Computer Vision - Lecture 3

Linear Filters

31.10.2016
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RWTH Aachen
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Reminder from Last Lecture

e Describe the objects
> Region properties
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B. Leibe Image Source: D. Kim et al., Cytometry 35(1), 1999



Region Properties

e From the previous steps, we can
obtain separated objects.

e Some useful features can be
extracted once we have connected
components, including

> Area

> Centroid

> Extremal points, bounding box
> Circularity

> Spatial moments
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Area and Centroid

e We denote the set of pixels in a region by R
e Assuming square pixels, we obtain

> Area: A = Zl u0123455?
(x,¥)eR 1
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Source: Shapiro & Stockman B. Leibe



Circularity
e Measure the deviation from a perfect circle
- Circularity: C= Hr
Or

where [/, and aé are the mean and vari-
ance of the distance from the centroid of

the shape to the boundary pixels (X,.y,).

% ~ Mean radial distance:

% ZH(Xk’ Yi)— (X, Y)H

é » Variance of radial dlstance:

[ ;. K-1 o ,
é— Or =X M(Xk’yk)_(X’Y)H_,UR]
8 k=0

Source: Shapiro & Stockman B. Leibe



Invariant Descriptors

e Often, we want features independent of
location, orientation, scale.
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Slide credit: Kristen Grauman B. Leibe



Central Moments

* Sis asubset of pixels (region).

e Central (J,K)t» moment defined as:

=\ | —\ k
Hix = Z(X_X)J (Y-V¥)
(X,y)eS
e Invariant to translation of S.

e Interpretation:
~ 0th central moment: area
~ 2" central moment: variance
» 34 central moment: skewness
~ 4th central moment: kurtosis
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Slide credit: Kristen Grauman B. Leibe



RWTH
Moment Invariants (“Hu Moments”)

e Normalized central moments

_ Hpg +
=—, y = P+(
Hoo 2

e From those, a set of invariant moments can be defined
for object description.

G = 1150 + oy

by = (1120 —10,)” + 4771,

By = (1130 —312)" + (31721 —1103)°
by = (1730 +112) " + (111 +7705)°

e Robust to translation, rotation & scaling,
but don’t expect wonders (still summary statistics).

7] oq +1
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Moment Invariants

05 = (1750 —3171,) (7730 + 7712)[(7730 T 7712)2 —3(17,, + 7703)2]
+ (31721 = 03) (1751 + 7703)[3(7730 +1715)° = (17, + 7703)2]

Ps = (17,0 — 7702)[(7730 + 7712)2 — (17,1 + 7703)2]
+417,,(M750 + 1712) (7751 + 1753)

B, = (35— 1103) 1130 + o)\ (730 + 712)? = 371+ 7703)? |
+ (31715 = 130) (171 + 7703)[3(7730 + 7712)2 — (17,1 + 7703)2]

Often better to use log,,(¢;) instead of ¢, directly...

B. Leibe
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Axis of Least Second Moment

e Invariance to orientation?

> Need a common alignment
!

M

/

/

1
;

!

» Compute Eigenvectors of 2" moment matrix (Matlab: eig(A))

N

Axis for which the
squared distance to 2D
object points is minimized
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Hos vy,

B. Leibe
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RWNTH
Summary: Binary Image Processing

e Pros
> Fast to compute, easy to store
~ Simple processing techniques
~ Can be very useful for constrained scenarios

e Cons

Hard to get “clean” silhouettes

> Noise is common in realistic scenarios
~ Can be too coarse a representation

» Cannot deal with 3D changes

Y

Slide credit: Kristen Grauman B. Leibe
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Demo “Haribo Classification”

Code will be available on L2P...

B. Leibe
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You Can Do It At Home...

Accessing a webcam in Matlab:

function out = webcam

[*)

adaptorName = 'winvideo';
vidFormat = 'I420 320x240';
vidObjl= videoinput (adaptorName,

% uses '"Image Acquisition Toolbox,

1, vidFormat);

set (vidObjl, 'ReturnedColorSpace', 'rgb')

set (vidObjl, 'FramesPerTrigger',
out = vidObjl ;

cam = webcam() ;

img=getsnapshot (cam) ;

B. Leibe
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Course Outline

 Image Processing Basics
> Image Formation
> Binary Image Processing
> Linear Filters
» Edge & Structure Extraction
~ Color

e Segmentation

e Local Features & Matching

e Object Recognition and Categorization
e 3D Reconstruction

 Motion and Tracking

B. Leibe
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Motivation

e Noise reduction/image restoration

o~
.
g

B. Leibe
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Topics of This Lecture

e Linear filters
> What are they? How are they applied?
~ Application: smoothing
~ Gaussian filter
> What does it mean to filter an image?

e Nonlinear Filters
> Median filter

e Multi-Scale representations
» How to properly rescale an image?

e Filters as templates
> Correlation as template matching

B. Leibe
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Common Types of Noise

e Salt & pepper noise

> Random occurrences of
black and white pixels

e Impulse noise

» Random occurrences of
white pixels

e Gaussian noise

» Variations in intensity drawn
from a Gaussian (“Normal”)
distribution.

e Basic Assumption
. Noise is i.i.d. (independent & *==I50 SNSIEIE St 578
identically distributed) Impulse noise Gaussian noise

B. Leibe
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Gaussian Noise

Ideal Image  Noise process Gaussian i.i.d. (“white") noise:
fxy)= f(z,y) + n(z,y) n(z,y) ~N(u, o)

>> noise = randn(size(im)) .*sigma;

>> output = im + noise;
Slide credit: Kristen Grauman B. Leibe
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First Attempt at a Solution

e Assumptions:
» Expect pixels to be like their neighbors

~ Expect noise processes to be independent from pixel to pixel
(“i.i.d. = independent, identically distributed”)

e Let’s try to replace each pixel with an average of all the
values in its neighborhood...

. 20
Slide credit: Kristen Grauman B. Leibe



Moving Average in 2D
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B. Leibe Source: S. Seitz



Moving Average in 2D

O“ 10
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B. Leibe Source: S. Seitz



Moving Average in 2D
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B. Leibe Source: S. Seitz



Moving Average in 2D
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B. Leibe Source: S. Seitz



Moving Average in 2D
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B. Leibe Source: S. Seitz
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Moving Average in 2D

Flz, y]

Glz,y

B. Leibe

26

Source: S. Seitz



Correlation Filtering

e Say the averaging window size is 2k+1 x 2k+1:

Gli, 7] = u, j + vl
g (2/~c+ 1)2 _Z_k_Z_ g

J J
Y Y

Attribute uniform Loop over all pixels in neighborhood
weight to each pixel around image pixel F[i,j]

e Now generalize to allow different weights depending on
neighboring pixel S relative position:

Gli, j] = Z Z Hlu,v]F[i + u, 5 + v]

u=—kv=—k

J

Y
Non-uniform weights
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Correlation Filtering

k k
Gli,j1= >_ Y Hlu,v]F[i+ u,j+ v]

u=—kv=-—%k

e This is called cross-correlation, denoted G = H & F

e Filtering an image

—-—

- Replace each pixel by a
weighted combination of

its neighbors. 3

> The filter “kernel” or “mask”
is the prescription for the
weights in the linear
combination.

Slide credit: Kristen Grauman B. Leibe

(0,0)

(N,N)
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Convolution

e Convolution:

~ Flip the filter in both dimensions (bottom to top, right to left)
~ Then apply cross-correlation

Gli, 7] = Z Z Hlu,v]F[i —u,j — v]

u=—kov=-—%k
N~
=
g 4 & 1©,0)
0 G=HxF H
- T z L
2 ] F
> Notation for
= convolution
g operator NN)
O

Slide credit: Kristen Grauman B. Leibe



Correlation vs. Convolution

e Correlation

. L Matlab:
. ) ) filter2
Gli, j] = Z Z Hlu, v]Fli +u, j + v] i;fiif:er
nw=—kv=—k 'T‘
G=H®UF

Note the difference!

o Convolution

S Matlab:
S Gli, 7] = Z Z Hu, v]F[z—u j — v] ciniz
g uw=—kv=—k

:g G=HxF

=

*;i * Note

§ - If H[-u,-v] = H[u,v], then correlation = convolution.

. 30
Slide credit: Kristen Grauman B. Leibe



Shift Invariant Linear System

e Shift invariant:

» Operator behaves the same everywhere, i.e. the value of the
output depends on the pattern in the image neighborhood, not
the position of the neighborhood.

e Linear:
. Superposition: h*(f, + f)=(h*f)+ (h* f)
. Scaling: h*(kf)=k(h* )
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Slide credit: Kristen Grauman B. Leibe



Properties of Convolution

e Linear & shift invariant

e Commutative: fxg=gxf

e Associative: (fxg)xh=1fx(gxh)

. Often apply several filters in sequence: (((a x b;) x b,) x by)
- This is equivalent to applying one filter: a x (b; x b, % b,)

S e |dentity: fxe=f

=

e . for unit impulsee =1...,0,0,1,0,0, ...].
o

5 ¢ Differentiation: 0 of

> - * — *

%— 833 (f g) 833 g
@)

Slide credit: Kristen Grauman B. Leibe



Averaging Filter

e What values belong in the kernel H[u,Vv] for the moving
average example?

F[.’B, y] ® H[uvv] — G[QS’, y]
11111 0 |10 20 3';1
1 [

“11|?|1

1/1]1

“box filter”

G=HQXF
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A INVERSITY
Smoothing by Averaging

depicts box filter:
white = high value, black = low value

Original Filtered
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S Ringing” artifacts!

' 34
Slide credit: Kristen Grauman B. Leibe Image Source: Forsyth & Ponce
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Smoothing with a Gaussian

Original Filtered
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B. Leibe Image Source: Forsyth & Ponce
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Smoothing with a Gaussian - Comparison

Original Filtered
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B. Leibe Image Source: Forsyth & Ponce



Gaussian Smoothing

e Gaussian kernel
1 @24y
Gy = e 252
2ol

e Rotationally symmetric

e Weights nearby pixels more
than distant ones

~ This makes sense as
‘probabilistic’ inference
about the signal

e A Gaussian gives a good model
of a fuzzy blob

N~
—i
~
o
—i
n
=
c
2
L
>
8
-}
o
=
(@]
O

37

B. Leibe Image Source: Forsyth & Ponce



Gaussian Smoothing

Effectof o

e What parameters matter here?

e Variance c of Gaussian
» Determines extent of smoothing

=

(o)

—

(7))

=

c

S

Iz

i o = 2 with 30x30 o = 5 with 30x30
5 kernel kernel
o

=

(@]

@)

Slide credit: Kristen Grauman B. Leibe
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Gaussian Smoothing

e What parameters matter here?

e Size of kernel or mask

~ Gaussian function has infinite support, but discrete filters use
finite kernels

x 107

L]
L]

n
L]

L]
L}

L L L
) S S — |
L} L} 1 1
L L]

o =5 with 10x10 o =5 with 30x30
kernel kernel

> Rule of thumb: set filter half-width to about 30!

Slide credit: Kristen Grauman B. Leibe
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Gaussian Smoothing in Matlab

>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h),; ‘-

>> imagesc (h) ; n

>> outim = imfilter (im, h);
>> imshow (outim) ;
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Slide credit: Kristen Grauman B. Leibe
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Effect of Smoothing

More noise =
0=0.05 g=0.1

& 19Uy Sulyjoows JISpLM
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Slide credit: Kristen Grauman B. Leibe Image Source: Forsyth & Ponce
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Efficient Implementation

e Both, the BOX filter and the Gaussian filter are
separable:

v

~ First convolve each row with a 1D filter g,

! exp(—x~ /(207)) I

g(x)= \/EO'

> Then convolve each column with a 1D filter
§(y) = ———exp(~y* /20)) T
N2TO

e Remember:
> Convolution is linear - associative and commutative

ga:*gy*I:ga:*(gy*I) — (g:c*gy)*l

Slide credit: Bernt Schiele B. Leibe
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Filtering: Boundary Issues

e What is the size of the output?
e MATLAB: filter2 (g, £, shape)

~ shape = ‘full’: output size is sum of sizes of f and g
> shape = ‘same’: output size is same as f
~ shape = ‘valid’: output size is difference of sizes of fand g

____________ full ] same valid

 — g

Slide credit: Svetlana Lazebnik B. Leibe
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Filtering: Boundary Issues

e How should the filter behave near the image boundary?
~ The filter window falls off the edge of the image
> Need to extrapolate

> Methods: r—
Clip filter (black) ' F

Wrap around
Copy edge
Reflect across edge

44

B. Leibe Source: S. Marschner
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Filtering: Boundary Issues

e How should the filter behave near the image boundary?
~ The filter window falls off the edge of the image

> Need to extrapolate
> Methods (MATLAB):

- Clip filter (black): imfilter(£f,q,0)
- Wrap around: imfilter(f,qg, ‘circular’)
- Copy edge: imfilter(f,qg, ‘replicate’)

Reflect across edge: imfilter (f,g, ‘symmetric’)

45

B. Leibe Source: S. Marschner
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Topics of This Lecture

e Linear filters
> What are they? How are they applied?
~ Application: smoothing
~ Gaussian filter
> What does it mean to filter an image?

B. Leibe
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Why Does This Work?

e A small excursion into the Fourier transform to talk
about spatial frequencies...

2 VA

A % AN

N~

—

% +1cos(3x) B TN A+B
=

S ANNUNANAUNANAN /\/V\/V\/W\

2 +0.8cos(5x) C ALBAC
)

=8 +04cos(7x) D VVVVVVVVVWN /M\,vv\/w\

S A+B+C+D
° K 47

B. Leibe Source: Michal Irani
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The Fourier Transform in Cartoons

e A small excursion into the Fourier transform to talk
about spatial frequencies... “high” “lo‘ " “high”

'.
/_\_/_\ < 1 [ 1 >

Frequenc spectrum

T A % /\/\

i

=

S AN /\/V\/V\/W\

2 +[0.8]cos(5x) C ALl
o

§_ +10.4 COS(7X) D VVVVVVVVVA /M\/\,\/\/W\

g A+B+C+D
o 48

- IFrequency coefficients B. Leibe

Source: Michal Irani
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Fourier Transforms of Important Funct%ons

e Sine and cosine transform to...

V/\V/\V/\\/AVAVA\//L 2 %AU[ vﬂvﬂvﬂv@ >
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. 49
B. Leibe Image Source: S. Chenney
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Fourier Transforms of Important Functions

e Sine and cosine transform to “frequency spikes”

‘ N 1 i
—0 -1 —0

| ‘ 1 I -1 1

/ T ,

e A Gaussian transforms to...

50

B. Leibe Image Source: S. Chenney
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RWNTH
Fourier Transforms of Important Functions

e Sine and cosine transform to “frequency spikes”

‘ T+ | Tt ‘
o1 ‘ —0
/ T .
e A Gaussian transforms to a Gaussian

VANV

e A box filter transforms to...

51

B. Leibe Image Source: S. Chenney
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RWNTH
Fourier Transforms of Important Functions

e Sine and cosine transform to “frequency spikes”

e A Gaussian transforms to a Gaussian

} All of this is
— symmetric!

e A box filter transforms to a sinc

— 5 / sinc(x) = w
X
7\
- \J

~ 52
B. Leibe \/

Image Source: S. Chenney
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Duality

e The better a function is localized in one domain, the
worse it is localized in the other.

A

e e

e e

e This is true for any function

b - slann

Y 8 o
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Effect of Convolution

e Convolving two functions in the image domain
corresponds to taking the product of their transformed
versions in the frequency domain.

fxg—F- -G

e This gives us a tool to manipulate image spectra.

~ A filter attenuates or enhances certain frequencies through this
effect.

54
B. Leibe
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Effect of Filtering

 Noise introduces high frequencies.
To remove them, we want to apply a —0 /-"\

“low-pass” filter.

e The ideal filter shape in the
frequency domain would be a box.
But this transfers to a spatial sinc, S
which has infinite spatial support.

e A compact spatial box filter
transfers to a frequency sinc, which e _ —0
creates artifacts. - -

e A Gaussian has compact support in

both domains. This makes it a
convenient choice for a low-pass N 4

filter.

55
B. Leibe



RWTHAACHEN
, UNIVERSITY
Low-Pass vs. High-Pass

Low-pass
filtered
o
S
—
n
= .
= High-pass
@ filtered
>
©
=
o
=
S
56

B. Leibe Image Source: S. Chenney
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iz: What Effect Does This Filter Have:

2.0

57

B. Leibe Source: D. Lowe



N~
=
O
—
7))
=
c
£
2
>
[2
>
o
&
O
@)

Sharpening Filter

Original

2.0

B. Leibe

CHEN
UNIVERSITY

Sharpening filter
— Accentuates differences
with local average

58

Source: D. Lowe
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Sharpening Filter
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B. Leibe Source: D. Lowe



N~
—
S~~~
(o)
—
%2
=
c
£
2
>
[2
>
o
&
o
@)

Application: High Frequency Emphasis

Original High pass Filter

SRR

High Frequency

High Frequenc hphasis
Emphasis +

_ Histogram Equalization
Slide credit: Michal Irani B. Leibe
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Topics of This Lecture

e Nonlinear Filters
> Median filter
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Non-Linear Filters: Median Filter

* Basic idea

> Replace each pixel by the

. . - 5 j
median of its neighbors. 10115120
23190127
- - Sort
Median value 33131130 l
--_‘___‘_
J Properties 10 15 20 23 |27|30 31 33 90
. Doesn’t introduce new pixel 10115120 l Replace
values 23(27(27
> Removes spikes: good for 33(31|30
Impulse, salt & pepper noise
> Linear?
62

Slide credit: Kristen Grauman B. Leibe



Median Filter

Salt and

pepper
noise

Median
/ filtered

N~

=

3 I | |
» o r f! A\

; 150} f } ‘*M
c | w

© oy / ‘ W * “
2 w0 I ' 1 so ﬁ '

> | J o \'11
b 0 | f . J
2 0 o 0 300 ) 00 B0 s 00 =0 30 a0 e £00
>

o N

= Plots of a row of the image

O

63
Slide credit: Kristen Grauman B. Leibe Image Source: Martial Hebert
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Median Filter

RWTHAACHEN
UNIVERSITY

e The Median filter is edge preserving.

Slide credit: Kristen Grauman

cesss sus .‘- INPUT
MEDIAN
L MEAN
B. Leibe o
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Topics of This Lecture

e Multi-Scale representations
» How to properly rescale an image?
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Motivation: Fast Search Across Scales
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B. Leibe Image Source: Irani & Basri
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Image Pyramid

Low resolution
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High resolution 68
B. Leibe



RWTH
How Should We Go About Resampling?

Let’s resample the
checkerboard by taking
one sample at each
circle.

In the top left board, the
new representation is
reasonable. Top right
also yields a reasonable
representation.

Bottom left is all black
(dubious) and bottom
right has checks that are
too big.
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Image Source: Forsyth & Ponce

B. Leibe
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RWNTH
Fourier Interpretation: Discrete Sampling

e Sampling in the spatial domain is like multiplying with a

spike function.
AN L
| |

e Sampling in the frequency domain is like...

N\

70

B. Leibe Source: S. Chenney



RWTH
Fourier Interpretation: Discrete Sampling

e Sampling in the spatial domain is like multiplying with a

spike function.
AN L
| |

e Sampling in the frequency domain is like convolving with
a spike function.

-y

B. Leibe
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Source: S. Chenney
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Sampling and Aliasing

UN

Fourier _
Transform Magnitude
4 Apectrum
- - /-\ -
Sample Copy and
Shifl
Y
Sampled Fourner .
signal ITransform Magnitude
R Spectrum
fitees VAN
Cut out by
multiplication
) with box filter
Accurately Inverse
Reconstructed Fourier
Signal Transform
— Magnitude
Specirum
1 Ll . L =
' 72
B. Leibe

Image Source: Forsyth & Ponce



Sampling and Aliasing

Fourer

Transform Magnitude
Signal - /-K Spoctrum
= - ] -
Sample Copy and
Shift

Sam pled FFourier .
Signal Transform T'_-:"'“gﬁlmdf
- - Spectrum
I m

e Nyquist theorem:

- In order to recover a certain frequency f, we need to sample with at
least 2f.

~ This corresponds to the point at which the transformed frequency
spectra start to overlap (the Nyquist limit)

N~
—
S~~~
(o)
—
%2
=
c
©
i
>
2
>
o
&
o
@)

73

Image Source: Forsyth & Ponce

B. Leibe
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Sampling and Aliasing

RWTHAACHEN
UNIVERSITY

Fourier
i Transform Magnitude
Signal A Spectrum
T T - l .
Sample Copy and
Shift
Sam pled IFourer )
Signal Transform Magnitude
o Spectrum
I ) | )
Cut out by
multiplication
Inaccurately Inverse with box filter
Reconstructed Fourier
Nignal Transform
- 4 Magmtude
p— Spectrum
| r o - —
- 74
B. Leibe

Image Source: Forsyth & Ponce



Aliasing in Graphics

Disintegrating textures
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B. Leibe Image Source: Alexej Efros
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Resampling with Prior Smoothing

256 x 256 128 x 128 64 x 64 32 %32 16 x 16

no
smoothing

Gaussian
g=:"1

Gaussian
o= 2

e Note: We cannot recover the high frequencies, but we
can avoid artifacts by smoothing before resampling.
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B. Leibe Image Source: Forsyth & Ponce
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The Gaussian Pyramid
Low resolution g Ci=(G* Qa_USSian) 2

) * WW.
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High resolution 77

B. Leibe Source: Irani & Basri
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Gaussian Pyramid - Stored Information

-

-

All the extra
levels add very
little overhead
for memory or
computation!
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Source: lrani & Basri

B. Leibe
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Summary: Gaussian Pyramid

e Construction: create each level from previous one
> Smooth and sample

e Smooth with Gaussians, in part because

> a Gaussian*Gaussian = another Gaussian
. G(oy) * G(oy) = G(sqrt(c, 2 * o, 2))

e Gaussians are low-pass filters, so the representation is
redundant once smoothing has been performed.

= There is no need to store smoothed images at the
full original resolution.

Slide credit: David Lowe B. Leibe
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The Laplacian Pyramid
L. =G, —expand(G;,,)

Gaussian Pyramid Laplacian Pyramid

Gi =L +expand(G;,;) _

Computer Vision WS 16/17

Why is this useful?
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Laplacian ~ Difference of Gaussian

VAN

DoG = Difference of Gaussians
Cheap approximation - no derivatives needed.
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Topics of This Lecture
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e Filters as templates
~ Correlation as template matching ﬁ

B. Leibe
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Note: Filters are Templates

e Applying a filter at some point e |nsight

can be seen as taking a dot- . Filters look like the effects
product between the image they are intended to find.
and some vector.

~ Filters find effects they
e Filtering the image is a set of look like.

dot products.
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Template
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Slide credit: Kristen Grauman B. Leibe
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Where’s Waldo?
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Detected template 85
Slide credit: Kristen Grauman B. Leibe
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Where’s Waldo?
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Slide credit: Kristen Grauman B. Leibe
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Correlation as Template Matching

e Think of filters as a dot product of the filter vector with
the image region
- Now measure the angle between the vectors

a-b
|al|b|

> Angle (similarity) between vectors can be measured by
normalizing length of each vector to 1.

a-b=|al|b|cos@ COS 0 =

Q|

Template

Image region Vector interpretation
B. Leibe
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Summary: Mask Properties

e Smoothing

Values positive

> Sum to 1 = constant regions same as input

> Amount of smoothing proportional to mask size

> Remove “high-frequency” components; “low-pass” filter

Y

e Filters act as templates
» Highest response for regions that “look the most like the filter”
~ Dot product as correlation

Slide credit: Kristen Grauman B. Leibe
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Summary Linear Filters

e Linear filtering:

> Form a new image whose
pixels are a weighted sum
of original pixel values

e Properties

> Output is a shift-invariant
function of the input (same
at each image location)

B. Leibe

Examples:

e Smoothing with a box filter
e Smoothing with a Gaussian
e Finding a derivative

e Searching for a template

Pyramid representations

e Important for describing and
searching an image at all
scales

89
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References and Further Reading

e Background information on linear filters and their
connection with the Fourier transform can be found in
Chapters 7 and 8 of

~ D. Forsyth, J. Ponce,
Computer Vision - A Modern Approach.
Prentice Hall, 2003

Computer
Vision

A MODERN APPROACH

. 90
B. Leibe



