Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

Advanced Machine Learning
Lecture 19

Deep Reinforcement Learning

30.01.2017

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

RWTH/AACHET]

Recap: Long Short-Term Memory

® ® ©

f i

. IR
> =i

A R [ol[a lﬂ T . A
'\lr >

I
(3] © ©

I 0 — > —<J

Meural Network Pointwise Vector

er Operation Transfer Concotenate Copy

e LSTMs
» Inspired by the design of memory cells
» Each module has 4 layers, interacting in a special way.

Image source: Christopher Olah, thub.j

I

©
>
W
2
£
=)
=
£
bS]
o
a
o
=
S
a
=
©
@
o
=
I
3
<

Recap: Elements of LSTMs

« Output gate layer ”'T

» Output is a filtered version of our

gate state.

First, apply sigmoid layer to decide

what parts of the cell state to

output.

» Then, pass the cell state through a
tanh (to push the values to be
between -1 and 1) and multiply it
with the output of the sigmoid gate.

v

oy =a (W, [he—y, 4]

hy = oy # tanh ()

Source: Christopher Olah, ithub.i "

+ by)

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

RWTHACHE

This Lecture: Advanced Machine Learning

 Regression Approaches f X =R
» Linear Regression —

» Regularization (Ridge, Lasso) B

» Kernels (Kernel Ridge Regression)

» Gaussian Processes

¢ Approximate Inference
» Sampling Approaches
» MCMC

¢ Deep Learning
» Linear Discriminants
» Neural Networks
» Backpropagation & Optimization
» CNNs, ResNets, RNNs, Deep RL, etc.

B. Leibe

Recap: Elements of LSTMs

¢ Forget gate layer
» Look at h; ; and x, and output a
number between 0 and 1 for each
dimension in the cell state C, ;.
0: completely delete this,
1: completely keep this.

fi=a (Wi lhe—y, 2] + by)
¢ Update gate layer
» Decide what information to store
in the cell state.

» Sigmoid network (input gate layer)
decides which values are updated.

» tanh layer creates a vector of new
candidate values that could be
added to the state.

iv= o (Wi [y, me] + b))

Cy = tanh(We-[he—y, 2] + bed
ST

Source: Christopher Qlah

©
by
o
2
£
=)
=
£
&
°©
3
o
=
S
a
=
©
@
o
=
8
3
<

TOWTHACHET]
Recap: Gated Recurrent Units (GRU)

o Simpler model than LSTM "
» Combines the forget and input
gates into a single update gate z,.
» Similar definition for a reset gate r,,
but with different weights.

» In both cases, merge the cell state
and hidden state.

g =a (W, [h_1.2])

« Empirical results re = (Wy - [heor, 1))

» Both LSTM and GRU can learn much
longer-term dependencies than
regular RNNs

» GRU performance similar to LSTM
(no clear winner yet), but fewer
parameters.

he = tanh (W - [r; = hy_1. 7))

he = (1= z¢) % heq + 2 % hy

Soucce: ChristBorkSRan dthub.i 13 ing:L ST

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Topics of This Lecture Reinforcement Learning
¢ Reinforcement Learning

» Introduction

» Key Concepts

» Optimal policies

» Exploration-exploitation trade-off

¢ Motivation
» General purpose framework for decision making.
Basis: Agent with the capability to interact with its environment
» Each action influences the agent’s future state.
» Success is measured by a scalar reward signal.
» Goal: select actions to maximize future rewards.

v

¢ Temporal Difference Learning
» SARSA

action
» Q-Learning

Agent Environment

N

observation, reward

* Deep Reinforcement Learning
» Value based Deep RL
» Policy based Deep RL
» Model based Deep RL

» Formalized as a partially observable Markov decision process

* Applications (POMDP)

Advanced Machine Learning Winter’16
Advanced Machine Learning Winter’16

B. Leibe

gey Levine

RWTH//CHE RWTH CHET
Reinforcement Learning The Agent-Environment Interface
« Differences to other ML paradigms

» There is no supervisor, just a reward signal

» Feedback is delayed, not instantaneous state| | reward action

» Time really matters (sequential, non i.i.d. data) SE ® A

L e
% ~ Agent’s actions affect the subsequent data it receives g _4
3 kol i
é = We don’t have full access to the function we’re trying to é
El optimize, but must query it through interaction. = . Let’s formalize this
£ £ » Agent and environment interact at discrete time
% % steps t =0,1,2, ..
£ £ » Agent observes state at time t: S, €S
é § » Produces an action at time t: A, € A(Sy)
§ § » Gets a resulting reward Rit1 ER CcR
§ § » And a resulting next state: St+1
=] =]
< 10 = 11
Barto B. Leibe
RWTH//CHE RWTH CHET

Note about Rewards Reward vs. Return

¢ Reward
» At each time step t, the agent receives a reward R,

¢ Objective of learning
~ We seek to maximize the expected return G, as some
function of the reward sequence R;,1, Ri43, R43, .

« Important note » Standard choice: expected discounted return

» We need to provide those rewards to truly indicate what we
want the agent to accomplish.
» E.g., learning to play chess:
- The agent should only be rewarded for winning the game.
- Not for taking the opponent’s pieces or other subgoals.

- Else, the agent might learn a way to achieve the subgoals without
achieving the real goal.

»
Gt = Rep1 + YRz +¥?Reyz + o = z Y*Reskss
k=0
where 0 <y < 1 is called the discount rate.

« Difficulty
» We don’t know which past actions caused the reward.

= This means, non-zero rewards will typically be very rare! = Temporal credit assignment problem

©o ©
T T
T T
2 2
£ £
i=2 (=
£ £
£ £
© ©
L3 Q
8 g
[[
£ £
S S
[+ <
4 =
=] a1
(7] [
3 8
2 =
© ©
s 3
< <

B. Leibe B. Leibe

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

Markov Decision Process (MDP)

¢ Markov Decision Processes
» We consider decision processes that fulfill the Markov property.

» l.e., where the environments response at time t depends only
on the state and action representation at ¢.

¢ To define an MDP, we need to specify
» State and action sets
» One-step dynamics defined by state transition probabilities
p(s'ls,a) = Pr{Spy1 = s'|S; = 5,A, = a} = Z p(s',rls, @)
TER
» Expected rewards for next state-action-next-state triplets
_ Zrerrp(s'.rls @)

7(s,a,5") = E[Re41| St = 5,4; = @,Sp41 = 5'] p(s']s, a)

14
B. Leibe

Value Function

¢ |dea
» Value function is a prediction of future reward
» Used to evaluate the goodness/badness of states
» And thus to select between actions

¢ Definition
» The value of a state s under a policy 7, denoted v, (s), is the
expected return when starting in s and following = thereafter.
U (s) = En[GelS; = 5] = Ex[Bizo V¥ Resk+1 |5c =s]

» The value of taking action a in state s under a policy =,
denoted g, (s, a), is the expected return starting from s,
taking action a, and following 7 thereafter.

An(s,@) = E[G,|S; = 5,A; = al = Ex[Zi=o V*Resies1 |5z =5,4; = al

16
B. Leibe

©
>
W
2
£
=)
=
£
bS]
o
a
o
=
S
a
=
©
@
o
=
I
3
<

RWTH//CHE
Bellman Equation

v (s) = ZH(als)Zp(s’,rls, a)[r +yvg(s)], Vs€eS

¢ Interpretation
» Think of looking ahead from a state to each successor state.

S,.4a

Tk

(vx)
OO0 00 OO0

» The Bellman equation states that the value of the start state
must equal the (discounted) value of the expected next state,
plus the reward expected along the way.

» We will use this equation in various forms to learn v, (s).

B. Leibe

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

Policy

¢ Definition
» A policy determines the agent’s behavior
» Map from state to action m:§ - A

* Two types of policies

» Deterministic policy: a = n(s)

. Stochastic policy: n(als) = Pr{A, = a|S; = s}

¢ Note
» m(als) denotes the probability of taking action a when in state s.

B. Leibe

Bellman Equation

¢ Recursive Relationship
» For any policy = and any state s, the following consistency holds

U (s) = Eq[GlS; = 5]
= Er [Z Y*Resrsr|Se = 5]
k=0

®
Repq + VZ Y¥Resrsz| St = 5]
i

=0
= Z n(als) Z z p(s',rls, @) |r + yE, [Z Y Resks2
s’ or k=0

=Zn(als)Zp(s’,rIs,a)[r+yv,,(s')], VsES

=]Err

St41 = 5'”

» This is the Bellman equation for v,(s).
B. Leibe

©
by
o
2
£
=)
=
£
&
°©
3
o
=
S
a
=
©
@
o
=
8
3
<

RWTH CHET
Optimal Value Functions

¢ For finite MDPs, policies can be partially ordered
» There will always be at least one optimal policy ..
» The optimal state-value function is defined as
v,(s) = max v, (s)
P

» The optimal action-value function is defined as
q.(s,a) = max qr(s,a)
™

B. Leibe

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

Optimal Value Functions

* Bellman optimality equations
» For the optimal state-value function v,:

v.(s) = max qn, (s, a)
(O

m
a€EA
- ' ’
= a?ﬁ(’i)z p(G"rls, Alr + yv(sN]

s'r
» v, is the unique solution to this system of nonlinear equations.

» For the optimal action-value function g.:

q.(s,a) = z p(s',rls,a) [r +ymaxq.(s’, a’)]
s'r

» q. is the unique solution to this system of nonlinear equations.

= If the dynamics of the environment p(s’,7|s, a) are known, then
in principle one can solve those equation systems.

20
B. Leibe

Exploration-Exploitation Trade-off

¢ Example: N-armed bandit problem
» Suppose we have the choice between
N actions a, ..., ay.
» If we knew their value functions q.(s, a;), \
it would be trivial to choose the best. S

> However, we only have estimates based | (g e
on our previous actions and their returns. B

¢ We can now
~ Exploit our current knowledge

- And choose the greedy action that has the highest value based on
our current estimate.

» Explore to gain additional knowledge
- And choose a non-greedy action to improve our estimate of that
action’s value.

B. Leibe

lmage source: b.microsoft,

©
>
W
2
£
=)
=
£
bS]
o
a
o
=
S
a
=
©
@
o
=
I
3
<

Topics of This Lecture

¢ Temporal Difference Learning
> SARSA
» Q-Learning

B. Leibe

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

RWTH/ACHET
Optimal Policies

* Why optimal state-value functions are useful
» Any policy that is greedy w.r.t. v, is an optimal policy.

= Given v,, one-step-ahead search produces the long-term
optimal results.

= Given ¢., we do not even have to do one-step-ahead search
m.(s) = argmax q.(s, a)
a€A(s)
¢ Challenge
» Many interesting problems have too many states for solving v..
» Many Reinforcement Learning methods can be understood as

approximately solving the Bellman optimality equations, using
actually observed transitions instead of the ideal ones.

21

B. Leibe

RWTH/ACHEN
Simple Action Selection Strategies

e e-greedy
» Select the greedy action with probability (1 — ¢) and a random
one in the remaining cases.
= In the limit, every action will be sampled infinitely often.
= Probability of selecting the optimal action becomes > (1 —¢).
» But: many bad actions are chosen along the way.

e Softmax
» Choose action a; at time t according to the softmax function
edt(ad/t

T enlanrt

where 7 is a temperature parameter (start high, then lower it).

» Generalization: replace g, by a preference function H, that is
learned by stochastic gradient ascent (“gradient bandit”).

23
B. Leibe

©
-
i
2
£
=)
=
£
&
°©
3
o
=
S
a
=
©
@
o
=
8
3
<

RWTH CHET
Temporal Difference Learning (TD-Learning)

¢ Policy evaluation (the prediction problem)
» For a given policy 7, compute the state-value function v;.

¢ One option: Monte-Carlo methods

» Play through a sequence of actions until a reward is reached,
then backpropagate it to the states on the path.

V(S « V(S + alG, —V(S)]
Target: the actual return after time t
¢ Temporal Difference Learning - TD(1)
» Directly perform an update using the estimate V(S;;,+1).
V(S) < V(S + alResy + ¥V (Ser1) = V(S
- 5
Target: an estimate of the return (here: TD(0))

26
B. Leibe

SARSA: On-Policy TD Control

¢ Idea

» Turn the TD idea into a control method by always updating the
policy to be greedy w.r.t. the current estimate

¢ Procedure

» Estimate g, (s, a) for the current policy = and for all states s and
actions a.

» TD(0) update equation
Q(St, Ap) < Q(St, Ae) + a[Res +¥Q(Se41, Ars1) — Q(Se, Ar)]

» This rule is applied after every transition from a nonterminal
state S,.

» It uses every element of the quintuple (S, A¢, Re+1, St+1, A1)

= Hence, the name SARSA.

Advanced Machine Learning Winter’16

27
B. Leibe

Imagce source: Sutton & Bart

RWTH/ACHEN
Q-Learning: Off-Policy TD Control

¢ Idea

~ Directly approximate the optimal action-value function q.,
independent of the policy being followed.

¢ Procedure
» TD(0) update equation
Qe A4 < QSe A + @ [Rys +7 max 0541, @) — Q(Se, 40|

» Dramatically simplifies the analysis of the algorithm.

» All that is required for correct convergence is that all pairs
continue to be updated.

Advanced Machine Learning Winter’16

29

Image source: Sution & Bark

B. Leibe

Topics of This Lecture

¢ Deep Reinforcement Learning
» Value based Deep RL
» Policy based Deep RL
» Model based Deep RL

©
>
W
2
£
=)
=
£
bS]
o
a
o
=
S
a
=
©
@
o
=
I
3
<

B. Leibe

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

SARSA: On-Policy TD Control

e Algorithm

Initialize Q(s, a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s'
Choose o' from s" using policy derived from @ (e.g., e-greedy)
Q(s,a) « Q(s,a) +alr +7Q(s,a') — Q(s,a)]
s+~ sa—a;
until s is terminal

28

Image source: Sutton & Barts

B. Leibe

RWTH/ACHEN
Q-Learning: Off-Policy TD Control

e Algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @Q (e.g., e-greedy)
Take action a, observe r, s’
Q(3,0) — Q(5,a) + afr + ymaxy Q(s', ') — Q(s,a)]
ER

until s is terminal

30

\mage source: Sution & Bart

B. Leibe

©
by
o
2
£
=)
=
£
&
°©
3
o
=
S
a
=
©
@
o
=
8
3
<

TOWTHACHET]
Deep Reinforcement Learning

¢ RL using deep neural networks to approximate functions
» Value functions
- Measure goodness of states or state-action pairs
» Policies
- Select next action
» Dynamics Models
- Predict next states and rewards

ide credit: Sercev Levine B. Leibe

%

Deep Reinforcement Learning

¢ Application: Learning to play Atari games

Convolution Convolution Fully connected Fully connected

Input: : Output:
pixels »f | B /= . control
+game commands

scores »f | B/ =

Boen-o

>f | EHi\= i
e mle i

[€ Je jv Ed
CEEEEEEEERE]

d

o

dvanced Machine Learning Winter’'16

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518,
pp. 529-533, 2015

B. Leibe 3
RWTH//CHE
Results: Space Invaders
H
E
5
B. Leibe 3
RWTH//CHE
Comparison with Human Performance
= oE—
e — R e—
-1 e
———— L —————
C— o
- s
" :_:_f Po— Clo?e-up
2 = | vve— view
5 I — | v
H = -
37

)
S
N
2
I
=)
=
S
&
51
4
o
IS
S
a
=
o
@
§
>

dvanced Machine Learning Winter’'16

Idea Behind the Model
¢ Interpretation
» Assume finite number of actions
» Each number here is a real-valued
s quantity that represents the
Q function in Reinforcement Learning

¢ Collect experience dataset:
. » Set of tuples {(s,a,s’,r), ... }

» (State, Action taken, New state, Reward
received

e L2 Regression Loss .
target value predicted value

Li(0;) =Bsar.¢)~u(p) |:(|’ £y max Os.a": 0;) |QL-"-": nfl‘) :|
d

Current reward + estimate of future reward, discounted by y "

ide credit: Andrej Karpaty B Leibe

Results: Breakout

B. Leibe

B. Leibe

dvanced Machine Learning Winter’16

TOWTHACHET]
Learned Representation

¢ t-SNE embedding of DQN last hidden layer (Space Inv.)
38

B. Leibe

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

RWTH/ACHEN
References and Further Reading

¢ More information on Reinforcement Learning can be
found in the following book

Richard S. Sutton, Andrew G. Barto
Reinforcement Learning: An Introduction
MIT Press, 1998

e The complete text is also freely available online
https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book. html

©
=
b
3
£
=
=)
=
£
T
1
]
o
£
S
I}
=
°
3
§
b
<

491
B. Leibe

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

