
P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Advanced Machine Learning

Lecture 11

Tricks of the Trade

08.12.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, RNNs, ResNets, etc.
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Recap: Learning with Hidden Units

• How can we train multi-layer networks efficiently?

 Need an efficient way of adapting all weights, not just the last

layer.

• Idea: Gradient Descent

 Set up an error function

with a loss L(¢) and a regularizer (¢).

 E.g.,

 Update each weight in the direction of the gradient

3
B. Leibe

L2 loss

L2 regularizer

(“weight decay”)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of

the gradient

4
B. Leibe

last lecture

today

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Recap: Backpropagation Algorithm

• Core steps

1. Convert the discrepancy

between each output and its

target value into an error

derivate.

2. Compute error derivatives in

each hidden layer from error

derivatives in the layer above.

3. Use error derivatives w.r.t.

activities to get error derivatives

w.r.t. the incoming weights

5
B. LeibeSlide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

• Efficient propagation scheme

 yi is already known from forward pass! (Dynamic Programming)

 Propagate back the gradient from layer j and multiply with yi.

Recap: Backpropagation Algorithm

6
B. LeibeSlide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Recap: MLP Backpropagation Algorithm

• Forward Pass

for k = 1, ..., l do

endfor

• Notes

 For efficiency, an entire batch of data X is processed at once.

 ¯ denotes the element-wise product

7
B. Leibe

• Backward Pass

for k = l, l-1, ...,1 do

endfor

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

 Forward differentiation needs one pass per node. Reverse-mode

differentiation can compute all derivatives in one single pass.

 Speed-up in O(#inputs) compared to forward differentiation!

Recap: Computational Graphs

8
B. Leibe

Apply operator

to every node.

Apply operator

to every node.

Slide inspired by Christopher Olah Image source: Christopher Olah, colah.github.io

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Recap: Automatic Differentiation

• Approach for obtaining the gradients

 Convert the network into a computational graph.

 Each new layer/module just needs to specify how it affects the

forward and backward passes.

 Apply reverse-mode differentiation.

 Very general algorithm, used in today’s Deep Learning packages
9

B. Leibe Image source: Christopher Olah, colah.github.io

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Topics of This Lecture

• Gradient Descent Revisited

• Data (Pre-)processing
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Normalization

 Initialization

• Convergence of Gradient Descent
 Choosing Learning Rates

 Momentum & Nesterov Momentum

 RMS Prop

 Other Optimizers

• Other Tricks
 Batch Normalization

 Dropout 10
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of

the gradient

• Recall: Basic update equation

• Main questions

 On what data do we want to apply this?

 How should we choose the step size ´ (the learning rate)?

 In which direction should we update the weights?
11

B. Leibe

last lecture

today

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@E(w)

@wkj

¯̄
¯̄
w(¿)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Topics of This Lecture

• Gradient Descent

• Data (Pre-)processing
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Normalization

 Initialization

• Convergence of Gradient Descent
 Choosing Learning Rates

 Momentum & Nesterov Momentum

 RMS Prop

 Other Optimizers

• Other Tricks
 Batch Normalization

 Dropout 12
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Stochastic vs. Batch Learning

• Batch learning

 Process the full dataset at

once to compute the

gradient.

• Stochastic learning

 Choose a single example

from the training set.

 Compute the gradient only

based on this example

 This estimate will generally

be noisy, which has some

advantages.
13

B. Leibe

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@E(w)

@wkj

¯̄
¯̄
w(¿)

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@En(w)

@wkj

¯̄
¯̄
w(¿)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Stochastiv vs. Batch Learning

• Batch learning advantages

 Conditions of convergence are well understood.

 Many acceleration techniques (e.g., conjugate gradients) only

operate in batch learning.

 Theoretical analysis of the weight dynamics and convergence

rates are simpler.

• Stochastic learning advantages

 Usually much faster than batch learning.

 Often results in better solutions.

 Can be used for tracking changes.

• Middle ground: Minibatches

14
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Minibatches

• Idea

 Process only a small batch of training examples together

 Start with a small batch size & increase it as training proceeds.

• Advantages

 Gradients will be more stable than for stochastic gradient

descent, but still faster to compute than with batch learning.

 Take advantage of redundancies in the training set.

 Matrix operations are more efficient than vector operations.

• Caveat

 Error function should be normalized by the minibatch size, s.t.

we can keep the same learning rate between minibatches

15
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Shuffling the Examples

• Ideas

 Networks learn fastest from the most unexpected sample.

 It is advisable to choose a sample at each iteration that is most

unfamiliar to the system.

– E.g. a sample from a different class than the previous one.

– This means, do not present all samples of class A, then all of class B.

 A large relative error indicates that an input has not been

learned by the network yet, so it contains a lot of information.

 It can make sense to present such inputs more frequently.

– But: be careful, this can be disastrous when the data are outliers.

• Practical advice

 When working with stochastic gradient descent or minibatches,

make use of shuffling.
16

B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Data Augmentation

• Idea

 Augment original data with synthetic variations

to reduce overfitting

• Example augmentations for images

 Cropping

 Zooming

 Flipping

 Color PCA

17
B. Leibe Image source: Lucas Beyer

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Data Augmentation

• Effect

 Much larger training set

 Robustness against expected

variations

• During testing

 When cropping was used

during training, need to

again apply crops to get

same image size.

 Beneficial to also apply

flipping during test.

 Applying several ColorPCA

variations can bring another

~1% improvement, but at a

significantly increased runtime.
18

B. Leibe

Augmented training data

(from one original image)

Image source: Lucas Beyer

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

General Guideline

19
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Normalization

• Motivation

 Consider the Gradient Descent update steps

 From backpropagation, we know that

 When all of the components of the input vector yi are positive,

all of the updates of weights that feed into a node will be of the

same sign.

 Weights can only all increase or decrease together.

 Slow convergence

20
B. Leibe

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@E(w)

@wkj

¯̄
¯̄
w(¿)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Normalizing the Inputs

• Convergence is fastest if

 The mean of each input variable

over the training set is zero.

 The inputs are scaled such that

all have the same covariance.

 Input variables are uncorrelated

if possible.

• Advisable normalization steps (for MLPs)

 Normalize all inputs that an input unit sees to zero-mean,

unit covariance.

 If possible, try to decorrelate them using PCA (also known as

Karhunen-Loeve expansion).

21
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Choosing the Right Sigmoid

22
B. Leibe

• Normalization is also important for intermediate layers

 Symmetric sigmoids, such as tanh, often converge faster than

the standard logistic sigmoid.

 Recommended sigmoid:

 When used with transformed inputs, the variance of the outputs

will be close to 1.

Image source: Yann LeCun et al., Efficient BackProp (1998)

Largest

curvature at 1

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Initializing the Weights

• Motivation

 The starting values of the weights can have a significant effect

on the training process.

 Weights should be chosen randomly, but in a way that the

sigmoid is primarily activated in its linear region.

• Guideline (from [LeCun et al., 1998] book chapter)

 Assuming that

– The training set has been normalized

– The recommended sigmoid is used

the initial weights should be randomly drawn from a distribution

(e.g., uniform or Normal) with mean zero and variance

where nin is the fan-in (#connections into the node).

23
B. Leibe

𝜎𝑤
2 = 1

𝑛𝑖𝑛

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Historical Sidenote

• Apparently, this guideline was either little known or

misunderstood for a long time

 A popular heuristic (also the standard in Torch) was to use

𝑊~𝑈 −
1

𝑛𝑖𝑛
,
1

𝑛𝑖𝑛

 This looks almost like LeCun’s rule. However…

• When sampling weights from a uniform distribution [a,b]

 Keep in mind that the standard deviation is computed as

𝜎2 =
1

12
𝑏 − 𝑎 2

 If we do that for the above formula, we obtain

𝜎2 = 1

12

2

𝑛𝑖𝑛

2
=

1

3

1

𝑛𝑖𝑛

 Activations & gradients will be attenuated with each layer! (bad)
24

B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Glorot Initialization

• Breakthrough results

 In 2010, Xavier Glorot published an analysis of what went wrong

in the initialization and derived a more general method for

automatic initialization.

 This new initialization massively improved results and made

direct learning of deep networks possible overnight.

 Let’s look at his analysis in more detail...

25
B. Leibe

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep

Feedforward Neural Networks, AISTATS 2010.

jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Effect of Sigmoid Nonlinearities

• Effects of sigmoid/tanh function

 Linear behavior around 0

 Saturation for large inputs

• If all parameters are too small

 Variance of activations will drop in each layer

 Sigmoids are approximately linear close to 0

 Good for passing gradients through, but...

 Gradual loss of the nonlinearity

 No benefit of having multiple layers

• If activations become larger and larger

 They will saturate and gradient will become zero

26

Image source: http://deepdish.io/2015/02/24/network-initialization/

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Analysis

• Variance of neuron activations

 Suppose we have an input X with n components and a linear

neuron with random weights W that spits out a number Y.

 What is the variance of Y ?

 If inputs and outputs have both mean 0, the variance is

 If the Xi and Wi are all i.i.d, then

 The variance of the output is the variance of the input, but

scaled by n Var(Wi).
27

B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Analysis (cont’d)

• Variance of neuron activations

 if we want the variance of the input and output of a unit to be

the same, then n Var(Wi) should be 1. This means

 If we do the same for the backpropagated gradient, we get

 As a compromise, Glorot & Bengio propose to use

 Randomly sample the weights with this variance. That’s it.

28
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Sidenote

• When sampling weights from a uniform distribution [a,b]

 Again keep in mind that the standard deviation is computed as

𝜎2 =
1

12
𝑏 − 𝑎 2

 Glorot initialization with uniform distribution

𝑊~𝑈 −
6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡
,

6

𝑛𝑖𝑛 + 𝑛𝑜𝑢𝑡

29
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Extension to ReLU

• Another improvement for learning deep models

 Use Rectified Linear Units (ReLU)

 Effect: gradient is propagated with

a constant factor

• We can also improve them with proper initialization

 However, the Glorot derivation was based on tanh units,

linearity assumption around zero does not hold for ReLU.

 He et al. made the derivations, proposed to use instead

30
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Topics of This Lecture

• Gradient Descent

• Data (Pre-)processing
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Normalization

 Initialization

• Convergence of Gradient Descent
 Choosing Learning Rates

 Momentum & Nesterov Momentum

 RMS Prop

 Other Optimizers

• Other Tricks
 Batch Normalization

 Dropout 31
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Choosing the Right Learning Rate

• Analyzing the convergence of Gradient Descent

 Consider a simple 1D example first

 What is the optimal learning rate ´opt?

 If E is quadratic, the optimal learning rate is given by the

inverse of the Hessian

 What happens if we exceed this learning rate?

32
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Choosing the Right Learning Rate

• Behavior for different learning rates

33
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Learning Rate vs. Training Error

34
B. Leibe Image source: Goodfellow & Bengio book

Do not go beyond

this point!

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Batch vs. Stochastic Learning

• Batch Learning

 Simplest case: steepest decent

on the error surface.

 Updates perpendicular to contour

lines

• Stochastic Learning

 Simplest case: zig-zag around the

direction of steepest descent.

 Updates perpendicular to constraints

from training examples.

35
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Why Learning Can Be Slow

• If the inputs are correlated

 The ellipse will be very elongated.

 The direction of steepest descent is

almost perpendicular to the direction

towards the minimum!

This is just the opposite of what we want!

36
B. Leibe Image source: Geoff HintonSlide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

The Momentum Method

• Idea

 Instead of using the gradient to change the position of the

weight “particle”, use it to change the velocity.

• Intuition

 Example: Ball rolling on the error surface

 It starts off by following the error surface, but once it has

accumulated momentum, it no longer does steepest decent.

• Effect

 Dampen oscillations in directions of high

curvature by combining gradients with

opposite signs.

 Build up speed in directions with a

gentle but consistent gradient.

37
B. Leibe Image source: Geoff HintonSlide credit: Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

The Momentum Method: Implementation

• Change in the update equations

 Effect of the gradient: increment the previous velocity, subject

to a decay by ® < 1.

 Set the weight change to the current velocity

38
B. LeibeSlide credit: Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

The Momentum Method: Behavior

39
B. Leibe

• Behavior

 If the error surface is a tilted plane, the ball reaches a terminal

velocity

– If the momentum ® is close to 1, this is much faster than simple

gradient descent.

 At the beginning of learning, there may be very large gradients.

– Use a small momentum initially (e.g., ® = 0.5).

– Once the large gradients have disappeared and the weights are

stuck in a ravine, the momentum can be smoothly raised to its final

value (e.g., ® = 0.90 or even ® = 0.99).

 This allows us to learn at a rate that would cause divergent

oscillations without the momentum.

Slide credit: Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Improvement: Nesterov-Momentum

• Standard Momentum method

 First compute the gradient at the current location

 Then jump in the direction of the updated accumulated gradient

• Improvement [Sutskever 2012]

 (Inspiration: Nesterov method for optimizing convex functions.)

 First jump in the direction of the previous accumulated gradient

 Then measure the gradient where you end up and make a

correction.

 Intuition: It’s better to correct a mistake after you’ve made it.
40

B. LeibeSlide adapted from Geoff Hinton

Standard Momentum

Jump

Correction

Accumulated gradient

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

41
B. LeibeSlide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Separate, Adaptive Learning Rates

• Problem

 In multilayer nets, the appropriate learning rates

can vary widely between weights.

 The magnitudes of the gradients are often very

different for the different layers, especially

if the initial weights are small.

 Gradients can get very small in the early layers

of deep nets.

 The fan-in of a unit determines the size of the

“overshoot” effect when changing multiple weights

simultaneously to correct the same error.

– The fan-in often varies widely between layers

• Solution

 Use a global learning rate, multiplied by a local gain per weight

(determined empirically)
42

B. LeibeSlide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Adaptive Learning Rates

• One possible strategy

 Start with a local gain of 1 for every weight

 Increase the local gain if the gradient for the weight does not

change the sign.

 Use small additive increases and multiplicative decreases (for

mini-batch)

 Big gains will decay rapidly once oscillation starts.

43
B. LeibeSlide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Better Adaptation: RMSProp

• Motivation

 The magnitude of the gradient can be very different for

different weights and can change during learning.

 This makes it hard to choose a single global learning rate.

 For batch learning, we can deal with this by only using the sign

of the gradient, but we need to generalize this for minibatches.

• Idea of RMSProp

 Divide the gradient by a running average of its recent magnitude

 Divide the gradient by sqrt(MeanSq(wij,t)).

44
B. LeibeSlide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Other Optimizers (Lucas)

• AdaGrad [Duchi ’10]

• AdaDelta [Zeiler ’12]

• Adam [Ba & Kingma ’14]

• Notes

 All of those methods have the goal to make the optimization less

sensitive to parameter settings.

 Adam is currently becoming the quasi-standard

45
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Behavior in a Long Valley

46
B. Leibe Image source: Aelc Radford, http://imgur.com/a/Hqolp

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Behavior around a Saddle Point

47
B. Leibe Image source: Aelc Radford, http://imgur.com/a/Hqolp

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Visualization of Convergence Behavior

48
B. Leibe Image source: Aelc Radford, http://imgur.com/SmDARzn

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Trick: Patience

• Saddle points dominate in high-dimensional spaces!

 Learning often doesn’t get stuck, you just may have to wait...
49

B. Leibe Image source: Yoshua Bengio

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Reducing the Learning Rate

• Final improvement step after convergence is reached

 Reduce learning rate by a

factor of 10.

 Continue training for a few

epochs.

 Do this 1-3 times, then stop

training.

• Effect

 Turning down the learning rate will reduce

the random fluctuations in the error due to

different gradients on different minibatches.

• Be careful: Do not turn down the learning rate too soon!

 Further progress will be much slower after that.
50

B. Leibe

Reduced

learning rate

T
ra

in
in

g
 e

rr
o
r

Epoch

Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Topics of This Lecture

• Gradient Descent

• Data (Pre-)processing
 Stochastic Gradient Descent & Minibatches

 Data Augmentation

 Normalization

 Initialization

• Convergence of Gradient Descent
 Choosing Learning Rates

 Momentum & Nesterov Momentum

 RMS Prop

 Other Optimizers

• Other Tricks
 Batch Normalization

 Dropout 51
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Batch Normalization [Ioffe & Szegedy ’14]

• Motivation

 Optimization works best if all inputs of a layer are normalized.

• Idea

 Introduce intermediate layer that centers the activations of

the previous layer per minibatch.

 I.e., perform transformations on all activations

and undo those transformations when backpropagating gradients

• Effect

 Much improved convergence

52
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Dropout [Srivastava, Hinton ’12]

• Idea

 Randomly switch off units during training.

 Change network architecture for each data point, effectively

training many different variants of the network.

 When applying the trained network, multiply activations with

the probability that the unit was set to zero.

 Greatly improved performance
53

B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

References and Further Reading

• More information on many practical tricks can be found

in Chapter 1 of the book

B. Leibe
54

G. Montavon, G. B. Orr, K-R Mueller (Eds.)

Neural Networks: Tricks of the Trade

Springer, 1998, 2012

Yann LeCun, Leon Bottou, Genevieve B. Orr, Klaus-Robert Mueller

Efficient BackProp, Ch.1 of the above book., 1998.

http://n.lecun.com/exdb/publis/pdf/lecun-98b.pdf

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

References

• ReLu

 X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural

networks, AISTATS 2011.

• Initialization

 X. Glorot, Y. Bengio, Understanding the difficulty of training

deep feedforward neural networks, AISTATS 2010.

 K. He, X.Y. Zhang, S.Q. Ren, J. Sun, Delving Deep into

Rectifiers: Surpassing Human-Level Performance on ImageNet

Classification, ArXiV 1502.01852v1, 2015.

 A.M. Saxe, J.L. McClelland, S. Ganguli, Exact solutions to the

nonlinear dynamics of learning in deep linear neural networks,

ArXiV 1312.6120v3, 2014.

55
B. Leibe

http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf
http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf
http://arxiv.org/abs/1502.01852
http://arxiv.org/abs/1312.6120

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

References and Further Reading

• Batch Normalization

 S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift, ArXiV

1502.03167, 2015.

• Dropout

 N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R.

Salakhutdinov, Dropout: A Simple Way to Prevent Neural

Networks from Overfitting, JMLR, Vol. 15:1929-1958, 2014.

56
B. Leibe

http://arxiv.org/abs/1502.03167
https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

