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This Lecture: Advanced Machine Learning

« Regression Approaches f: X =R
» Linear Regression T ~
» Regularization (Ridge, Lasso) X\ e b
» Kernels (Kernel Ridge Regression) \ y
» Gaussian Processes i

¢ Approximate Inference
» Sampling Approaches
» MCMC "
* Deep Learning w B morlfe Rt g g
. Linear Discriminants &Wﬁn\\\
» Neural Networks |l
» Backpropagation & Optimization
» CNNs, RNNs, ResNets, etc.
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Recap: Residual Networks

AlexNet, 8 layers + VGG, 19 layers : ResNet, 152 layer
(ILSVRC 2012) (ILSVRC 2014) ql' (ILSVRC 2015) Ej
£

=
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o Core component ‘E
» Skip connections ¥ =
bypassing each layer 4

» Better propagation of JE;
gradients to the deeper F(x) =
layers £

» This makes it possible

to train (much) deeper H(x) = F(x) + x @
networks.

B. Leibe
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Announcements

¢ Seminar registration period started
» We will offer a lab course in the summer semester

“Deep Robot Learning”
Topic: Deep reinforcement learning for robot control

- Either UAV or grasping robot
If you’re interested, you can register at
http://www.graphics.rwth-aachen.de/apse
» Registration period: 13.01.2016 - 29.01.2016

v

v

» Quick poll: Who would be interested in that?

Topics of This Lecture

¢ Recap
» ResNets
» Applications of CNNs

¢ Word Embeddings
» Neuroprobabilistic Language Models
» word2vec
» GloVe
» Hierarchical Softmax

e Outlook: Recurrent Neural Networks

B. Leibe
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Recap: R-CNN for Object Deteection

Bbox reg || SVMs Classify regions with SVMs

Bbox reg || SVMs
Bbox reg | | SVMs Forward each region

ConvNet through ConvNet

AW \arped image regions

Regions of Interest (Rol)
from a proposal method
(~2k)

Input image

ide credit: Ross Girshick B. Leibe
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Recap: Faster R-CNN Recap: Fully Convolutional Networks

“tabby cat”

¢ CNN
L @@f» Lol Ly
of
\

convolutionalization
¢ FCN

* One network, four losses

» Remove dependence on
external region proposal

algorithm.
S R fiol pooling
. Instead, infer region proposals ;
proposals from same

CNN Region Proposal Metwork

. Feature sharing m..,m,m,..”

» Joint training
= Object detection in

tabby cat heatmap

¢ Intuition

Advanced Machine Learning Winter’16
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a single pass becomes om
possible. 4 I » Think of FCNs as performing a sliding-window classification,
— producing a heatmap of output scores for each class
7
Slide credit: Ross Girshick lmage source: Long, Shelhamer, Darrell
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Recap: Semantic Image Segmentation Topics of This Lecture
° M * Word Embeddings
z_ ‘;. » Neuroprobabilistic Language Models
§ § » word2vec
> > > GloVe
£ £ . Hierarchical Softmax
2 : 2
= * Encoder-Decoder Architecture =
S » Problem: FCN output has low resolution <
§ » Solution: perform upsampling to get back to desired resolution ?,3
§ » Use skip connections to preserve higher-resolution information §
g 9 E 10
Image source: Newell et al B. Leibe
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Neural Networks for Sequence Data Motivating Example

e Up to now
» Simple structure: Input vector — Processing — Output

¢ Predicting the next word in a sequence
» Important problem for speech recognition, text autocorrection,
etc.
¢ In the following, we will look at sequence data
» Interesting new challenges
» Varying input/output length, need to memorize state, long-term
dependencies, ...

¢ Possible solution: The trigram (n-gram) method

» Take huge amount of text and count the frequencies of all
triplets (n-tuples) of words.
Use those frequencies to predict the relative probabilities of
words given the two previous words

v

e Currently a hot topic
» Early successes of NNs for text / language processing.
» Very good results for part-of-speech tagging, automatic
translation, sentiment analysis, etc.
~ Recently very interesting developments for video understanding,
image+text modeling (e.g., creating image descriptions), and
even single-image understanding (attention processes).

plwg = clwy = b,w; =a) _ count(abe)
plwy =d|wy = b,w; =a)  count(abd)

v

State-of-the-art until not long ago...
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Problems with N-grams Let’s Try Neural Networks for this Task

¢ Problem: Scalability
» We cannot easily scale this to large V.
» The number of possible combinations increases exponentially
» So does the required amount of data

‘ “softmax” units (one per possible next word) ‘

‘ internal NN structure ‘

index of word at t-1

index of word at t-2

¢ Problem: Partial Observability
» With larger N, many counts would be zero.
» The probability is not zero, just because the count is zero!
= Need to back off to (N-1)-grams when the count for N-grams is
too small.
= Necessary to use elaborate techniques, such as Kneser-Ney
smoothing, to compensate for uneven sampling frequencies.

¢ Important issues
» How should we encode the words to use them as input?
» What internal NN structure do we need?

» How can we perform classification (softmax) with so many
possible outputs?

Advanced Machine Learning Winter’16
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Slide adapted from Geoff Hinton B. Leibe B. Leibe
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Neural Probabilistic Language Model Word Embedding

“softmax” units (one per possible next word) | ¢ Idea :*‘ i
skip-layer T » Encode each word as a vector in a _\_'_ 8
CE:EC:TS R rdrputvords ] d-dimensional feature space. N
units that leafn to predict the output word from features of the{input words H
P P P . Typically, V.~ 1M, d € (50, 300) ; ><
Xi O
learned distributed learned distributed i
encoding of word 1-2 encoding of word t-1 * Learning ‘goal ) ) : W
table look-up Table look-up ~ Determine weight ma?nx Wy, that
index of word at t-2 index of word at t-1 performs the embed.dlng. ade
» Shared between all input words —

e Core idea

» Learn a shared distributed encoding (word embedding) for the
words in the vocabulary.

¢ Input
» Vocabulary index x in 1-of-K encoding.
» For each input x, only one row of W, , is needed.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language = Wy, , is effectively a look-up table.

Model, In JMLR, Vol. 3, pp. 1137-1155, 2003.
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ide adapted from Geoff Hinton B. Lethe Image source: Geoff Hinto B. Leibe Jmage soucce: Xin Rong. 201
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Word Embedding: Full Network Visualization of the Resulting Embedding
5 g mapping to hidden units wimer
o W skip connections
e h r
‘ W< playe wEl SoCCer i
Gy, te badPeilidle ing
) ol v ﬂuh spoxt basehall R
© olys © league olympic wrestling
Y o 5 champion sports
£ - o)) = = TS
i : g 3@ finals championships
= % o £ olympics
= ot loly £ yme matches
g =< O] g
1 ; Y fo i bowl? rapes JAMES
o ) @
2 = Many parameters: £ medal oS
S ’ 1 S prize s
S o W,.q gets huge g ard Pflﬂlrems
=] o a1
| « Train on large corpus of data, learn W, , . S
© ©
3 = Shown to outperform n-grams by [Bengio et al., 2003]. 3 (part of a 2.5D map of the most common 2500 words)
17 18
B. Leibe B. Leibe lmage source- Geoff Hintor



http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Visualization of the Resulting Embedding Visualization of the Resulting Embedding
rather incmasi;;:;g;“ hexr vhigh
entigen TS £
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Popular Word Embeddings word2vec
¢ Open issue * Goal
» What is the best setup for learning such an embedding from » Make it possible to learn high-quality
large amounts of data (billions of words)? word embeddings from huge data sets sum
(billions of words in training set). 4 o |
) * Several recent improvements © 7 cEow
s . word2vec [Mikolov 2013] | © Approach
§ ., GloVe [Pennington 2014] é ~ Define two alternative learning tasks ) J s
2 = Pretrained embeddings available for everyone to download. 2 for Iearnfng the embedding:
< c - “Continuous Bag of Words” (CBOW) a4 |w
§ E - “Skip-gram”
2 2 » Designed to require fewer parameters. -
< S
[*] [=)
s < Skip-gram A
B B
g ] N s
< ) 2 = 23
B. Lethe B. Leibe lmage source: Mikolov et al 201
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word2vec: CBOW Model word2vec: Skip-Gram Model
. B Input layer . : A output layer|
¢ Continuous BOW Model H ¢ Continuous Skip-Gram Model )
» Remove the non-linearity o N » Similar structure to CBOW H
from the hidden layer iy, > Instead of predicting the current £
» Share the projection layer ) word, predict words W,

° p project! 4 o orc, P R Input layer e
2 or all words (their vectors _ Hidden laver_Qutput laye o within a certain range of Hidden laver .
q e [N H e v tothemore ] |
s = Bag-of-Words model v Bl Wou N W, s g g x| Wew by e
o ol o distant words
£ (order of the words does not H £
5 matter anymore) N . g Bl N-dim
3 : Aedim =1 « Implementation Vedim
g W, .::: > Randomly choose a number R € [1,C]. :
= = > Use R words from history and R words o v,
§ Yo § from the future of the current word |
§ /oo § as correct labels. o
3 CxVedim 24 2 = R+ R word classifications for each input. Ox¥-dim

25

Image source: Xin Rone. 201

B. Leibe B. Leibe

Image source: Xio Rone, 201
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Interesting property

« Embedding often preserves linear regularities between
words

» Analogy questions can be answered through simple algebraic

operations with the vector representation of words.
* Example

» What is the word that is similar to small in the same sense as
bigger is to big?

» For this, we can simply compute

X = vec(“bigger”) - vec(“big”) + vec(“small”)

» Then search the vector space for the word closes to X using the
cosine distance.

= Result (when words are well trained): vec(“smaller”).

e Other example

» E.g., vec(“King”) - vec(“Man”) + vec(“Woman”) ~ vec(“Queen”é
B. Leibe
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Results

Model Vector Training Accuracy (%] Training time
Dimensionality | words [days x CPU cores]
Semantic | Syntactic | Total |

NNLM 100 6B 34.2 64.5 50.8 14 x 180
CBOW 1000 6B 57.3 68.9 63.7 2x 140
Skip-gram 1000 6B 66.1 ‘ 65.1 63.6 2.5x 125

¢ Results

» word2vec embedding is able to correctly answer many of those
analogy questions.

CBOW structure better for syntactic tasks
Skip-gram structure better for semantic tasks

v

v

Advanced Machine Learning Winter’16
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Image source: Mikolov et 2l 201
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Problems with 100k-1M outputs

s B Input layer
¢ Softmax gets expensive! SR
» Need to compute normaliza- ” "
tion over 100k-1M outputs -
NS
S\ Hidden layer o P 18ve
ol " \
[ N i
S b Wi h‘ Wier
g N-dim
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CxT-dim
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Image source: Xio Rone, 201
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Evaluation on Analogy Questions

Type of relationship Word Pair 1 Word Pair 2

o Common capital city Athens Greece Oslo Norway

B | All capital cities Astana Kazakhstan Harare Zimbuabwe

E Currency Angola kwanza Iran rial

9 | City-in-state Chicago Illinois Stockton California
Man-Woman brother sister grandson | granddaughter
Adjective to adverb apparent | apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher

'é Superlative easy easiest lucky luckiest

8 | Present Participle think thinking read reading

% Nationality adjective || Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

B. Leibe z

Image source: Mikolov et al., 201
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Problems with 100k-1M outputs

* Weight matrix gets huge!

* Example: CBOW model i
» One-hot encoding for inputs
= Input-hidden connections are

g
%

Input layer

Output layer

"\ Hidden layer

just vector lookups.

This is not the case for the Xz
hidden-output connections!

State h is not one-hot, and
vocabulary size is 1M. H
= W'y, has 300x 1M entries
= All of those need to be
updated by backprop.

v

v

CxTdim
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Image source: Xin Rone, 201
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Solution: Hierarchical Softmax

n(w,.1)

n(w,.2)

(w,.3)

Wy W, Wy wy Wy,

e |dea
» Organize words in binary search tree, words are at leaves
~ Factorize probability of word w), as a product of node
probabilities along the path.
» Learn a linear decision function y = v, ;-h at each node to
decide whether to proceed with left or right child node.

= Decision based on output vector of hidden units directly.
31

Image source: Xin Rone. 201
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Topics of This Lecture

¢ Embeddings in Vision
» Siamese networks
» Triplet loss networks

¢ Outlook: Recurrent Neural Networks

Advanced Machine Learning Winter’16
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Discriminative Face Embeddings

¢ Learning an embedding using a Triplet Loss Network

» Present the network with triplets of examples
Negative Anchor Positive

B

» Apply triplet loss to learn an embedding f(:) that groups the
positive example closer to the anchor than the negative one.

2 2
I f(@F) = FDlz < If () — £tz
Negative j’r ﬁ“'\‘.‘\‘
A”.ct“_’,'_, -0 " LEARNING e
— = - Negative
—~e Anchor e
Positive Positive
= Used with great success in Google’s FaceNet face recognition

Advanced Machine Learning Winter’16
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Outlook: Recurrent Neural Networks

one to many many to one many to many

R 0ea & Q00 Q00
| 000 060 DU (HK]
0 0 oo ooo i

e Up to now

» Simple neural network structure: 1-to-1 mapping of inputs to
outputs

many to many

¢ Next lecture: Recurrent Neural Networks
» Generalize this to arbitrary mappings
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Image source: Andrei Karpath)

B. Leibe
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Siamese Networks
17 77777 decision network |
|
P deconfyer | !
1 - |}
| i
__________________ I
T — T — 1 Im——— !
¥ s N e I
I 1 s |
|%|:| |§| ||'|s|emes>,-‘7| |§ |
e 12 I I _I
| B g | | I 5!
c h
I i s
] 15 | |51

patch 1 patch 2 patch 1 patch 2
¢ Similar idea to word embeddings
» Learn an embedding network that preserves (semantic)
similarity between inputs
» E.g., used for patch matching

B. Leibe
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Topics of This Lecture
¢ Outlook: Recurrent Neural Networks
B. Leibe 3
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References and Further Reading

¢ Neural Probabilistic Language Model
» Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic
Language Model, In JMLR, Vol. 3, pp. 1137-1155, 2003.
e word2vec
» T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient Estimation of Word
Representations in Vector Space, ICLR’13 Workshop Proceedings, 2013.
¢ GloVe
» Jeffrey Pennington, Richard Socher, and Christopher D. Manning, GloVe:
Global Vectors for Word Representation, 2014.
¢ Hierarchical Softmax

> F. Morin and Y. Bengio, Hierarchical probabilistic neural network language
model. In AISTATS 2005.

> A. Mnih and G.E. Hinton (2009). A scalable hierarchical distributed
language model. In NIPS 2009.
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References: Other Embeddings

¢ Face Embeddings

» F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: A Unified
Embedding for Face Recognition and Clustering, in CVPR 2015.
» A. Radford, L. Metz, S. Chintala, Unsupervise Representation

Learning with Deep Convolutional Generative Adversarial Networks,

ICLR 2016.
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