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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, ResNets, RNNs, Deep RL, etc.
B. Leibe
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Recap: Long Short-Term Memory

• LSTMs

 Inspired by the design of memory cells

 Each module has 4 layers, interacting in a special way.
4

Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: Elements of LSTMs

• Forget gate layer

 Look at ht-1 and xt and output a 

number between 0 and 1 for each

dimension in the cell state Ct-1.

0: completely delete this,

1: completely keep this.

• Update gate layer

 Decide what information to store

in the cell state.

 Sigmoid network (input gate layer)

decides which values are updated.

 tanh layer creates a vector of new

candidate values      that could be 

added to the state.
5

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: Elements of LSTMs

• Output gate layer

 Output is a filtered version of our

gate state. 

 First, apply sigmoid layer to decide

what parts of the cell state to

output.

 Then, pass the cell state through a

tanh (to push the values to be

between -1 and 1) and multiply it

with the output of the sigmoid gate.

6
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: Gated Recurrent Units (GRU)

• Simpler model than LSTM

 Combines the forget and input

gates into a single update gate zt.

 Similar definition for a reset gate rt, 

but with different weights.

 In both cases, merge the cell state 

and hidden state.

• Empirical results

 Both LSTM and GRU can learn much

longer-term dependencies than 

regular RNNs

 GRU performance similar to LSTM 

(no clear winner yet), but fewer

parameters.
7

B. Leibe
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Topics of This Lecture

• Reinforcement Learning
 Introduction

 Key Concepts

 Optimal policies

 Exploration-exploitation trade-off

• Temporal Difference Learning
 SARSA

 Q-Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL

 Model based Deep RL

• Applications
8
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Reinforcement Learning

• Motivation

 General purpose framework for decision making.

 Basis: Agent with the capability to interact with its environment

 Each action influences the agent’s future state.

 Success is measured by a scalar reward signal.

 Goal: select actions to maximize future rewards.

 Formalized as a partially observable Markov decision process 

(POMDP)
9

Slide adapted from: David Silver, Sergey Levine
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Reinforcement Learning

• Differences to other ML paradigms

 There is no supervisor, just a reward signal

 Feedback is delayed, not instantaneous

 Time really matters (sequential, non i.i.d. data)

 Agent’s actions affect the subsequent data it receives

 We don’t have full access to the function we’re trying to 

optimize, but must query it through interaction.

10
Slide adapted from: David Silver, Sergey Levine
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The Agent–Environment Interface

• Let’s formalize this

 Agent and environment interact at discrete time 

steps 𝑡 = 0, 1, 2, …

 Agent observes state at time 𝑡: 𝑆𝑡 ∈ 𝒮

 Produces an action at time 𝑡: 𝐴𝑡 ∈ 𝒜(𝑆𝑡)

 Gets a resulting reward 𝑅𝑡+1 ∈ ℛ ⊂ ℝ

 And a resulting next state: 𝑆𝑡+1

11
B. LeibeSlide adapted from: Sutton & Barto
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Note about Rewards

• Reward

 At each time step 𝑡, the agent receives a reward 𝑅𝑡+1

• Important note

 We need to provide those rewards to truly indicate what we 

want the agent to accomplish.

 E.g., learning to play chess: 

– The agent should only be rewarded for winning the game.

– Not for taking the opponent’s pieces or other subgoals.

– Else, the agent might learn a way to achieve the subgoals without 

achieving the real goal.

 This means, non-zero rewards will typically be very rare!

12
B. Leibe
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Reward vs. Return

• Objective of learning

 We seek to maximize the expected return 𝐺𝑡 as some 

function of the reward sequence 𝑅𝑡+1, 𝑅𝑡+2, 𝑅𝑡+3, …

 Standard choice: expected discounted return

where 0 ≤ 𝛾 ≤ 1 is called the discount rate.

• Difficulty

 We don’t know which past actions caused the reward.

 Temporal credit assignment problem

13
B. Leibe

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + … = ෍

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1
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Markov Decision Process (MDP)

• Markov Decision Processes

 We consider decision processes that fulfill the Markov property.

 I.e., where the environments response at time 𝑡 depends only 

on the state and action representation at 𝑡.

• To define an MDP, we need to specify

 State and action sets

 One-step dynamics defined by state transition probabilities

 Expected rewards for next state-action-next-state triplets

14
B. Leibe

𝑝 𝑠′ 𝑠, 𝑎 = Pr 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = ෍

𝑟∈ℛ

𝑝 𝑠′, 𝑟 𝑠, 𝑎)

𝑟 𝑠, 𝑎, 𝑠′ = 𝔼 𝑅𝑡+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′ =
σ𝑟∈ℛ 𝑟 𝑝(𝑠

′, 𝑟|𝑠, 𝑎)

𝑝(𝑠′|𝑠, 𝑎)
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Policy

• Definition

 A policy determines the agent’s behavior

 Map from state to action 𝜋: 𝒮 → 𝒜

• Two types of policies

 Deterministic policy: 𝑎 = 𝜋(𝑠)

 Stochastic policy: 𝜋 𝑎 𝑠 = Pr 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠

• Note

 𝜋 𝑎 𝑠 denotes the probability of taking action 𝑎 when in state 𝑠.

15
B. Leibe
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Value Function

• Idea

 Value function is a prediction of future reward

 Used to evaluate the goodness/badness of states

 And thus to select between actions

• Definition

 The value of a state 𝑠 under a policy 𝜋, denoted 𝑣𝜋 𝑠 , is the 

expected return when starting in 𝑠 and following 𝜋 thereafter.

 The value of taking action 𝑎 in state 𝑠 under a policy 𝜋, 

denoted 𝑞𝜋 𝑠, 𝑎 , is the expected return starting from 𝑠, 
taking action 𝑎, and following 𝜋 thereafter.

16
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𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
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Bellman Equation

• Recursive Relationship

 For any policy 𝜋 and any state 𝑠, the following consistency holds

 This is the Bellman equation for 𝑣𝜋 𝑠 .
17
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𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

= 𝔼𝜋 อ෍

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

= 𝔼𝜋 อ𝑅𝑡+1 + 𝛾෍

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+2 𝑆𝑡 = 𝑠

= ෍

𝑎

𝜋 𝑎 𝑠 ෍

𝑠′

෍

𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝔼𝜋 อ෍

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+2 𝑆𝑡+1 = 𝑠′

= ෍

𝑎

𝜋 𝑎 𝑠 ෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ , ∀𝑠 ∈ 𝒮
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Bellman Equation

• Interpretation

 Think of looking ahead from a state to each successor state.

 The Bellman equation states that the value of the start state 

must equal the (discounted) value of the expected next state, 

plus the reward expected along the way.

 We will use this equation in various forms to learn 𝑣𝜋 𝑠 .

18
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𝑣𝜋 𝑠 =෍

𝑎

𝜋 𝑎 𝑠 ෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ , ∀𝑠 ∈ 𝒮
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Optimal Value Functions

• For finite MDPs, policies can be partially ordered

 There will always be at least one optimal policy 𝜋∗.

 The optimal state-value function is defined as

𝑣∗ 𝑠 = max
𝜋

v𝜋(s)

 The optimal action-value function is defined as

𝑞∗ 𝑠, 𝑎 = max
𝜋

𝑞𝜋(𝑠, 𝑎)

19
B. Leibe
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Optimal Value Functions

• Bellman optimality equations

 For the optimal state-value function 𝑣∗:

 𝑣∗ is the unique solution to this system of nonlinear equations.

 For the optimal action-value function 𝑞∗:

 𝑞∗ is the unique solution to this system of nonlinear equations.

 If the dynamics of the environment 𝑝 𝑠′, 𝑟 𝑠, 𝑎 are known, then 

in principle one can solve those equation systems.
20
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𝑣∗ 𝑠 = max
𝑎∈𝒜(𝑠)

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎∈𝒜(𝑠)

෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠
′

𝑞∗ 𝑠, 𝑎 = ෍

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾max
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Optimal Policies

• Why optimal state-value functions are useful

 Any policy that is greedy w.r.t. 𝑣∗ is an optimal policy.

 Given 𝑣∗, one-step-ahead search produces the long-term 

optimal results.

 Given 𝑞∗, we do not even have to do one-step-ahead search

• Challenge

 Many interesting problems have too many states for solving 𝑣∗.

 Many Reinforcement Learning methods can be understood as 

approximately solving the Bellman optimality equations, using 

actually observed transitions instead of the ideal ones.

21
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𝜋∗ 𝑠 = argmax
𝑎∈𝒜 𝑠

𝑞∗ 𝑠, 𝑎
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Exploration-Exploitation Trade-off

• Example: N-armed bandit problem

 Suppose we have the choice between

𝑁 actions 𝑎1, … , 𝑎𝑁.

 If we knew their value functions 𝑞∗(𝑠, 𝑎𝑖),
it would be trivial to choose the best.

 However, we only have estimates based

on our previous actions and their returns.

• We can now

 Exploit our current knowledge 

– And choose the greedy action that has the highest value based on 

our current estimate.

 Explore to gain additional knowledge

– And choose a non-greedy action to improve our estimate of that 

action’s value.

22
B. Leibe

Image source: research.microsoft.com
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Simple Action Selection Strategies

• ϵ-greedy

 Select the greedy action with probability 1 − 𝜖 and a random 

one in the remaining cases.

 In the limit, every action will be sampled infinitely often.

 Probability of selecting the optimal action becomes > (1 − 𝜖).

 But: many bad actions are chosen along the way.

• Softmax

 Choose action 𝑎𝑖 at time 𝑡 according to the softmax function

where 𝜏 is a temperature parameter (start high, then lower it).

 Generalization: replace 𝑞𝑡 by a preference function 𝐻𝑡 that is 

learned by stochastic gradient ascent (“gradient bandit”).

23
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𝑒𝑞𝑡(𝑎𝑖)/𝜏

σ𝑗=1
𝑁 𝑒𝑞𝑡(𝑎𝑗)/𝜏
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Topics of This Lecture

• Reinforcement Learning
 Introduction

 Key Concepts

 Optimal policies

 Exploration-exploitation trade-off

• Temporal Difference Learning
 SARSA

 Q-Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL

 Model based Deep RL

• Applications
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Temporal Difference Learning (TD-Learning)

• Policy evaluation (the prediction problem)

 For a given policy 𝜋, compute the state-value function 𝑣𝜋.

• One option: Monte-Carlo methods

 Play through a sequence of actions until a reward is reached, 

then backpropagate it to the states on the path.

• Temporal Difference Learning – TD(𝜆)

 Directly perform an update using the estimate 𝑉(𝑆𝑡+𝜆+1).

26
B. Leibe

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑉(𝑆𝑡)

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)

Target: the actual return after time 𝑡

Target: an estimate of the return (here: TD(0))
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SARSA: On-Policy TD Control

• Idea

 Turn the TD idea into a control method by always updating the 

policy to be greedy w.r.t. the current estimate

• Procedure

 Estimate 𝑞𝜋(𝑠, 𝑎) for the current policy 𝜋 and for all states 𝑠 and 

actions 𝑎.

 TD(0) update equation

 This rule is applied after every transition from a nonterminal 

state 𝑆𝑡.

 It uses every element of the quintuple (𝑆𝑡, 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1).

 Hence, the name SARSA.
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Image source: Sutton & Barto

𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄(𝑆𝑡 , 𝐴𝑡)
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SARSA: On-Policy TD Control

• Algorithm
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Image source: Sutton & Barto
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Q-Learning: Off-Policy TD Control

• Idea

 Directly approximate the optimal action-value function 𝑞∗, 
independent of the policy being followed.

• Procedure

 TD(0) update equation

 Dramatically simplifies the analysis of the algorithm.

 All that is required for correct convergence is that all pairs 

continue to be updated.
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Image source: Sutton & Barto

𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 − 𝑄(𝑆𝑡 , 𝐴𝑡)
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Q-Learning: Off-Policy TD Control

• Algorithm
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Image source: Sutton & Barto
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Topics of This Lecture

• Reinforcement Learning
 Introduction

 Key Concepts

 Optimal policies

 Exploration-exploitation trade-off

• Temporal Difference Learning
 SARSA

 Q-Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL

 Model based Deep RL

• Applications
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Deep Reinforcement Learning

• RL using deep neural networks to approximate functions

 Value functions 

– Measure goodness of states or state-action pairs

 Policies

– Select next action

 Dynamics Models

– Predict next states and rewards

32
B. LeibeSlide credit: Sergey Levine
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Deep Reinforcement Learning

• Application: Learning to play Atari games

33
B. Leibe

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518, 

pp. 529-533, 2015

Input: 

pixels

+game 

scores

Output: 

control

commands
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• L2 Regression Loss

Idea Behind the Model

• Interpretation

 Assume finite number of actions

 Each number here is a real-valued 

quantity that represents the 

Q function in Reinforcement Learning

• Collect experience dataset:

 Set of tuples {(s,a,s’,r), … }

 (State, Action taken, New state, Reward 

received

34
B. Leibe

target value predicted value

Current reward + estimate of future reward, discounted by 

Slide credit: Andrej Karpaty
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Results: Space Invaders
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Results: Breakout
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Comparison with Human Performance
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Close-up

view

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Learned Representation

• t-SNE embedding of DQN last hidden layer (Space Inv.)
38
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http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
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References and Further Reading

• More information on Reinforcement Learning can be 

found in the following book

• The complete text is also freely available online

B. Leibe
41

Richard S. Sutton, Andrew G. Barto

Reinforcement Learning: An Introduction

MIT Press, 1998

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
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