Advanced Machine Learning Lecture 16 Convolutional Neural Networks II 22.12.2016 **Bastian Leibe** **RWTH Aachen** http://www.vision.rwth-aachen.de/ leibe@vision.rwth-aachen.de ## This Lecture: Advanced Machine Learning #### Regression Approaches - Linear Regression - Regularization (Ridge, Lasso) - Kernels (Kernel Ridge Regression) - Gaussian Processes #### Approximate Inference - Sampling Approaches - MCMC #### Deep Learning - Linear Discriminants - Neural Networks - Backpropagation & Optimization - CNNs, RNNs, ResNets, etc. ## **Topics of This Lecture** - Recap: CNNs - CNN Architectures - LeNet - AlexNet - VGGNet - GoogLeNet - ResNets - Visualizing CNNs - Visualizing CNN features - Visualizing responses - Visualizing learned structures - Applications ## Recap: Convolutional Neural Networks - Neural network with specialized connectivity structure - Stack multiple stages of feature extractors - Higher stages compute more global, more invariant features - Classification layer at the end Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278-2324, 1998. Ċ ## Recap: Intuition of CNNs #### Convolutional net - Share the same parameters across different locations - Convolutions with learned kernels #### Learn *multiple* filters - E.g. 1000×1000 image 100 filters 10×10 filter size - ⇒ only 10k parameters - Result: Response map - \rightarrow size: $1000 \times 1000 \times 100$ - Only memory, not params! 6 ## **Recap: Convolution Layers** #### Naming convention: - All Neural Net activations arranged in 3 dimensions - Multiple neurons all looking at the same input region, stacked in depth - Form a single $[1 \times 1 \times depth]$ depth column in output volume. 5×5 filters ## **Recap: Activation Maps** Each activation map is a depth slice through the output volume. ## Recap: Pooling Layers #### Single depth slice | | <u> </u> | | | | | | | |---|----------|---|---|---|--|--|--| | X | 1 | 1 | 2 | 4 | | | | | | 5 | 6 | 7 | 8 | | | | | | 3 | 2 | 1 | 0 | | | | | | 1 | 2 | 3 | 4 | | | | | | | | | | | | | | 1 | | | | V | | | | max pool with 2x2 filters and stride 2 | 6 | 8 | |---|---| | 3 | 4 | #### Effect: - Make the representation smaller without losing too much information - Achieve robustness to translations ## **Topics of This Lecture** - Recap: CNNs - CNN Architectures - LeNet - AlexNet - VGGNet - GoogLeNet - Visualizing CNNs - Visualizing CNN features - Visualizing responses - Visualizing learned structures - Applications ## Recap: ImageNet Challenge 2012 #### ImageNet - ~14M labeled internet images - 20k classes - Human labels via Amazon Mechanical Turk #### Challenge (ILSVRC) - 1.2 million training images - > 1000 classes - Goal: Predict ground-truth class within top-5 responses IM GENE [Deng et al., CVPR'09] Currently one of the top benchmarks in Computer Vision ## **CNN Architectures: AlexNet (2012)** - Similar framework as LeNet, but - Bigger model (7 hidden layers, 650k units, 60M parameters) - More data (10⁶ images instead of 10³) - GPU implementation - Better regularization and up-to-date tricks for training (Dropout) A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional Neural Networks</u>, NIPS 2012. #### **ILSVRC 2012 Results** - AlexNet almost halved the error rate - > 16.4% error (top-5) vs. 26.2% for the next best approach - ⇒ A revolution in Computer Vision - Acquired by Google in Jan '13, deployed in Google+ in May '13 #### RWTHAACHEN UNIVERSITY ## CNN Architectures: VGGNet (2014/15) K. Simonyan, A. Zisserman, <u>Very Deep Convolutional Networks for Large-Scale Image Recognition</u>, ICLR 2015 ### RWTHAACHEN UNIVERSITY ## CNN Architectures: VGGNet (2014/15) #### Main ideas - Deeper network - Stacked convolutional layers with smaller filters (+ nonlinearity) - Detailed evaluation of all components #### Results Improved ILSVRC top-5 error rate to 6.7%. | A | A-LRN | В | С | D | E | | | |-----------|---------------------|-----------|-----------|-----------|-----------|--|--| | 11 weight | 11 weight | 13 weight | 16 weight | 16 weight | 19 weight | | | | layers | layers | layers | layers | layers | layers | | | | | | | | | | | | | conv3-64 | conv3-64 | conv3-64 | conv3-64 | conv3-64 | conv3-64 | | | | | LRN | conv3-64 | conv3-64 | conv3-64 | conv3-64 | | | | | | | pool | | | | | | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | | | | | | conv3-128 | conv3-128 | conv3-128 | conv3-128 | | | | | | | pool | | | | | | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | | | | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | | | | | | | conv1-256 | conv3-256 | conv3-256 | | | | | | | | | conv3-256 | | | | | | | | | | | | | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | | | | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | | | | | | | conv1-512 | conv3-512 | conv3-512 | | | | | | | | | conv3-512 | | | | maxpool | | | | | | | | | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | | | | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | | | | | | | conv1-512 | conv3-512 | conv3-512 | | | | | | | pool | | conv3-512 | | | | | | Mainh | rused | | | | | | | FC-4096 Mainly used | | | | | | | | FC-4096 | | | | | | | | | FC-1000 | | | | | | | | | soft-max | | | | | | | | ## Comparison: AlexNet vs. VGGNet Receptive fields in the first layer AlexNet: 11×11, stride 4 Zeiler & Fergus: 7×7, stride 2 VGGNet: 3×3, stride 1 #### Why that? - If you stack three 3×3 on top of another 3×3 layer, you effectively get a 5×5 receptive field. - \rightarrow With three 3×3 layers, the receptive field is already 7×7. - ▶ But much fewer parameters: $3.3^2 = 27$ instead of $7^2 = 49$. - In addition, non-linearities in-between 3×3 layers for additional discriminativity. ## CNN Architectures: GoogLeNet (2014) (a) Inception module, naïve version (b) Inception module with dimension reductions #### Main ideas - "Inception" module as modular component - Learns filters at several scales within each module C. Szegedy, W. Liu, Y. Jia, et al, <u>Going Deeper with Convolutions</u>, arXiv:1409.4842, 2014. ## GoogLeNet Visualization #### Results on ILSVRC | Method | top-1 val. error (%) | top-5 val. error (%) | top-5 test error (%) | |--|----------------------|----------------------|----------------------| | VGG (2 nets, multi-crop & dense eval.) | 23.7 | 6.8 | 6.8 | | VGG (1 net, multi-crop & dense eval.) | 24.4 | 7.1 | 7.0 | | VGG (ILSVRC submission, 7 nets, dense eval.) | 24.7 | 7.5 | 7.3 | | GoogLeNet (Szegedy et al., 2014) (1 net) | - | 7.9 | | | GoogLeNet (Szegedy et al., 2014) (7 nets) | - | 6.7 | | | MSRA (He et al., 2014) (11 nets) | - | - | 8.1 | | MSRA (He et al., 2014) (1 net) | 27.9 | 9.1 | 9.1 | | Clarifai (Russakovsky et al., 2014) (multiple nets) | - | - | 11.7 | | Clarifai (Russakovsky et al., 2014) (1 net) | - | - | 12.5 | | Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) | 36.0 | 14.7 | 14.8 | | Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net) | 37.5 | 16.0 | 16.1 | | OverFeat (Sermanet et al., 2014) (7 nets) | 34.0 | 13.2 | 13.6 | | OverFeat (Sermanet et al., 2014) (1 net) | 35.7 | 14.2 | - | | Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets) | 38.1 | 16.4 | 16.4 | | Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) | 40.7 | 18.2 | - | - VGGNet and GoogLeNet perform at similar level - Comparison: human performance ~5% [Karpathy] http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/ #### RWTHAACHEN UNIVERSITY ## Newest Development: Residual Networks AlexNet, 8 layers (ILSVRC 2012) VGG, 19 layers (ILSVRC 2014) GoogleNet, 22 layers (ILSVRC 2014) ## Newest Development: Residual Networks AlexNet, 8 layers (ILSVRC 2012) VGG, 19 layers (ILSVRC 2014) ResNet, 152 layers (ILSVRC 2015) #### Core component - Skip connectionsbypassing each layer - Better propagation of gradients to the deeper layers - We'll analyze this mechanism in more detail later... ## **ImageNet Performance** ImageNet Classification top-5 error (%) ## Understanding the ILSVRC Challenge - Imagine the scope of the problem! - 1000 categories - > 1.2M training images - 50k validation images - This means... - Speaking out the list of category names at 1 word/s... - ...takes 15mins. - Watching a slideshow of the validation images at 2s/image... ...takes a full day (24h+). - Watching a slideshow of the training images at 2s/image... ...takes a full month. rier, Airedaie, airimer, airsnip, aidatross, aingator fizard, aip, aitar, ambulance, American alligator, American black bear, American chameleon, American coot, American egret, American lobster, American Staffordshire terrier, amphibian, analog clock, anemone fish, Angora, ant, apiary, Appenzeller, apron, Arabian camel, Arctic fox, armadillo, artichoke, ashcan, assault rifle, Australian terrier, axolotl, baboon, backpack, badger, bagel, bakery, balance beam, bald eagle, balloon, ballplayer, ballpoint, banana, Band Aid, banded gecko, banjo, bannister, barbell, barber chair, barbershop, barn, barn spider, barometer, barracouta, barrel, barrow, baseball, basenji, basketball, basset, bassinet, bassoon, bath towel, bathing cap, bathtub, beach wagon, beacon, beagle, beaker, bearskin, beaver, Bedlington terrier, bee, bee eater, beer bottle, beer glass, bell cote, bell pepper, Bernese mountain dog, bib, bicycle-built-for-two, bighorn, bikini, binder, binoculars, birdhouse, bison, bittern, black and gold garden spider, black grouse, black stork, black swan, black widow, black-and-tan coonhound, black-footed ferret, Blenheim spaniel, bloodhound, bluetick, boa constrictor, boathouse, bobsled, bolete, bolo tie, bonnet, book jacket, bookcase, bookshop, Border collie, Border terrier, borzoi, Boston bull, bottlecap, Bouvier des Flandres, bow, bow tie, box turtle, boxer, Brabancon griffon, brain coral, brambling, brass, brassiere, breakwater, breastplate, briard, Brittany spaniel, broccoli, broom, brown bear, bubble, bucket, buckeye, buckle, bulbul, bull mastiff, bullet train, bulletproof vest, bullfrog, burrito, bustard, butcher shop, butternut squash, cab, cabbage butterfly, cairn, caldron, can opener, candle, cannon, canoe, capuchin, car mirror, car wheel, carbonara, Cardigan, cardigan, cardoon, carousel, carpenter's kit, carton, cash machine, cassette, cassette player, castle, catamaran, cauliflower, CD player, cello, cellular telephone, centipede, chain, chain mail, chain saw, chainlink fence, chambered nautilus, cheeseburger, cheetah, Chesapeake Bay retriever, chest, chickadee, chiffonier, Chihuahua, chime, chimpanzee, china cabinet, chiton, chocolate sauce, chow, Christmas stocking, church, cicada, cinema, cleaver, cliff, cliff dwelling, cloak, clog, clumber, cock, cocker spaniel, cockroach, cocktail shaker, coffee mug, coffeepot, coho, coil, collie, colobus, combination lock, comic book, common iguana, common newt, computer keyboard, conch, confectionery, consomme, container ship, convertible, coral fungus, coral reef, corkscrew, corn, cornet, coucal, cougar, cowboy boot, cowboy hat, coyote, cradle, crane, crane, crash helmet, crate, crayfish, crib, cricket, Crock Pot, croquet ball, crossword puzzle, crutch, cucumber, cuirass, cup, curly-coated retriever, custard apple, daisy, dalmatian, dam, damselfly, Dandie Dinmont, desk, desktop computer, dhole, dial telephone, diamondback, diaper, digital clock, digital watch, dingo, dining table, dishrag, dishwasher, disk brake, Doberman, dock, dogsled, dome, doormat, dough, dowitcher, dragonfly, drake, drilling platform, drum, drumstick, dugong, dumbbell, dung beetle, Dungeness crab, Dutch oven, ear, earthstar, echidna, eel, eft, eggnog, Egyptian cat, electric fan, electric guitar, electric locomotive, electric ray, English foxhound, English setter, English springer, entertainment center, EntleBucher, envelope, Eskimo dog, espresso, espresso maker, European fire salamander, European gallinule, face powder, feather boa, fiddler crab, fig, file, fire engine, fire screen, fireboat, flagpole, flamingo, flatcoated retriever, flatworm, flute, fly, folding chair, football helmet, forklift, fountain, fountain pen, four-poster, fox squirrel, freight car, French bulldog, French horn, French loaf, frilled lizard, frying pan, fur coat, gar, garbage truck, garden spider, garter snake, gas pump, gasmask, gazelle, German shepherd, German short-haired pointer, geyser, giant panda, giant schnauzer, gibbon, Gila monster, go-kart, goblet, golden retriever, goldfinch, goldfish, golf ball, golfcart, gondola, gong, goose, Gordon setter, gorilla, gown, grand piano, Granny Smith, grasshopper, Great Dane, great grey owl, Great Pyrenees, great white shark, ## More Finegrained Classes ## Quirks and Limitations of the Data Set - Generated from WordNet ontology - Some animal categories are overrepresented - > E.g., 120 subcategories of dog breeds - ⇒ 6.7% top-5 error looks all the more impressive ## **Topics of This Lecture** - Recap: CNNs - CNN Architectures - > LeNet - AlexNet - VGGNet - GoogLeNet - Visualizing CNNs - Visualizing CNN features - Visualizing responses - Visualizing learned structures - Applications **DeconvNet** ## **Visualizing CNNs** 30 ## **Visualizing CNNs** M. Zeiler, R. Fergus, <u>Visualizing and Understanding Convolutional Neural Networks</u>, ECCV 2014. 31 Slide credit: Richard Turner B. Leibe Image source: M. Zeiler, R. Fergus ## **Visualizing CNNs** ## **Visualizing CNNs** - Occlusion Experiment - Mask part of the image with an occluding square. - Monitor the output Input image Input image Total activation in most active 5th layer feature map Other activations from the same feature map. Total activation in most active 5th layer feature map Other activations from the same feature map. Input image True Label: Afghan Hound ### What Does the Network React To? Total activation in most active 5th layer feature map Other activations from the same feature map. # **Inceptionism: Dreaming ConvNets** #### Idea - Start with a random noise image. - Enhance the input image such as to enforce a particular response (e.g., banana). - Combine with prior constraint that image should have similar statistics as natural images. - ⇒ Network hallucinates characteristics of the learned class. # **Inceptionism: Dreaming ConvNets** Results # **Inceptionism: Dreaming ConvNets** # **Topics of This Lecture** - Recap: CNNs - CNN Architectures - > LeNet - AlexNet - VGGNet - GoogLeNet - Visualizing CNNs - Visualizing CNN features - Visualizing responses - Visualizing learned structures - Applications ### The Learned Features are Generic state of the art level (pre-CNN) - Experiment: feature transfer - > Train network on ImageNet - Chop off last layer and train classification layer on CalTech256 - ⇒ State of the art accuracy already with only 6 training images ## **Other Tasks: Detection** #### R-CNN: Regions with CNN features warped region 1. Input image 2. Extract region proposals (~2k) tvmonitor? no. aeroplane? no. person? yes. Results on PASCAL VOC Detection benchmark Pre-CNN state of the art: 35.1% mAP [Uijlings et al., 2013] 33.4% mAP DPM > R-CNN: 53.7% mAP R. Girshick, J. Donahue, T. Darrell, and J. Malik, <u>Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation</u>, CVPR 2014 # Faster R-CNN (based on ResNets) K. He, X. Zhang, S. Ren, J. Sun, <u>Deep Residual Learning for Image Recognition</u>, CVPR 2016. B. Leibe 48 # Faster R-CNN (based on ResNets) K. He, X. Zhang, S. Ren, J. Sun, <u>Deep Residual Learning for Image Recognition</u>, CVPR 2016. B. Leibe # Other Tasks: Semantic Segmentation [Farabet et al. ICML 2012, PAMI 2013] # **Semantic Segmentation** [Pohlen, Hermans, Mathias, Leibe, arXiv 2016] - More recent results - Based on an extension of ResNets ## Other Tasks: Face Verification Y. Taigman, M. Yang, M. Ranzato, L. Wolf, <u>DeepFace: Closing the Gap to Human-Level Performance in Face Verification</u>, CVPR 2014 Slide credit: Svetlana Lazebnik # Commercial Recognition Services • E.g., clarifai ## Try it out with your own media Upload an image or video file under 100mb or give us a direct link to a file on the web. *By using the demo you agree to our terms of service - Be careful when taking test images from Google Search - Chances are they may have been seen in the training set... # **Commercial Recognition Services** # References and Further Reading #### LeNet Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based</u> <u>learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278-2324, 1998. #### AlexNet A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification</u> with Deep Convolutional Neural Networks, NIPS 2012. #### VGGNet K. Simonyan, A. Zisserman, <u>Very Deep Convolutional Networks for Large-Scale Image Recognition</u>, ICLR 2015 #### GoogLeNet C. Szegedy, W. Liu, Y. Jia, et al, <u>Going Deeper with Convolutions</u>, arXiv:1409.4842, 2014. # References and Further Reading #### ResNet K. He, X. Zhang, S. Ren, J. Sun, <u>Deep Residual Learning for Image</u> <u>Recognition</u>, CVPR 2016. # **Effect of Multiple Convolution Layers** Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]