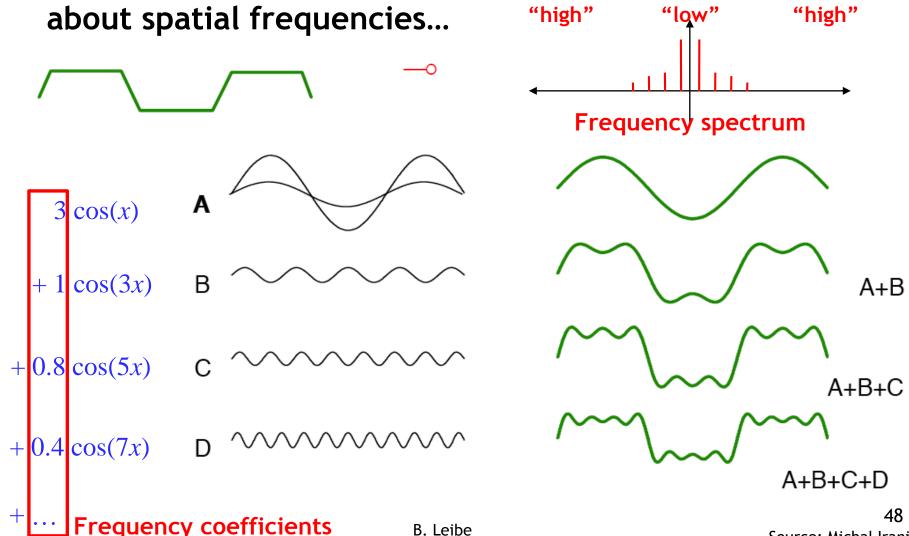


Source: Michal Irani



### The Fourier Transform in Cartoons

A small excursion into the Fourier transform to talk

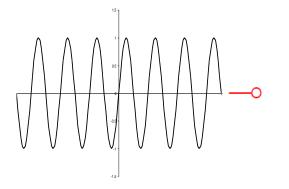


Source: Michal Irani

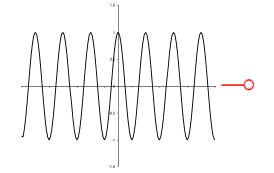


# Fourier Transforms of Important Functions

Sine and cosine transform to...



?

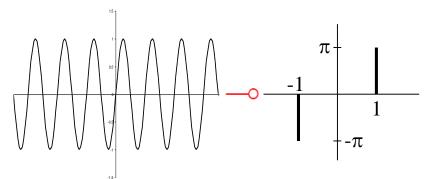


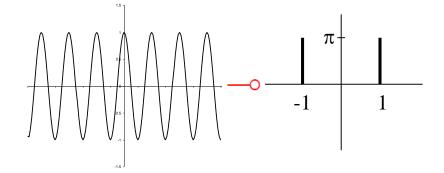
?



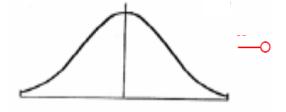
# Fourier Transforms of Important Functions

Sine and cosine transform to "frequency spikes"





A Gaussian transforms to...

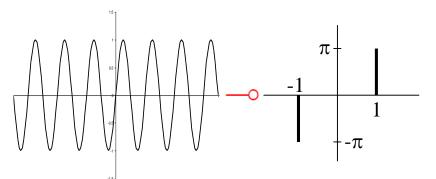


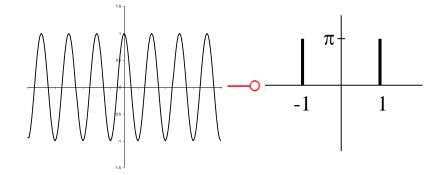


### RWTHAACHEN UNIVERSITY

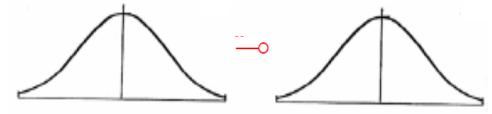
# Fourier Transforms of Important Functions

Sine and cosine transform to "frequency spikes"

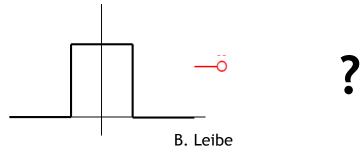




A Gaussian transforms to a Gaussian



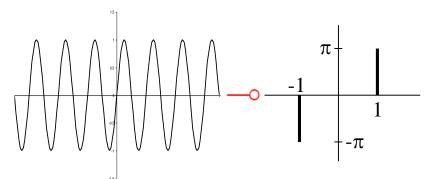
A box filter transforms to...

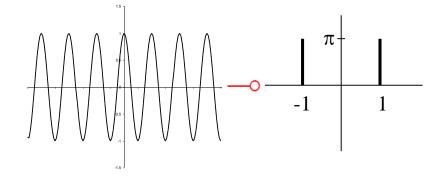


### RWTHAACHEN UNIVERSITY

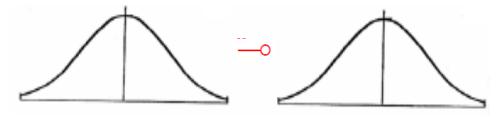
# Fourier Transforms of Important Functions

Sine and cosine transform to "frequency spikes"



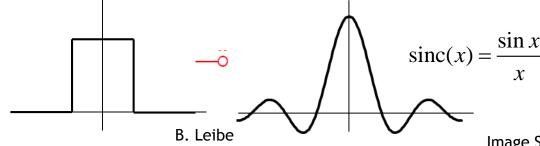


A Gaussian transforms to a Gaussian



All of this is symmetric!

A box filter transforms to a sinc

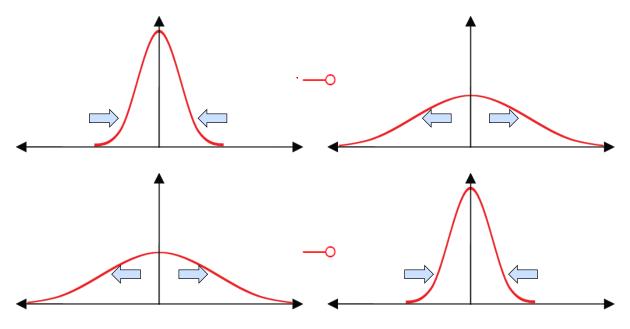


52

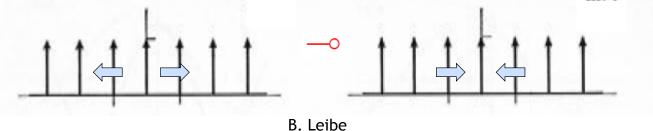


# **Duality**

 The better a function is localized in one domain, the worse it is localized in the other.



This is true for any function





### **Effect of Convolution**

 Convolving two functions in the image domain corresponds to taking the product of their transformed versions in the frequency domain.

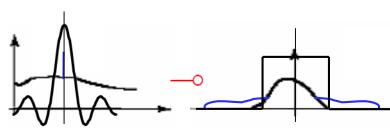
$$f \star g \multimap \mathcal{F} \cdot \mathcal{G}$$

- This gives us a tool to manipulate image spectra.
  - A filter attenuates or enhances certain frequencies through this effect.

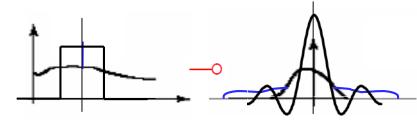


# **Effect of Filtering**

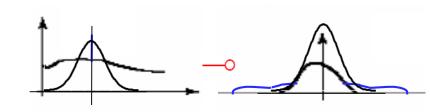
- Noise introduces high frequencies.
   To remove them, we want to apply a "low-pass" filter.
- The ideal filter shape in the frequency domain would be a box.
   But this transfers to a spatial sinc, which has infinite spatial support.



 A compact spatial box filter transfers to a frequency sinc, which creates artifacts.

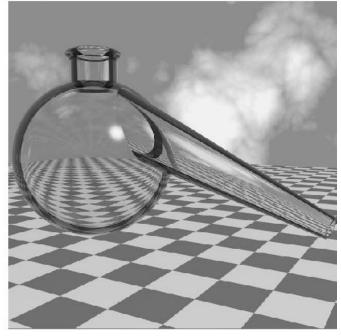


 A Gaussian has compact support in both domains. This makes it a convenient choice for a low-pass filter.

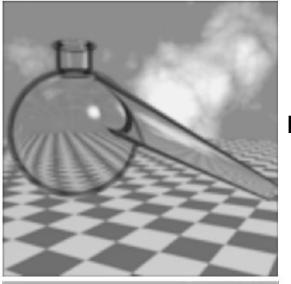


### RWTHAACHEN UNIVERSITY

# Low-Pass vs. High-Pass



Original image



Low-pass filtered

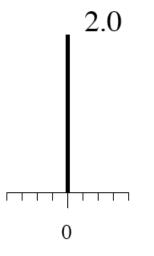


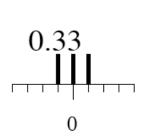
High-pass filtered



# Quiz: What Effect Does This Filter Have?







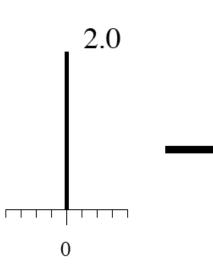




# **Sharpening Filter**



Original







Sharpening filter

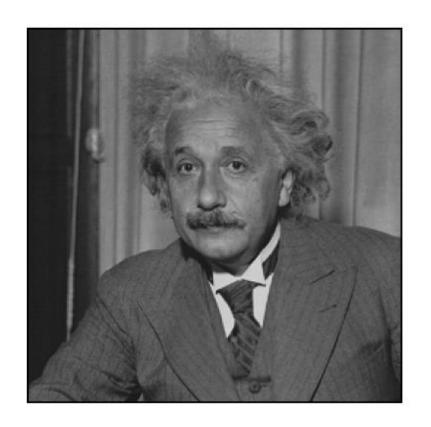
Accentuates differences with local average

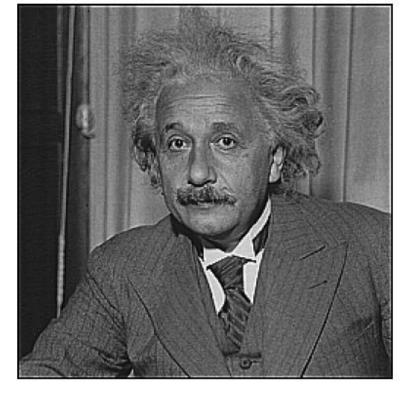
B. Leibe

58 Source: D. Lowe



# **Sharpening Filter**





before

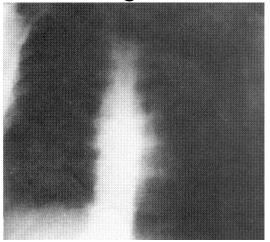
after

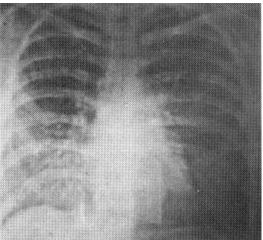
59 Source: D. Lowe

### RWTHAACHEN UNIVERSITY

# Application: High Frequency Emphasis

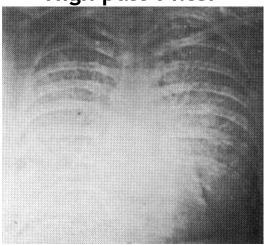


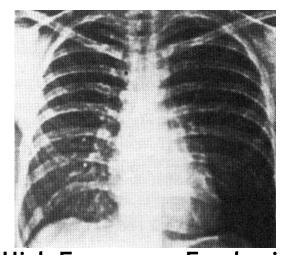




High Frequency Emphasis

High pass Filter





High Frequency Emphasis

+

Histogram Equalization

Slide credit: Michal Irani

B. Leibe



# **Topics of This Lecture**

- Linear filters
  - What are they? How are they applied?
  - Application: smoothing
  - Gaussian filter
  - What does it mean to filter an image?
- Nonlinear Filters
  - Median filter
- Multi-Scale representations
  - How to properly rescale an image?
- Image derivatives
  - How to compute gradients robustly?



### Non-Linear Filters: Median Filter

#### Basic idea

Replace each pixel by the median of its neighbors.

10 15 20 23 90 27 33 31 30 Sort 10 15 20 23 27 30 31 33

### Properties

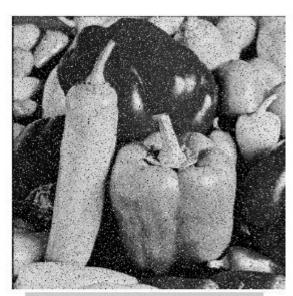
- Doesn't introduce new pixel values
- Removes spikes: good for impulse, salt & pepper noise
- Linear?

| 10 | 15 | 20 | Replace |
|----|----|----|---------|
| 23 | 27 | 27 |         |
| 33 | 31 | 30 |         |

### RWTHAACHEN UNIVERSITY

## **Median Filter**

Salt and pepper noise





250 250 150 50

Median filtered

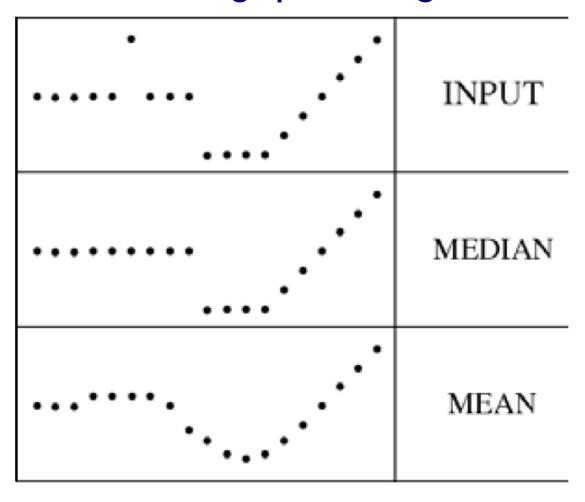
Plots of a row of the image

63



## **Median Filter**

• The Median filter is edge preserving.



# Median vs. Gaussian Filtering

3x3

5x5

7x7









Median









# **Topics of This Lecture**

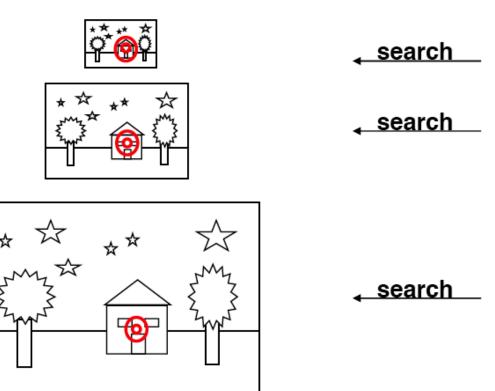
- Linear filters
  - What are they? How are they applied?
  - Application: smoothing
  - Gaussian filter
  - What does it mean to filter an image?
- Nonlinear Filters
  - Median filter
- Multi-Scale representations
  - How to properly rescale an image?
- Filters as templates
  - Correlation as template matching





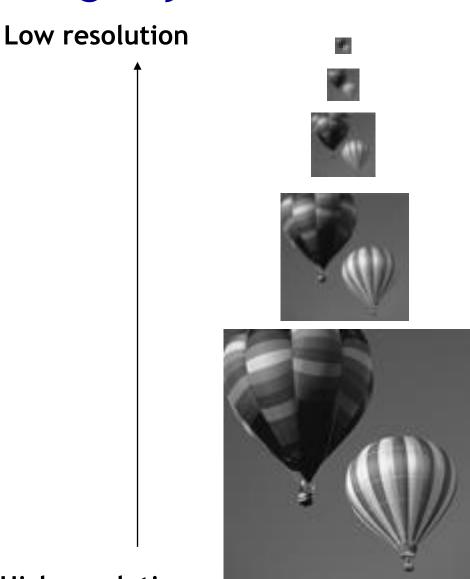
龠

### Motivation: Fast Search Across Scales





# **Image Pyramid**

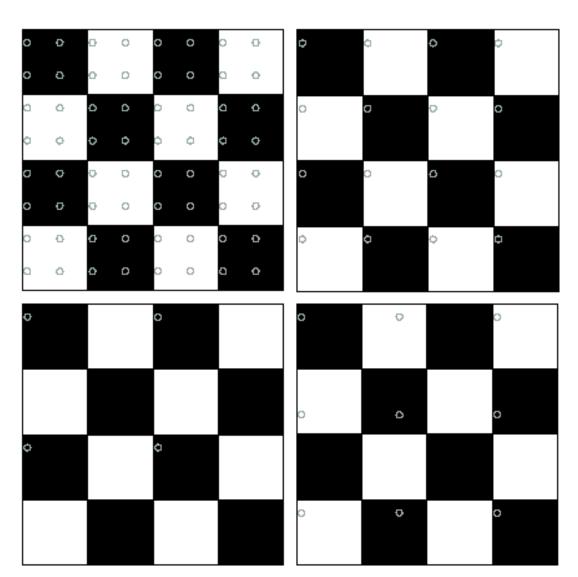


High resolution

B. Leibe

### RWTHAACHEN UNIVERSITY

# How Should We Go About Resampling?



Let's resample the checkerboard by taking one sample at each circle.

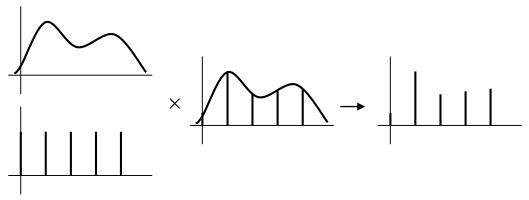
In the top left board, the new representation is reasonable. Top right also yields a reasonable representation.

Bottom left is all black (dubious) and bottom right has checks that are too big.



# Fourier Interpretation: Discrete Sampling

 Sampling in the spatial domain is like multiplying with a spike function.



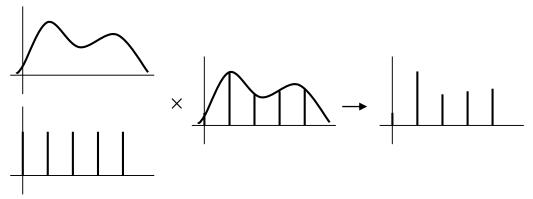
Sampling in the frequency domain is like...

?

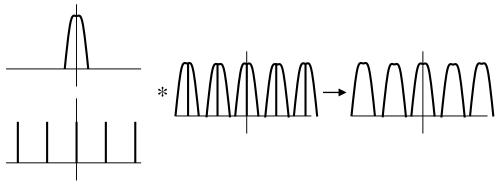


# Fourier Interpretation: Discrete Sampling

 Sampling in the spatial domain is like multiplying with a spike function.



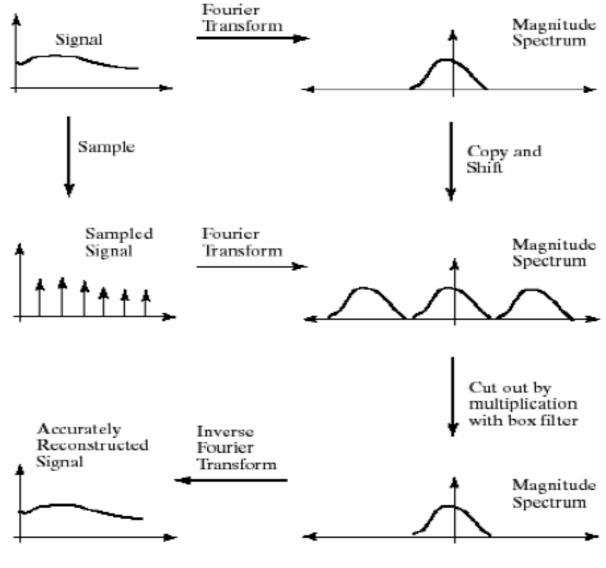
 Sampling in the frequency domain is like convolving with a spike function.



71 Source: S. Chenney

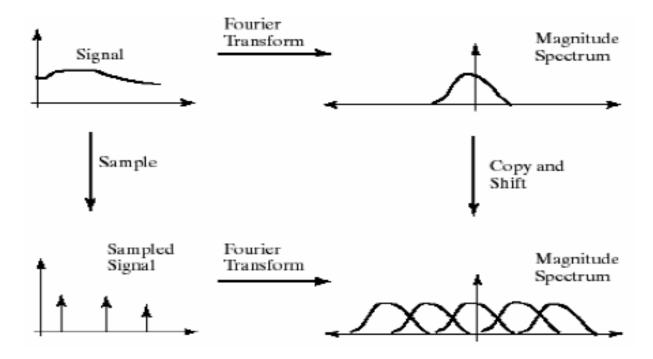


# Sampling and Aliasing





# Sampling and Aliasing

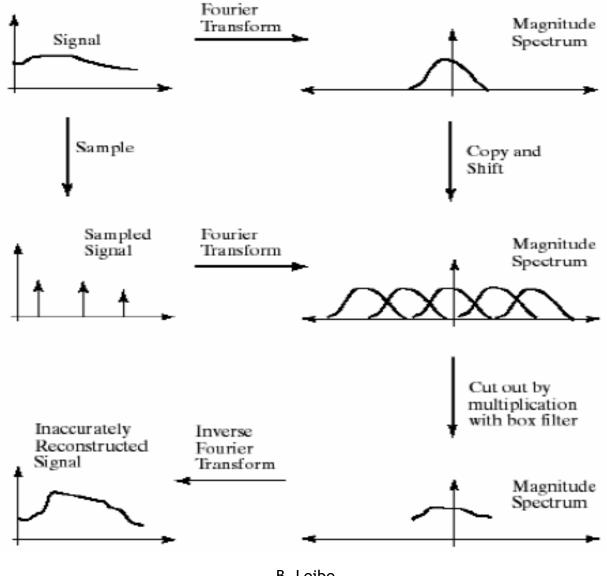


#### Nyquist theorem:

- In order to recover a certain frequency f, we need to sample with at least 2f.
- This corresponds to the point at which the transformed frequency spectra start to overlap (the Nyquist limit)

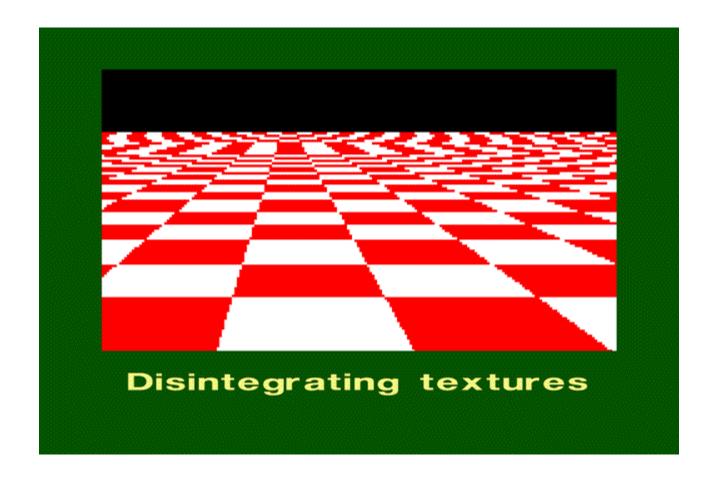


# Sampling and Aliasing



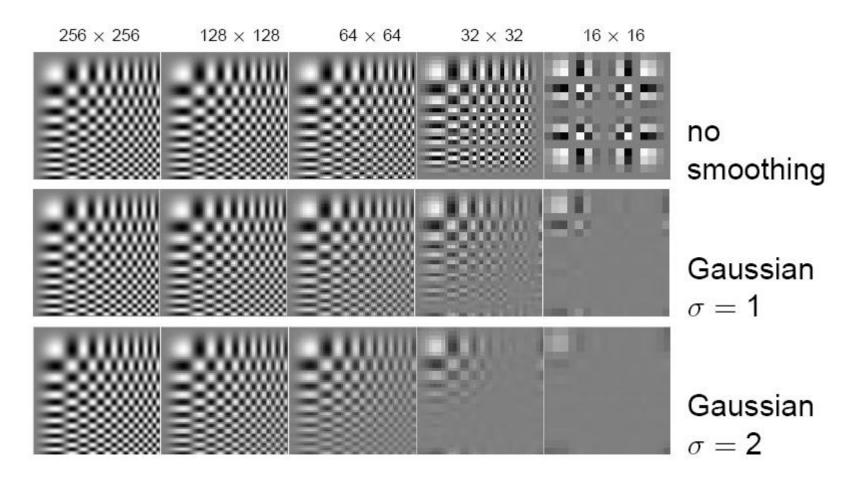


# Aliasing in Graphics





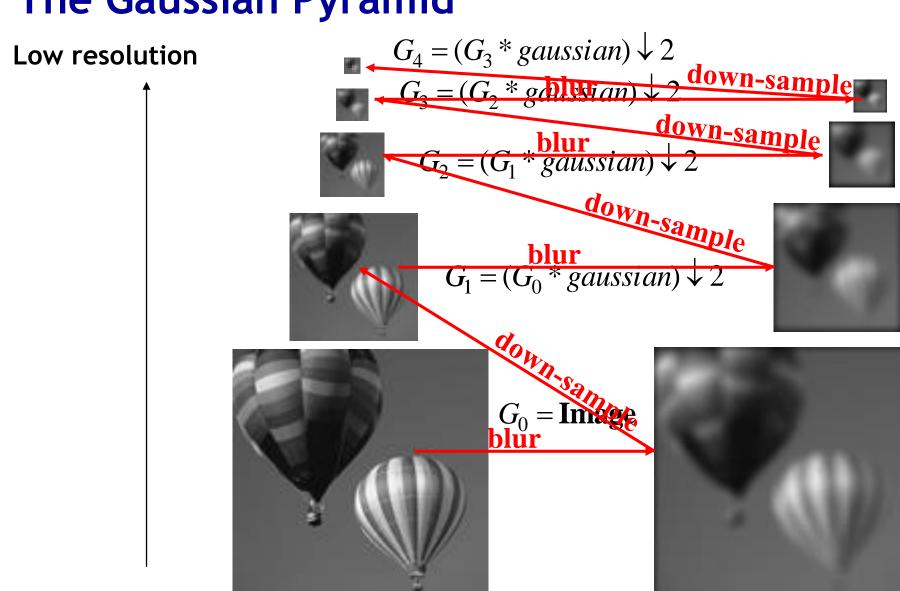
# Resampling with Prior Smoothing



 Note: We cannot recover the high frequencies, but we can avoid artifacts by smoothing before resampling.

High resolution

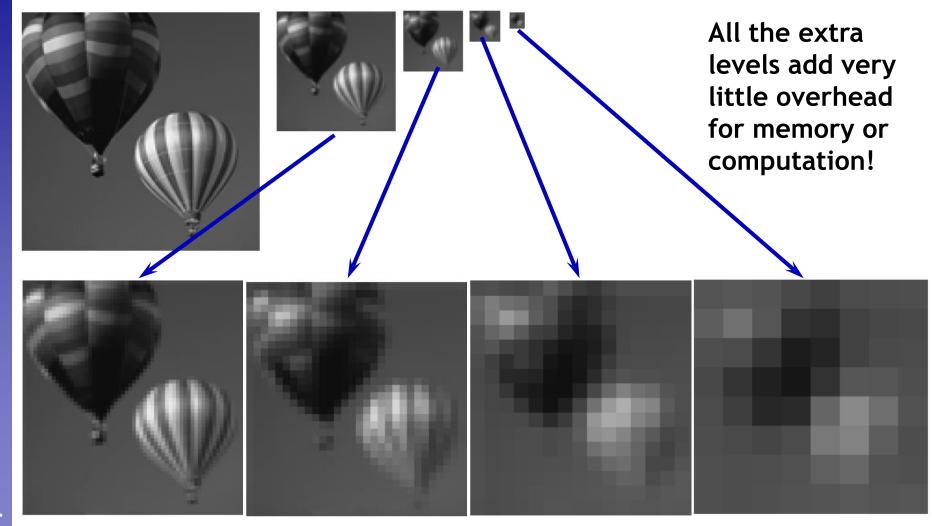
# The Gaussian Pyramid



B. Leibe

Source: Irani & Basri

# **Gaussian Pyramid - Stored Information**

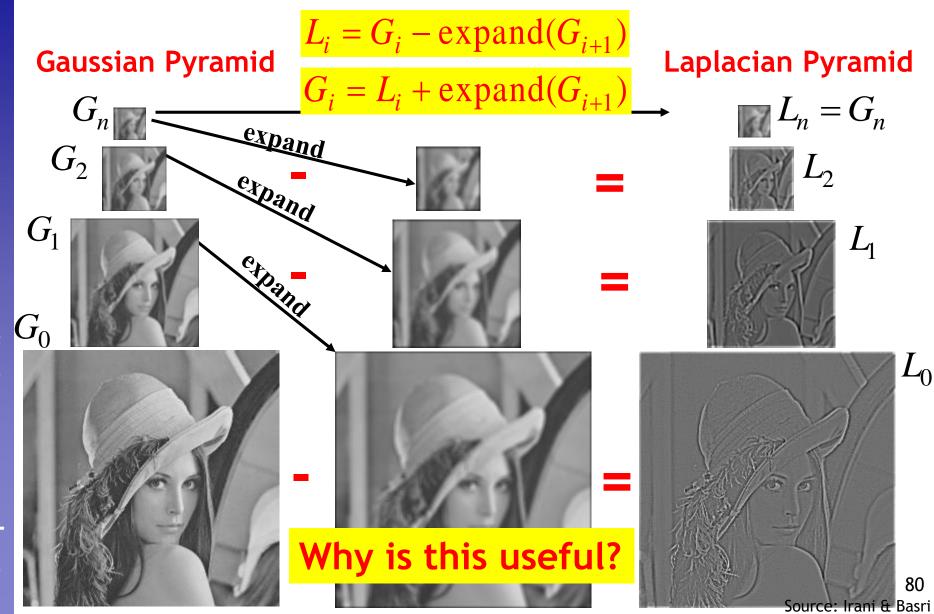




# Summary: Gaussian Pyramid

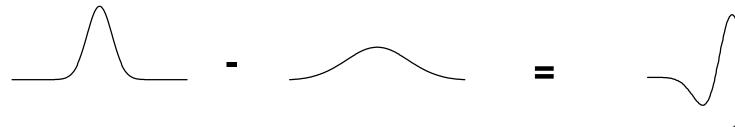
- Construction: create each level from previous one
  - Smooth and sample
- Smooth with Gaussians, in part because
  - a Gaussian\*Gaussian = another Gaussian
  - >  $G(\sigma_1) * G(\sigma_2) = G(sqrt(\sigma_1^{2+} \sigma_2^{2}))$
- Gaussians are low-pass filters, so the representation is redundant once smoothing has been performed.
  - ⇒ There is no need to store smoothed images at the full original resolution.

# The Laplacian Pyramid

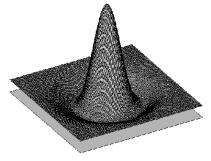


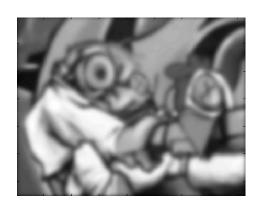


# Laplacian ~ Difference of Gaussian



DoG = Difference of Gaussians
Cheap approximation - no derivatives needed.











# **Topics of This Lecture**

- Linear filters
  - What are they? How are they applied?
  - Application: smoothing
  - Gaussian filter
  - What does it mean to filter an image?
- Nonlinear Filters
  - Median filter
- Multi-Scale representations
  - How to properly rescale an image?
- Filters as templates
  - Correlation as template matching

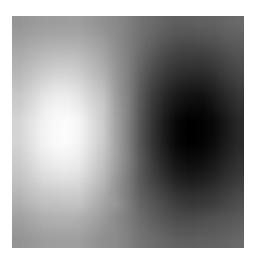


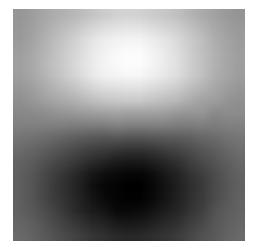


## Note: Filters are Templates

- Applying a filter at some point can be seen as taking a dotproduct between the image and some vector.
- Filtering the image is a set of dot products.

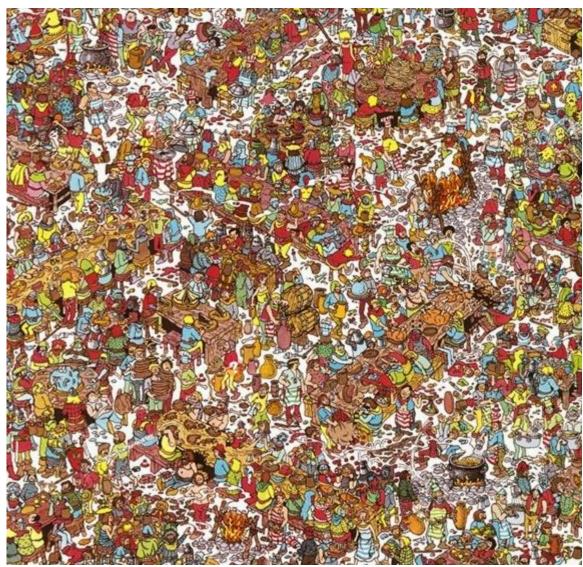
- Insight
  - Filters look like the effects they are intended to find.
  - Filters find effects they look like.







## Where's Waldo?

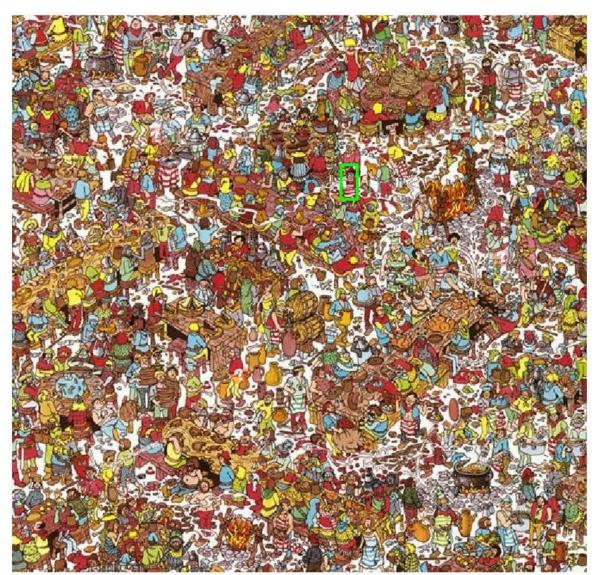




**Template** 

Scene

## Where's Waldo?





**Template** 

**Detected template** 

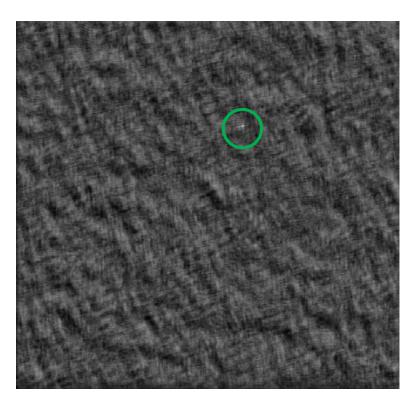
Slide credit: Kristen Grauman

B. Leibe

## Where's Waldo?



**Detected template** 



**Correlation map** 



# Correlation as Template Matching

- Think of filters as a dot product of the filter vector with the image region
  - Now measure the angle between the vectors

$$a \cdot b = |a| |b| \cos \theta$$
  $\cos \theta = \frac{a \cdot b}{|a| |b|}$ 

$$\cos\theta = \frac{a \cdot b}{|a||b|}$$

Angle (similarity) between vectors can be measured by normalizing length of each vector to 1.

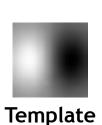
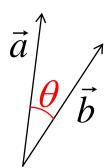




Image region



**Vector interpretation** 



## **Summary: Mask Properties**

#### Smoothing

- Values positive
- Sum to 1 ⇒ constant regions same as input
- Amount of smoothing proportional to mask size
- Remove "high-frequency" components; "low-pass" filter

## Filters act as templates

- Highest response for regions that "look the most like the filter"
- Dot product as correlation



# **Summary Linear Filters**

## Linear filtering:

Form a new image whose pixels are a weighted sum of original pixel values

#### Properties

 Output is a shift-invariant function of the input (same at each image location)

#### **Examples:**

- Smoothing with a box filter
- Smoothing with a Gaussian
- Finding a derivative
- Searching for a template

## Pyramid representations

 Important for describing and searching an image at all scales



## References and Further Reading

- Background information on linear filters and their connection with the Fourier transform can be found in Chapters 7 and 8 of
  - D. Forsyth, J. Ponce,
     Computer Vision A Modern Approach.
     Prentice Hall, 2003

