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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

Linear Regression

Regularization (Ridge, Lasso) J
Kernels (Kernel Ridge Regression)
~ Gaussian Processes (, - e

Y

M=9 L
0.5 ,

Y

Y

e Approximate Inference m—

- Sampling Approaches
> MCMC

e Deep Learning
> Linear Discriminants
> Neural Networks
~ Backpropagation & Optimization
> CNNs, ResNets, RNNs, Deep RL, etc.

B. Leibe
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Topics of This Lecture

e Recap: Reinforcement Learning
> Key Concepts
~ Temporal Difference Learning

e Deep Reinforcement Learning
~ Value based Deep RL
~ Policy based Deep RL
- Model based Deep RL

e Applications
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Recap: Reinforcement Learning

e Motivation
~ General purpose framework for decision making.
~ Basis: Agent with the capability to interact with its environment
~ Each action influences the agent’s future state.
~ Success is measured by a scalar reward signal.
~ Goal: select actions to maximize future rewards.

action

N

Apgent Environment

"

observation, reward

» Formalized as a partially observable Markov decision process
(POMDP)

Slide adapted from: David Silver, Sergey Levine
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Recap: Reward vs. Return

e Objective of learning

> We seek to maximize the expected return G; as some
function of the reward sequence R;,{,R;,5, Rt 43, -

~ Standard choice: expected discounted return
Gt = Reyq1 + YRey2 +V?Regz + o = Z Vth+k+1
k=0
where 0 <y < 1 is called the discount rate.

e Difficulty
> We don’t know which past actions caused the reward.
= Temporal credit assignment problem
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Recap: Policy

e Definition
~ A policy determines the agent’s behavior
> Map from state to action m:§ - A

e Two types of policies
> Deterministic policy: a = n(s)
> Stochastic policy: n(als) = Pr{A; = a|S; = s}

e Note
» m(a|s) denotes the probability of taking action a when in state s.
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Recap: Value Function

e |dea
~ Value function is a prediction of future reward
» Used to evaluate the goodness/badness of states
> And thus to select between actions

e Definition

> The value of a state s under a policy 7, denoted v.(s), is the
expected return when starting in s and following = thereafter.

Un(8) = Ex[GelSe = s] = Ex[Xr=0 V" Re+k+1 |St = 5]

> The value of taking action a in state s under a policy 7,
denoted ¢, (s,a), is the expected return starting from s,
taking action a, and following 7 thereafter.

qr(s,a) = E;[G¢|S; = 5,4 = a] = Ex[Xx=0 Vth+k+1 |St =s,A; = al
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Recap: Optimal Value Functions

e Bellman optimality equations
» For the optimal state-value function v,:

v,(s) = max_q, (s, a)

acA(s)
= arenﬂa()é),z p(s’,rls,a)|r + yv.(s')]
s'r

» v, is the unique solution to this system of nonlinear equations.

~ For the optimal action-value function g,:

0.(5,@) = ) p(s',rls,0) [r +y maxq.(s',a)]
shr

> g, is the unique solution to this system of nonlinear equations.

= If the dynamics of the environment p(s’,r|s,a) are known, then
in principle one can solve those equation systems.
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RWTH
Recap: Exploration-Exploitation Trade-off

e Example: N-armed bandit problem

~ Suppose we have the choice between
N actions a4, ..., ay.

> |If we knew their value functions q.(s, q;), &
it would be trivial to choose the best.

- However, we only have estimates based \( =
on our previous actions and their returns.

e We can now

> Exploit our current knowledge

- And choose the greedy action that has the highest value based on
our current estimate.

> Explore to gain additional knowledge

- And choose a non-greedy action to improve our estimate of that
action’s value.
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Recap: TD-Learning

e Policy evaluation (the prediction problem)
~ For a given policy m, compute the state-value function v .

e One option: Monte-Carlo methods

» Play through a sequence of actions until a reward is reached,
then backpropagate it to the states on the path.

V(Se) « V(S + alG: — V(Se)]

Target: the actual return after time ¢

e Temporal Difference Learning - TD(4)
> Directly perform an update using the estimate V(S;,3:1)-

V(Sy) « V(S) + al[RHl + VV(St+12 —V(Se)]

v

Target: an estimate of the return (here: TD(0))
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RWTH
Recap: SARSA - On-Policy TD Control

e Idea

> Turn the TD idea into a control method by always updating the
policy to be greedy w.r.t. the current estimate

e Procedure

> Estimate g, (s, a) for the current policy = and for all states s and
actions a.

> TD(0) update equation
Q(StrAt) < Q(St'At) + a[Rt+1 + VQ(St+1;At+1) - Q(St'At)]

> This rule is applied after every transition from a nonterminal
state S;.

> It uses every element of the quintuple (S;, A¢, Riy1, St+1,At41)-
= Hence, the name SARSA.
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Image source: Sutton & Barto
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RWTH
Recap: Q-Learning - Off-Policy TD Control

e Idea

~ Directly approximate the optimal action-value function ¢,
independent of the policy being followed.

 Procedure
> TD(0) update equation

Q(St, Ae) <« Q(Sp, Ap) t+ [Rt+1 + Yy max Q(Sts1,a) — Q(St»At)]

> Dramatically simplifies the analysis of the algorithm.

~ All that is required for correct convergence is that all pairs
continue to be updated.

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

13

Image source: Sutton & Barto

B. Leibe



Approaches Towards RL

e Value-based RL

» Estimate the optimal value function g, (s, a)
~ This is the maximum value achievable under any policy

e Policy-based RL

~ Search directly for the optimal policy m,
> This is the policy achieving maximum future reward

e Model-based RL

> Build a model of the environment
» Plan (e.g. by lookahead) using model
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Slide credit: David Silver B. Leibe
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Topics of This Lecture

e Deep Reinforcement Learning
~ Value based Deep RL

~ Policy based Deep RL
~ Model based Deep RL
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Deep Reinforcement Learning

e RL using deep neural networks to approximate functions
> Value functions
- Measure goodness of states or state-action pairs
~ Policies
- Select next action

> Dynamics Models
- Predict next states and rewards

16
Slide credit: Sergey Levine B. Leibe
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Deep Reinforcement Learning

e Use deep neural networks to represent
> Value function

~ Policy
> Model

e Optimize loss function by stochastic gradient descent

Slide credit: David Silver B. Leibe
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Q-Networks
e Represent value function by Q-Network with weights w
Q(S: Qa, W) = Q.(s,a)

Q(s,a,w) Q(s,aq,w) - Qfs,a,,,wW)

bttt
Y

w

o

S
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Deep Q-Learning

e |dea
> Optimal Q-values should obey Bellman equation

Q.(s,a) = E [r + yrrzla’le(S’, a)|s, a]

Y

Treat the right-hand side r + y max Q(s’,a’,w) as a target
a’

Minimize MSE loss by stochastic gradient descent

L(w) = (r - )/rrzle}xQ(s’, a’,w) — Q(s,a, w))2

Y

~ This converges to Q, using a lookup table representation.

> Unfortunately, it diverges using neural networks due to
- Correlations between samples
- Non-stationary targets
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RWTH
Deep Q-Networks (DQN): Experience Replay

e Adaptations

- To remove correlations, build a dataset from agent’s own
experience

51.41.M”.5

$».a2.13.53 — s.a.r.s

S3. 33, r4. S4

St.dt. lt+1.St+1  — | Sty dt, 't+1, St+1

~ Perform minibatch updates to samples of experience drawn at
random from the pool of stored samples

- (s,a,1,s") ~U(D) where D = {(s;,a;, 1:4+1,S:+1)} is the dataset

~ Advantages
- Each experience sample is used in many updates (more efficient)
- Avoids correlation effects when learning from consecutive samples
- Avoids feeback loops from on-policy learning

Slide adapted from David Silver B. Leibe
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Deep Q-Networks (DQN): Experience Replay

e Adaptations

- To remove correlations, build a dataset from agent’s own

experience

St.dt. Mt+1.5t+1

_>

51.41.M”.5

$p.a». 3. 53

S3. 33, r4. S4

Stsdts lt+1, St+1

— s.a.r.s

- Sample from the dataset and apply an update

L(w) = (r + )/n}lz;\XQ(s’, a',w”)—0Q(s,a, w))2

» To deal with non-stationary parameters w—, are held fixed.
- Only update the target network parameters every C steps.
- l.e., clone the network Q to generate a target network Q.
=> Again, this reduces oscillations to make learning more stable.

Slide adapted from David Silver

B. Leibe
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Application: Deep RL in Atari

e Goal: Learning to play Atari games

Convglution Convglution Fully cgnnected Fully ccvmnected
Input: | = o\ e . Output:
pixels 9 . - control
+game i o\ | e E® commands
8 ? i
scores af A\ )
S e N\
QHE Q: ! 9 =
céo\:l

+

AN IRJEe VN>
+ 1+ f+ + 1+ 1+ 01+
@] (@] (@) (@] (@) (@] (@) (e

fddoobh  dd

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518,
pp. 529-533, 2015 29

Image source: Vlodimir Minh et al.
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http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

|ldea Behind the Model

e Interpretation
> Assume finite number of actions

> Each number here is a real-valued
ConvNet quantity that represents the

Q function in Reinforcement Learning

e L2 Regression Loss

A action values Q(s,a)

e Collect experience dataset:
> Set of tuples {(s,a,s’,r), ... }

~ (State, Action taken, New state,
Reward received)

target value predicted value

2
Li(0;) =Fi(s.ar.¢)~U(D) {(H— ymax Q(s".a"; 0, )|-|0(s.a: U;I:)
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Current reward + estimate of future reward, discounted by y .
Slide credit: Andrej Karpaty B. Leibe




RWNTH
Results: Breakout
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Video source: Vlodimir Minh et al.

B. Leibe



Results: Space Invaders
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Video source: Vlodimir Minh et al.
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Learned Representation
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e t-SNE embedding of DQN last hidden layer (Space Inv.)
2

B. Leibe

7

Image source: Vlodimir Minh et al.




RWTH
Improvements since Nature DQN

e Double DQN

> Remove upward bias caused by max Q (s, a, w)
a

> Current Q-network w is used to select actions
> Older Q-network w™ is used to evaluate actions

L(w) = (r + 0 (s’, argcrlnaxQ(s’, a’,w),w‘) —0Q(s,q, w))2

e Prioritised replay
» Weight experience according to surprise
~ Store experience in priority queue according to DQN error

r+ymaxQ(s’,a’,w™) —Q(s,a,w)
a

= Emphasize state transitions from which one can learn the most.
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RWTH
Improvements since Nature DQN (2)

e Duelling network
> Split Q-network into two channels
» Action-independent value function V (s, v)
> Action-dependent advantage function A(s,a, w)

Q(s,a) =V(s,v) + A(s,a,w)
> Intuition: network can learn which states are valuable without

having to learn the effect of each action for each state.

e Combined Algorithm
> 3x mean Atari score vs. Nature DQN
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Topics of This Lecture

e Deep Reinforcement Learning
» Value based Deep RL

~ Policy based Deep RL
~ Model based Deep RL
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Deep Policy Networks

e |dea
Represent policy by deep network with weights u

Y

a =mn(a|s,u) or a = n(s,u)

Define objective function as total discounted reward

Y

L(u) = E[r; +yr, +v?r3 + ...| (-, u)]

Optimize effective end-to-end by SGD
l.e., adjust policy parameters u to achieve more reward

Y

Y
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Policy Gradients

e How to make high-value actions more likely
~ The gradient of the stochastic policy n(s,u) is given by
dL(u) 0
du Odu

E[ry + yr, + ¥?r3 + ...| (-, u)]

= ..?7

e Wait - how do we calculate that?
> Any ideas?
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Policy Gradients

e Deriving the gradient of an expectation
> General case

Vo, 0y [f ()] = Vg zxp(xi 0)f (x)

= D, Vop(si0)f ()

_ \Vep(x; 6)
=) PO ()

— Exp(x; 0)Vg logp(x; 0) f(x)

= IEp(x;é?) \Z logp(x; 0) f(x)]

B. Leibe
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Policy Gradients

e How to make high-value actions more likely
> The gradient of a stochastic policy (s, u) is given by
dL(u) 0
du Odu

E. [ry +yr, + y2r3 + .| (-, u)]

dlogm(als, u)
[P )

> The gradient of a deterministic policy a = n(s) is given by

00Q,(s,a) da
da Ju

L(u)
ou | °

if a is continuous and Q is differentiable.

Slide adapted from David Silver B. Leibe
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Actor-Critic Algorithm

 Procedure
> Estimate value function Q(s,a,w) = Q,(s,a)
» Update policy parameters u by stochastic gradient ascent

dL(w) dlogm(als,w) stochastic
du ou Qs a,w) policy
> Or
dL(w) 9Q(s,a,w)da deterministic
du  da du policy
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RWTH
Asynchronous Advantage Actor-Critic (A3C)

e Further improvement
> Estimate state-value function

V(s) = Elreer + ¥re42 + | 8]
> Q-value estimated by an n-step sample
Qe = Teg1 T VT2 + oo TV iy V™V (St4nr V)

~ Actor is updated towards target

dL(u) dlogm(as|ss, u)
u L (qe = V(se,V))

> Critic is updated to minimize MSE w.r.t. target

Ly = (CIt — V(s V))z

= Combined effect: 4x mean Atari score vs. Nature DQN
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Deep Policy Gradients (DPG)

e DPG is the continuous analogue of DQN
» Experience replay: build data-set from agent's experience
» Critic estimates value of current policy by DQN

L,(w) = (r +yQ(s', (s’ u”),w”) —Q(s,a, w))2

~ To deal with non-stationarity, targets u—, w—are held fixed
Actor updates policy in direction that improves Q

Y

dLy(u) 0Q(s,a,w)da
du da  Ou

> In other words critic provides loss function for actor.
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Slide credit: David Silver B. Leibe
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Summary

e The future looks bright!

> Soon, you won’t have to play video games anymore...
> Your computer can do it for you (and beat you at it)

e Reinforcement Learning is a very promising field
~ Currently limited by the need for data
~ At the moment, mainly restricted to simulation settings

B. Leibe
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Topics of This Lecture

e Deep Reinforcement Learning
» Value based Deep RL

~ Policy based Deep RL
- Model based Deep RL
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dvanced Machine Learning Winter’16

RWTH
Often Used in Games, E.g. Alpha Go

B. Leibe




RWTH
References and Further Reading

 More information on Reinforcement Learning can be
found in the following book

Reinforcement .
Learning

Richard S. Sutton, Andrew G. Barto
Reinforcement Learning: An Introduction
MIT Press, 1998

e The complete text is also freely available online
https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
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https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

References and Further Reading
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