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This Lecture: Advanced Machine Learning
Advanced Machine Learning

* Regression Approaches f X =R
Lecture 17 [}

» Linear Regression

» Regularization (Ridge, Lasso)
» Kernels (Kernel Ridge Regression)
» Gaussian Processes

Recurrent Neural Networks

¢ Approximate Inference
» Sampling Approaches
» MCMC

19.01.2017

¢ Deep Learning
» Linear Discriminants
» Neural Networks
» Backpropagation & Optimization
» CNNs, RNNs, ResNets, etc.
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Recap: Neural Probabilistic Language Model Recap: word2vec -
“softmax” units (one per possible next word) | ¢ Goal 2
skip-layer T » Make it possible to learn high-quality .
connections word embeddings from huge data sets s
units that leafn to predict the output word from features of thejinput words | (billions of words in training set). H e
%
©o ©
3 learned distributed learned distributed i% « Approach 1) cBOW
é encoding of word +-2 encoding of word t-1 £ . Define two alternative learning tasks "
> table look-up table look-up > for learning the embedding: ! A
= index of word at {-2 index of word at t-1 = - “Continuous Bag of Words” (CBOW) p
§ E - “Skip-gram”
il o Core idea 2 . Designed to require fewer parameters. -
§ » Learn a shared distributed encoding (word embedding) for the é .
= . b= Skip-gram - 1)
= words in the vocabulary. =
L7 [
o o
=] . ) . o 5 4 +2)
S Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language >
2 Model, In JMLR, Vol. 3, pp. 1137-1155, 2003. s 2
ide adapted from Geoff Hinton B. Lethe Image source: Geoff Hinto B. Leibe Image source: Mikoloy et ol 201
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Recap: word2vec CBOW Model Recap: word2vec Skip-Gram Model
s B\ Input layer : : g ’
« Continuous BOW Model g e « Continuous Skip-Gram Model /] O tayer
~ Remove the non-linearity e P ~ Similar structure to CBOW N
from the hidden layer iy, - Instead of predicting the current

» Share the projection layer
for all words (their vectors Output laye

=

word, predict words /W
within a certain range of PUtlaver

P

_ \ Hidden laver Hidden layer/ /g
are averaged) f S‘z,',i’,d n layer the current word. -
& 8
: . /B » Give less weight to the more i 2
= Bag-of-Words model Yo Wew % i Wher distant wordsg Tl Wi
(order of the words does not G I .
matter anymore) b ! 7\,_‘“1'“ X ] Bl N-dim —H
: ¢ Implementation Vedim

> Randomly choose a number R € [1,C].
» Use R words from history and R words
from the future of the current word \
as correct labels. B

= R+ R word classifications for each input. CxF-dim
B. Leibe

CxT-dim

Advanced Machine Learning Winter’16

©
>
W
2
£
=)
=
£
bS]
o
a
o
=
S
a
=
©
@
o
=
I
3
<

5

Image source: Xio Rone, 201
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Image source: Xin Rone. 201

B. Leibe



http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Problems with 100k-1M outputs Recap: Hierarchical Softmax
o Weight matrix gets huge! ot layer n(ws.1)
» Example: CBOW model o = n(wy,2) )
» One-hot encoding for inputs W, @
= Input-hidden connections are B n(w2.3)
§ just vector lookups. g  Hidden layer -1 laye § ) / ) e
= .~ This is not the case for the I 5 £ @] O O - O
i hidden-output connections!  x [ W, ,,‘ Wi, i WiooWeooWy oWy L
£ . State h is not one-hot, and | N = ¢ Idea
§ vocabulary size is 1M. = N-dim E ~ Organize words in binary search tree, words are at leaves
-; = W'y, yhas 300x 1M entries '“_ E » Factorize probability of word w, as a product of node
é * Softmax gets expensive! "y § pmbab"i.ﬁes ‘""°“% t.he path. X
§ . Need to compute normaliza- § > Lea'rn a linear decision funcm?n Y= ’U"(u,:j)'h at .each node to
: tion over 100k-1M outputs / = decide whether to proceed with left or right child node.
§ Cxedim §

= Decision based on output vector of hidden units directly.
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Image source: Xin Rone, 201
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Image source: Xin Rone, 201
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Topics of This Lecture Recurrent Neural Networks

¢ Recurrent Neural Networks (RNNs)
» Motivation
» Intuition

one to one one to many many to one many to many many to many

g aea 8 Q00 Q00
| 040 060 OEH (HK
0 0 nog oo 0oo

¢ Learning with RNNs
» Formalization
» Comparison of Feedforward and Recurrent networks
» Backpropagation through Time (BPTT)

¢ Problems with RNN Training

. Vanishing Gradients ¢ Up to now
» Exploding Gradients » Simple neural network structure: 1-to-1 mapping of inputs to
» Gradient Clipping outputs

¢ This lecture: Recurrent Neural Networks
» Generalize this to arbitrary mappings
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B. Leibe B. Leibe lmage source: Andrei Karpathy
Application: Part-of-Speech Tagging Application: Predicting the Next Word
Legend: Gethelp I . Google  catsatenthe v n
WTEXT ( . cat sal on Ihe mat
Noun - Verb |Adjective Adverb _ Preposition Article Interjection cat sal on Ihe mat poem
cat sal on the mat story
™ cat sal on Ihe mat research
© ® | oo mare
T T —
] g —
c . I . 5 —
H Andrew- Maria thnught-]ubs were secure after the rancarous argument with the H
= customer, . alas ! Bad news Is fast approaching - . especially after - viciously 2
= =
=8| insulted the customer on social media . &
g g L
3 ) S
= c —
= =
8 8
= =
B 3
2 = T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur, Recurrent Neural Network
o 'l Based Language Model, Interspeech 2010.
o o
= 1 = . 12
B. Leibe Jmage source: ide credit: Andrei Karpathy, Fei-Feili 5. Leibe Jmage source: Mikolov et al, 201



http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
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Application: Machine Translation

French words English words

RWTH/AACHET]

A 74

A [ 3 <E0S> w X v z

1. Sutskever, O. Vinyals, Q. Le, Sequence to Sequence Learning with Neural Networks,
NIPS 2014.

Slide credit: Andrej Karpathy, Fei-Feil| B. Leibe

RNNs: Intuition

¢ Vanilla 2-layer classification net

10,001D class scores
(Softmax over 10k
words and a special
<END> token)

Y1 = Whyh_,|

Hidden layer
<— (e.g., 500D vectors)
hy = max {0, W, x,

Word embedding
HX4,, <— (300D vector for
et each word)

ide credit: Andrei Karpathy, Fei-Feil] B. Leibe

}

Advanced Machine Learning Winter’16

RNNs: Intuition

¢ Turning this into an RNN (done!)

10,001D class scores
(Softmax over 10k
words and a special
<END> token)

i = Wy, hy

Hidden layer
<— (e.g., 500D vectors)

hy = max {0, W x4
+ W, hy |

Word embedding
HX4,, <— (300D vector for
mat each word)
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RNNs: Intuition

¢ Example: Language modeling
» Suppose we had the training sequence “cat sat on mat”

» We want to train a language model

p(next word | previous words)

» First assume we only have a finite, 1-word history.
» l.e., we want those probabilities to be high:
— p(cat | <S>)
— p(sat | cat)
—-p
—-p
—-p

on | sat)
mat | on)
<E> | mat)

ide credit: Andrej Karpathy, Fei-Feilj 8. Leibe

RNNs: Intuition

¢ Turning this into an RNN (wait for it...)

10,001D class scores
(Softmax over 10k
words and a special
<END> token)

¥4 = Wy, hy

Hidden layer
<— (e.g., 500D vectors)

hy = max {0, W, x4}

Word embedding
,,"4” <— (300D vector for
et each word)
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Image source: Andrei Karpath

ide credit: Andrei Karpathy, Fei-Feilj LA
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RNNs: Intuition

¢ Training this on a
lot of sentences yo
would give us a —5
language model.

e |.e., awayto

. ho
predict
p(next word | —
previous words)
x0

<START>

ide credit: Andrei Karpathy, Fei-Feili 5. Leibe



papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
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RNNs: Intuition

¢ Training this on a
lot of sentences
would give us a
language model.

¢ l.e., awayto
predict

p(next word |
previous words)

slide credit: Andrej Karpathy, Fei-Feilj

y0

sample!

x0

<START>

x1
“cat”

B. Leibe

RNNs: Intuition

e Training this on a
lot of sentences
would give us a
language model.

¢ l.e., awayto
predict
p(next word |
previous words)

y0

ho

11

L b1 sample!

y1

x0

ST

“cat” “sat’

ide credit: Andrei Karpathy, Fei-Feili
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RNNs: Intuition

¢ Training this on a
lot of sentences
would give us a
language model.

¢ |.e., awayto
predict

p(next word |
previous words)

y0

sample

x0

<sTATs

x1 X2 x3
“cat’ wsat” “on”

ide credit: Andrei Karpathy, Fei:Feili

B. Leibe
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RNNs: Intuition

Training this on a
lot of sentences
would give us a
language model.

e l.e., awayto
predict
p(next word |
previous words)

yo y1

x0 x1

s “cat”

ide credit: Andrej Karpathy, Fei-Feilj 8. Leibe
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RNNs: Intuition

e Training this on a
lot of sentences
would give us a
language model.

e l.e., awayto
predict

p(next word |
previous words)

ide credit: Andrei Karpathy, Fei:Feili

y0 y1

x0 x1

v “cat’

x2
“sat’

B. Leibe
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RNNs: Intuition

¢ Training this on a
lot of sentences
would give us a
language model.

e |.e., awayto
predict

p(next word |
previous words)

yo y1

x0 x1
s “cat”

X2 x3
“sat’ “on”

ide credit: Andrei Karpathy, Fei:Feili

B. Leibe

24
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RNNs: Intuition
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¢ Training this on a sample!
lot of sentences | Y0 y1 y2 y3
would give us a — —
language model.
* le, awayto ho (—{ h1 |—{ h2 | h3
predict
p(ne.’lft word | L L |
previous words)
x0 x1 x2 x3 x4
“cat” “sat” “on” “mat”
Slide credit: Andrej Karpathy, Fei-Feili B. Leibe -
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Topics of This Lecture
¢ Learning with RNNs
» Formalization
» Comparison of Feedforward and Recurrent networks
» Backpropagation through Time (BPTT)
B. Leibe 7
RWTH//CHE
RNNs: Introduction
¢ RNNs are very powerful, = S
because they combine two
properties: [ N Sy
» Distributed hidden state that T T ? t

allows them to store a lot of
information about the past
efficiently. v
» Non-linear dynamics that allows i i i
them to update their hidden
state in complicated ways.

¢ With enough neurons and time, RNNs can compute
anything that can be computed by your computer.

ide credit: Geoff Hinton B. Leibe

Image source: Andrei Karpath)
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RNNs: Intuition
samples <END>? Done!

Training this on a 0 1 > 3 4
lot of sentences | ¥ y y y y

wouldgiveusa —F— —F5— 5

language model.

e l.e., awayto
predict no

p(next word | — ! L S
previous words)

x0 x1 x2 x3 x4
il “cat’ “sat” “on” “mat"
ide credit: Andrej Karpathy, Eei-Feilj B. Leibe “

RNNs: Introduction

* RNNs are regular NNs whose == R e e
hidden units have additional

forward connections over time L] L
» You can unroll them to create AL L i L
a network that extends over
time. ™ [

v

When you do this, keep in mind
that the weights for the hidden
units are shared between
temporal layers.

||
—
—
—

28

Image source: Andrei Karpath
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RWTHACHEN
Feedforward Nets vs. Recurrent Nets

¢ Imagine a feedforward network

» Assume there is a time delay
of 1in using each connec-  time ¢, .
tion.

= This is very similar to how
an RNN works.

» Only change: the layers
share their weights.

= The recurrent net is just a feedforward net that keeps
reusing the same weights.

B. Leibe
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RWTH/ACHEN
Backpropagation with Weight Constraints

¢ It is easy to modify the backprop algorithm to
incorporate linear weight constraints

» To constrain i, = wu, , we start with the same initialization
and then make sure that the gradients are the same:

Vi, = Vs
» We compute the gradients as usual and then use
JE - [
Swy dws
for both w, and w,.

Slide adapted from Geoff Hintan 8. Leibe
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Recap: Backpropagation Algorithm

OE _ 0y; 0E OE

Eo o T A

8EF

_ 0z OE _ 9E

8z; O OE
—_——= wij=——
; dy; dz; ; 1 8z;

dwy;  Owy; Bz g,a
* Efficient propagation scheme
» y; is already known from forward pass! (Dynamic Programming)

= Propagate back the gradient from layer j and multiply with y;.
33

ide adapted from Geoff Hinton B. Leibe
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Backpropagation Through Time (BPTT)

yul‘.,_ yf"lj:._ y'lt‘

Ly Iy iy

* Backpropagated gradient
dE, OE, oh,

. For weight w,: =t
or weight w; Jw;; oh, dw;;

B. Leibe
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Backpropagation Through Time (BPTT)

¢ Formalization

> Inputs Xy
» Outputs Y
» Hidden units h,
» Initial state h,

Connection matrices

v

W, (o00e| [ecee] [(eeee]
-W,,
- Wi

. Configuration h; =o (W%, + Wyhy—; +0)

¥ = softmax (Wj,h;)

32

B. Leibe \mage source: Richard Socher]
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Backpropagation Through Time (BPTT)

ywlt y"*'lt._ y’lﬁ.

Wi Wi

hy_y h,

U Wi

W Wi

¢ Error function
» Computed over all time steps: E = Z E,

1=t=d"

B. Leibe
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RWTH CHET
Backpropagation Through Time (BPTT)

ywlt y"*'lt._ y’lﬁ.

dhy
dhy
e

« Backpropagated gradient
. et OB,  0F, oh, 0F, dh, Oh,_,
s FOrWeRNt Wit Gy~ Ohy Ow, | Ohy Ohy_, Ous,

B. Leibe
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Backpropagation Through Time (BPTT)

YIi‘lt'— let‘

dhe_ )

b
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Backpropagation Through Time (BPTT)

y"*'lt._ y’lﬁ.

dh,
thy
<L

Xi—| Xi
* Backpropagated gradient

JaE, (E(')h, ﬂ oh; dhy
Jw;y " Oh, dw;; oh, dhy_y Jwyy

| 2 S OE, 0h; 8" Iy
> In general: = —
& B h; Ol D,

¢ Analyzing the terms

. 9E, OE, 8h, 07 Iy,
» For weight w;;: Dy - ]g\;’ (aT!, E dwi;

» For weight w;;:

» This is the “immediate” partial derivative (with h,;_, as constant)

Advanced Machine Learning Winter’16
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1<k<t

38
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Backpropagation Through Time (BPTT)

yul‘.,_ yf"lj:._ y'lt‘

RWTH CHET
Backpropagation Through Time (BPTT)

e Summary
» Backpropagation equations

édhy_y dh,

i ih ihe E= ZI E
=~ 5= ~— e
I 9E, OE, Oh, 8 hy,
W, | | dwy; it Ohy Ohy. dwyy
X Xi—| X dh dh; T ..
) BT': o H W, diag (o' (h; 1))
¢ Analyzing the terms L A LS Y

9E, OE, 0h, 8% h
» For weight w;;: —t = Z ( L ‘)

Advanced Machine Learning Winter’16
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Jw;; 5 Ohy dhy. dwy; » Remaining issue: how to set the initial state h,?
ah, oh = Learn this together with all the other parameters.
» Propagation term: —— = —
ahy. ik oh;_, 3 “

B. Leibe

Topics of This Lecture Problems with RNN Training

¢ Training RNNs is very hard
» As we backpropagate through the layers, the magnitude of the
gradient may grow or shrink exponentially
= Exploding or vanishing gradient problem!

> In an RNN trained on long sequences (e.g., 100 time steps) the
gradients can easily explode or vanish.

» Even with good initial weights, it is very hard to detect that the
current target output depends on an input from many time-steps

¢ Problems with RNN Training ago.

» Vanishing Gradients
» Exploding Gradients
» Gradient Clipping

©o ©
T T
T T
2 2
£ £
i=2 (=
£ £
£ £
© ©
L3 Q
8 g
[ [
£ £
S S
[+ o]
4 =
=] a1
(7] [
3 8
2 =
© ©
s S
< <
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Exploding / Vanishing Gradient Problem Why Is This Bad?

¢ Consider the propagation equations:
9E, (65 Ak, a—m.)
1<k<t

¢ Vanishing gradients in language modeling
» Words from time steps far away are not taken into consideration

du, = EJTL, ﬂﬁ when training to predict the next word.
©o ©
5 o= T o= T Wihdiag(o'(hi 1)) i+ Example:
E O t>i>k Ohiy t>isk E > ,Jane walked into the room. John walked in too. It was late in
2 i a = the day. Jane said hito ____“
£ = (Wi £
§ » if t goes to infinity and [ = ¢t — k. E = The RNN will have a hard time learning such long-range
2 o dependencies.
'§ = We are effectively taking the weight matrix to a high power. E
= » The result will depend on the eigenvalues of W ;. =
§ - Largest eigenvalue > 1 = Gradients may explode. ?3
§ - Largest eigenvalue < 1 = Gradients will vanish. E
2 - This is very bad... - 2 w“
B. Leibe ide adapted from Richard Socher 8. Leibe
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Gradient Clipping Gradient Clipping Intuition

e Trick to handle exploding gradients
» If the gradient is larger than a threshold, clip it to that

threshold. 035
0.30
Algorithm 1 Psendo-code for norm clipping the gra- [o25 ¢
. 0.20&
dients whenever they explode fms“’
B il S [0.10
g Gy fo0s
if ||g|| = threshold then e
5 threshold 5 26 ~24,-22 ~20
€ el 8 S0}
. EET—
end if

e Example
» Error surface of a single RNN neuron
» High curvature walls
» Solid lines: standard gradient descent trajectories
» Dashed lines: gradients rescaled to fixed size

» This makes a big difference in RNNs
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Image source: Pascaly et al, 201

ide adapted from Richard Socher B. Leibe

ide adapted from Richard Socher LA
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References and Further Reading

* RNNs
» R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training
recurrent neural networks, JMLR, Vol. 28, 2013.

» A. Karpathy, The Unreasonable Effectiveness of Recurrent
Neural Networks, blog post, May 2015.
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http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

