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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, RNNs, ResNets, etc.
B. Leibe
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Topics of This Lecture

• Recap: Data (Pre-)processing 
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Normalization

 Initialization

• Convergence of Gradient Descent
 Choosing Learning Rates

 Momentum & Nesterov Momentum

 RMS Prop

 Other Optimizers

• Other Tricks
 Batch Normalization

 Dropout

3
B. Leibe
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Recap: Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to 

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
4

B. Leibe

Augmented training data

(from one original image)

Image source: Lucas Beyer
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Recap: Normalizing the Inputs

• Convergence is fastest if

 The mean of each input variable

over the training set is zero.

 The inputs are scaled such that

all have the same covariance.

 Input variables are uncorrelated

if possible.

• Advisable normalization steps (for MLPs)

 Normalize all inputs that an input unit sees to zero-mean, 

unit covariance.

 If possible, try to decorrelate them using PCA (also known as 

Karhunen-Loeve expansion).

5
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Recap: Glorot Initialization      [Glorot & Bengio, ‘10]

• Variance of neuron activations

 Suppose we have an input X with n components and a linear 

neuron with random weights W that spits out a number Y. 

 We want the variance of the input and output of a unit to be 

the same, therefore n Var(Wi) should be 1. This means

 Or for the backpropagated gradient

 As a compromise, Glorot & Bengio propose to use

 Randomly sample the weights with this variance. That’s it.
6

B. Leibe
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Recap: He Initialization                  [He et al., ‘15]

• Extension of Glorot Initialization to ReLU units

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• Same basic idea: Output should have the input variance 

 However, the Glorot derivation was based on tanh units, 

linearity assumption around zero does not hold for ReLU.

 He et al. made the derivations, proposed to use instead

7
B. Leibe
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Topics of This Lecture

• Recap: Data (Pre-)processing 
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Normalization

 Initialization

• Convergence of Gradient Descent
 Choosing Learning Rates

 Momentum & Nesterov Momentum

 RMS Prop

 Other Optimizers

• Other Tricks
 Batch Normalization

 Dropout

8
B. Leibe
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Choosing the Right Learning Rate

• Analyzing the convergence of Gradient Descent

 Consider a simple 1D example first

 What is the optimal learning rate ´opt? 

 If E is quadratic, the optimal learning rate is given by the 

inverse of the Hessian

 What happens if we exceed this learning rate?

9
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Choosing the Right Learning Rate

• Behavior for different learning rates

10
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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Learning Rate vs. Training Error

11
B. Leibe Image source: Goodfellow & Bengio book

Do not go beyond

this point!
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Batch vs. Stochastic Learning

• Batch Learning

 Simplest case: steepest decent

on the error surface.

 Updates perpendicular to contour 

lines

• Stochastic Learning

 Simplest case: zig-zag around the

direction of steepest descent.

 Updates perpendicular to constraints

from training examples.

12
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton
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Why Learning Can Be Slow

• If the inputs are correlated

 The ellipse will be very elongated.

 The direction of steepest descent is

almost perpendicular to the direction

towards the minimum!

This is just the opposite of what we want!

13
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton
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The Momentum Method

• Idea

 Instead of using the gradient to change the position of the 

weight “particle”, use it to change the velocity.

• Intuition

 Example: Ball rolling on the error surface

 It starts off by following the error surface, but once it has 

accumulated momentum, it no longer does steepest decent.

• Effect

 Dampen oscillations in directions of high 

curvature by combining gradients with 

opposite signs.

 Build up speed in directions with a 

gentle but consistent gradient.

14
B. Leibe Image source: Geoff HintonSlide credit: Geoff Hinton
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The Momentum Method: Implementation

• Change in the update equations

 Effect of the gradient: increment the previous velocity, subject 

to a decay by ® < 1.

 Set the weight change to the current velocity

15
B. LeibeSlide credit: Geoff Hinton
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The Momentum Method: Behavior

16
B. Leibe

• Behavior

 If the error surface is a tilted plane, the ball reaches a terminal 

velocity

– If the momentum ® is close to 1, this is much faster than simple 

gradient descent.

 At the beginning of learning, there may be very large gradients.

– Use a small momentum initially (e.g., ® = 0.5).

– Once the large gradients have disappeared and the weights are 

stuck in a ravine, the momentum can be smoothly raised to its final 

value (e.g., ® = 0.90 or even ® = 0.99).

 This allows us to learn at a rate that would cause divergent 

oscillations without the momentum.

Slide credit: Geoff Hinton
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Improvement: Nesterov-Momentum

• Standard Momentum method

 First compute the gradient at the current location 

 Then jump in the direction of the updated accumulated gradient

• Improvement [Sutskever 2012]

 (Inspiration: Nesterov method for optimizing convex functions.)

 First jump in the direction of the previous accumulated gradient

 Then measure the gradient where you end up and make a 

correction.

 Intuition: It’s better to correct a mistake after you’ve made it.
17

B. LeibeSlide adapted from Geoff Hinton

Standard Momentum

Jump

Correction

Accumulated gradient
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Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates 

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

18
B. LeibeSlide adapted from Geoff Hinton
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Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates 

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

 The fan-in of a unit determines the size of the

“overshoot” effect when changing multiple weights 

simultaneously to correct the same error.

– The fan-in often varies widely between layers

• Solution

 Use a global learning rate, multiplied by a local gain per weight 

(determined empirically)
19

B. LeibeSlide adapted from Geoff Hinton
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Adaptive Learning Rates

• One possible strategy

 Start with a local gain of 1 for every weight

 Increase the local gain if the gradient for the weight does not 

change the sign.

 Use small additive increases and multiplicative decreases (for 

mini-batch)

 Big gains will decay rapidly once oscillation starts.

20
B. LeibeSlide adapted from Geoff Hinton
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Better Adaptation: RMSProp

• Motivation

 The magnitude of the gradient can be very different for 

different weights and can change during learning.

 This makes it hard to choose a single global learning rate.

 For batch learning, we can deal with this by only using the sign 

of the gradient, but we need to generalize this for minibatches.

• Idea of RMSProp

 Divide the gradient by a running average of its recent magnitude

 Divide the gradient by sqrt(MeanSq(wij,t)). 

21
B. LeibeSlide adapted from Geoff Hinton
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Other Optimizers (Lucas)

• AdaGrad [Duchi ’10]

• AdaDelta [Zeiler ’12]

• Adam [Ba & Kingma ’14]

• Notes

 All of those methods have the goal to make the optimization less 

sensitive to parameter settings.

 Adam is currently becoming the quasi-standard

22
B. Leibe
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Behavior in a Long Valley

23
B. Leibe Image source: Aelc Radford, http://imgur.com/a/Hqolp
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Behavior around a Saddle Point

24
B. Leibe Image source: Aelc Radford, http://imgur.com/a/Hqolp
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Visualization of Convergence Behavior

25
B. Leibe Image source: Aelc Radford, http://imgur.com/SmDARzn
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Trick: Patience

• Saddle points dominate in high-dimensional spaces!

 Learning often doesn’t get stuck, you just may have to wait...
26

B. Leibe Image source: Yoshua Bengio
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Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce 

the random fluctuations in the error due to 

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower after that.
27

B. Leibe

Reduced

learning rate

T
ra
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g
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rr
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Epoch

Slide adapted from Geoff Hinton
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Topics of This Lecture

• Recap: Data (Pre-)processing 
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Normalization

 Initialization

• Convergence of Gradient Descent
 Choosing Learning Rates

 Momentum & Nesterov Momentum

 RMS Prop

 Other Optimizers

• Other Tricks
 Batch Normalization

 Dropout

28
B. Leibe
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Batch Normalization         [Ioffe & Szegedy ’14]

• Motivation

 Optimization works best if all inputs of a layer are normalized.

• Idea

 Introduce intermediate layer that centers the activations of

the previous layer per minibatch.

 I.e., perform transformations on all activations

and undo those transformations when backpropagating gradients

• Effect

 Much improved convergence

29
B. Leibe
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Dropout [Srivastava, Hinton ’12]

• Idea

 Randomly switch off units during training.

 Change network architecture for each data point, effectively 

training many different variants of the network.

 When applying the trained network, multiply activations with 

the probability that the unit was set to zero.

 Greatly improved performance
30

B. Leibe
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References and Further Reading

• More information on many practical tricks can be found 

in Chapter 1 of the book

B. Leibe
31

G. Montavon, G. B. Orr, K-R Mueller (Eds.)

Neural Networks: Tricks of the Trade

Springer, 1998, 2012

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller

Efficient BackProp, Ch.1 of the above book., 1998.

http://n.lecun.com/exdb/publis/pdf/lecun-98b.pdf
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