Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

RWTHAACHE

Advanced Machine Learning
Lecture 10

Backpropagation

05.12.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Recap: Perceptrons

¢ One output node per class
(%) wlx) mix)

Output layer
Weights

Input layer
pp—=l @) a3y &y
e Outputs

» Linear outputs With output nonlinearity

d d
yr(x) = Z Whia; ye(x) =g (Z W',;..;z:,-)
=0

= Can be used to do multidimensional linear regression or
multiclass classification.

ide adapted from Stefan Roth B. Leibe

©
>
W
2
=
=)
=
£
bS]
o
a
o
=
S
a
=
©
@
o
=
I
3
<

TRWTH/ACHEN
Recap: Non-Linear Basis Functions

o Straightforward generalization
(%) wlx) mix)

Output layer

Weights
Feature layer
Mapping (fixed)
Input layer
£y oy £
¢ Remarks

» Perceptrons are generalized linear discriminants!
» Everything we know about the latter can also be applied here.
~ Note: feature functions ¢(x) are kept fixed, not learned!

B. Leibe

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

RWTH CHET
This Lecture: Advanced Machine Learning

 Regression Approaches f X =R
» Linear Regression T ,' ~
» Regularization (Ridge, Lasso) 1974 \\ Aot
» Kernels (Kernel Ridge Regression)
» Gaussian Processes

¢ Approximate Inference
» Sampling Approaches
» MCMC

* Deep Learning i —
» Linear Discriminants
» Neural Networks
» Backpropagation
» CNNs, RNNs, ResNets, etc.

B. Leibe

TOWTHACHET]
Recap: Non-Linear Basis Functions

¢ Straightforward generalization
n(x) malx) lx)

Output layer
Weights
Feature layer
Mapping (fixed)
Input layer

e Outputs

» Linear outputs with output nonlinearity

d d
yie(x) = Z Wiid(i) yk(x) =g Z "VL-;('J(IJ)

i=0 i=0

B. Leibe

©
by
m
2
£
=)
=
£
&
°©
3
o
=
S
a
=
©
@
o
=
8
3
<

TOWTHACHET]
Recap: Perceptron Learning

¢ Process the training cases in some permutation

» If the output unit is correct, leave the weights alone.

» If the output unit incorrectly outputs a zero, add the input
vector to the weight vector.
If the output unit incorrectly outputs a one, subtract the input
vector from the weight vector.

v

¢ Translation
(r+1) _ (") .
Wy = Wy, — 0 (Yp(Xn; W) — tin) ¢j(xn)
» This is the Delta rule a.k.a. LMS rule!

= Perceptron Learning corresponds to 1st-order (stochastic)
Gradient Descent of a quadratic error function!

ide adapted from Geoff Hinton 5. Leibe

RWTH/ACHEN RWTH/ACHEN
Recap: Loss Functions Recap: Multi-Layer Perceptrons
* We can now also apply other loss functions ¢ Adding more layers
» L, loss) = Least-squares regression| n() 100 plx)
L(t,y(x)) = Z,, (y(xn) —tn) Output layer
©o ©
E » Ly loss: = Median regression| g .
E Lit, y(x)) = Z.. |y(xn) - in‘ E Hidden layer
2 » Cross-entropy loss = Logistic regression| 2 | .
£ £ t
g L(t‘y(x)) = z”_ {tn Iny, + (1- tu) In(1 - yn)} E nput fayer
. @
g ~ Hinge loss . = SVM classification| % ¢ Output
g L(t‘ y(x)) = Ln [1 - twry(x”)]+ g h d
. =~ A2 -1
é » Softmax loss = Multi-class probabilistic classification g yi(x) = g? LWA(:;)QM L”’-ﬁ&)1'.7'
— _ exp(yx (x)) o i=0 i=0
s Lity(x) = =, Ty {1(tn = k) In 22000] s 8
B. Leibe ide adapted from Stefan Roth 8. Leibe
RWTH/ACHEN RWTH/ACHEN
Topics of This Lecture Learning with Hidden Units
¢ Learning with Hidden Units ¢ How can we train multi-layer networks efficiently?
« Obtaining the Gradients » Need an efficient way of adapting all weights, not just the last
| .
~ Naive analytical differentiation ayer
© » Numeric differentiation © 3
T . Backpropagation i * Idea: Gradient Descent
,‘E » Computational graphs E ~ Set up an error function
U i H -
; » Automatic differentiation > E(W) = LL(fm §(Xn; W) + AQ(W)
= « Practical Issues = "
8 ¢ R " 8 with a loss L(-) and a regularizer Q(-).
> » Nonlinearities > 5
% . Sigmoid outputs and the L, loss _g - Eg., Lty W) =3 (y(xa; W) — 1) L, loss
% » Implementing Softmax correctly % (W) = HWW L, regularizer
S 8 £ (“weight decay”)
c c v
g g = Update each weight I-I-",[j“) in the direction of the gradient %’;é.m)
B. Leibe i B. Leibe B
RWTH/ACHEN RWTH/ACHEN
Gradient Descent Topics of This Lecture
¢ Two main steps
1. Computing the gradients for each weight today « Obtaining the Gradients
2. Adjusting the weights in the direction of Thursday » Naive analytical differentiation

the gradient > Numeric differentiation
» Backpropagation
» Computational graphs

» Automatic differentiation

©o ©
T I
T T
2 2
£ £
i=2 (=
£ £
£ £
© ©
L3 Q
8 g
[[
£ £
S S
[+ o]
4 =
=] a1
(7] [
3 8
2 =
© ©
s S
< <

B. Leibe

B. Leibe

RWTHAACHE RWTHACHE

Obtaining the Gradients Excursion: Chain Rule of Differentiation

¢ Approach 1: Naive Analytical Differentiation ¢ One-dimensional case: Scalar functions

m(x) m(x) mix) A dz
HL(W) Z =
e d= day
© Lt ® e
T T ¥ dy
2 8 y Ay =—Azx
§ HE(W) SE{W) é dy dax
) awl T aw) > da)
& ¥ Ad g A dz llyA
£ € x z = ——AT
8 g dy dz
=]
© o
£ » Compute the gradients for each variable analytically. £
é é dz dzdy
» What is the problem when doing this? —_ ===
3 p S 3 de dyde
§]
3 3
< <

B. Leibe B. Leibe

RWTH LGN
Excursion: Chain Rule of Differentiation

RWTH CHET
Obtaining the Gradients

¢ Multi-dimensional case: Total derivative

¢ Approach 1: Naive Analytical Differentiation
n(x) valx) ilx)

dz 0z Oy, 9z Oy auiwy | aB(wW)

—=—+t—=+... aWg aw
dz Oy, 9z Oya Ox

I AE(W E(W)

awi T awy

_ Z Oz Oy,
N Byi Jdz

=1

» Compute the gradients for each variable analytically.

= Need to sum over all paths that lead to the target

» What is the problem when doing this?
variable z.

= With increasing depth, there will be exponentially many paths!
= Infeasible to compute this way.

Advanced Machine Learning Winter’16
Advanced Machine Learning Winter’16

B. Leibe

B. Leibe

Topics of This Lecture Obtaining the Gradients

¢ Approach 2: Numerical Differentiation
n(x) valx) ilx)

¢ Obtaining the Gradients
~ Naive analytical differentiation
» Numerical differentiation
» Backpropagation
» Computational graphs
» Automatic differentiation

» Given the current state W(7), we can evaluate E(W (),

» ldea: Make small changes to W(") and accept those that improve
E(W®M).,

= Horribly inefficient! Need several forward passes for each
weight. Each forward pass is one run over the entire dataset!

B. Leibe

©o ©
T I
T T
2 2
£ £
i=2 (=
£ £
£ £
© ©
L3 Q
8 g
[[
£ £
S S
[+ o]
4 =
=] a1
(7] [
3 8
2 =
© ©
s S
< <

B. Leibe

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

Topics of This Lecture

¢ Obtaining the Gradients
» Naive analytical differentiation
» Numerical differentiation
» Backpropagation
» Computational graphs
» Automatic differentiation

B. Leibe

Backpropagation Algorithm

e Core steps

1. Convert the discrepancy
between each output and its
target value into an error
derivate.

2. Compute error derivatives in
each hidden layer from error
derivatives in the layer above.

3. Use error derivatives w.r.t.
activities to get error derivatives

Z (t; — yJ)2

JEoutput

©
>
W
2
=
=)
=
£
bS]
o
a
o
=
S
a
=
©
@
o
=
I
3
<

) (m—1)
w.r.t. the incoming weights 8y; Sw;ie
21
ide adapted from Gegff Hinton B. Leibe
RWTHCHEN
Backpropagation Algorithm
dE dy; OF OE
£ Bt 6 R R
0z, oz 0n, W Wiy,

¢ Notation

» y; Output of layer j Connections: z;
» z; Input of layer j Az
vz

Ay
ide adapted from Geoff Hinton B. Leibe Y

OE 8z; OF
A= — = Wyj—
dy; ; dy; dz; ; 1 8z;

= Z Wil
i

= i

OF

23

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

RWTH CHET
Obtaining the Gradients

¢ Approach 3: Incremental Analytical Differentiation

i (x) malx) glx) %ﬂﬂi
Hy;
~ DLW
aw s
DEIW)
EEn
N auw)
oWy
DEIW)

» ldea: Compute the gradients layer by layer.

» Each layer below builds upon the results of the layer above.
= The gradient is propagated backwards through the layers.
= Backpropagation algorithm

20

B. Leibe

RWTHACHE
Backpropagation Algorithm
E.g. with sigmoid output nonlinearity
OE _oy 0B _ ¥ OB
E)z, = a;‘ ayj = y;l i) ayj

¢ Notation
» y; Output of layer j Connections: z; = Z Wil
> z; Input of layer j i

y; = 4(z) 2

ide adapted from Geoff Hinton LA

©
by
m
2
£
=)
=
£
&
°©
3
o
=
S
a
=
©
@
o
=
8
3
<

Backpropagation Algorithm

9B oy 0B _ 0B
9z 0z 0y P Wy,

aE 9z, OF OE
= = = a = Wi
dy; ; dy; 0z; ZJ: 7 9z,

8E 9z OE _ 9E

Duyy Bwy 9z, Vs,

¢ Notation
» y; Output of layer j

Connections: 2; = Z Wijli
» z; Input of layer j Az y:

U 24

ide adapted from Geoff Hinton 5. Leibe

Advanced Machine Learning Winter’16

©
=
T
S
s
=
3
)
3
o
=
S
a
=
©
5
o
c
[
3
<

Backpropagation Algorithm

0B _oyoE | 0F
9z, 0z oy U My

oF 9z OE _ O
IR N e N

OE 0z OE _ JE

A N 3w,_j3_zJ - g;a

* Efficient propagation scheme
» y; is already known from forward pass! (Dynamic Programming)

= Propagate back the gradient from layer j and multiply with y;.

25
Slide adapted from Geoff Hintan B. Leibe

RWTH//CHE
Analysis: Backpropagation

* Backpropagation is the key to make deep NNs tractable
» However...

* The Backprop algorithm given here is specific to MLPs

» It does not work with more complex architectures, .
e.g. skip connections or recurrent networks!

» Whenever a new connection function induces a
different functional form of the chain rule, you
have to derive a new Backprop algorithm for it.

= Tedious...

¢ Let’s analyze Backprop in more detail
» This will lead us to a more flexible algorithm formulation

B. Leibe

Advanced Machine Learning Winter’16

Factoring Paths

¢ Problem: Combinatorial explosion
» Example:

S~ o
0=
oA N

There are 3 paths from X to Yand 3 more from Yto Z.

If we want to compute %, we need to sum over 3 x3 paths:
a7z - - -
X ad + oe + ol + 30 + Je + 3 + 0 + ve + ¢
C

v

v

» Instead of naively summing over paths, it’s better to factor them
07
O (ot) (et)

B. Leibe

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

RWTH/ACHEN
Summary: MLP Backpropagation

¢ Forward Pass ¢ Backward Pass
v =x h« % = %L(t. y)+ A%Q
for k=1,..,ldo

for k=1,0-1,...,1do
2 = Wikly =1 h+ % =hag'(y™*)

. OE i— g
¥y =g (z™) Fwom = by" VT 4 A
endfor h 2L oL = WHTh
ay
(n
y=y" endfor

E =L{t,y) + A\Q(W)

¢ Notes
~ For efficiency, an entire batch of data X is processed at once.
» © denotes the element-wise product
26

B. Leibe

RWTH/ACHEN
Computational Graphs

¢ We can think of mathematical expressions as graphs

» E.g., consider the expression
e = (a+b)=(b+1) /. \

» We can decompose this into

the operations
e = a+b

d=10b+1 /

e = cxd

and visualize this as a computational graph.

. . s es oY .
« Evaluating partial derivatives ;x in such a graph
» General rule: sum over all possible paths from Yto X
and multiply the derivatives on each edge of the path together.

28
Qlah, colah github i

ide inspired by Christopher Olah LA Jmage source; Chyi

©
by
m
2
£
=)
=
£
&
°©
3
o
=
S
a
=
©
@
o
=
8
3
<

Efficient Factored Algorithms

Forward-Mode Differentiation (:7)

I
Apply operator 7y
to every node.

Apply operator
to every node.

a2z
i

o Efficient algorithms for computing the sum
» Instead of summing over all of the paths explicitly, compute
the sum more efficiently by merging paths back together at
every node.
ide inspired by Christopher Olah B. Leibe

lmage source: Chii: Qlab, colah.github,j

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

Why Do We Care?

¢ Let’s consider the example again

» Using forward-mode differentiation
from b up...

Runtime: O(#edges) A m

Result: derivative of every node @
with respect to b. 23 h‘ WA

o
G

v

v

B. Leibe

31

Topics of This Lecture

¢ Obtaining the Gradients
~ Naive analytical differentiation
» Numerical differentiation
~ Backpropagation
» Computational graphs
» Automatic differentiation

B. Leibe

©
>
W
2
=
=)
=
£
bS]
o
a
o
=
S
a
=
©
@
o
=
I
3
<

RWTH//CHE
Modular Implementation (e.g., Torch)

¢ Solution in many current Deep Learning libraries
» Provide a limited form of automatic differentiation

» Restricted to “programs” composed of “modules” with a
predefined set of operations.

¢ Each module is defined by two main functions

1. Computing the outputs y of the module given its inputs x
y = module.fprop(x)
where x, y, and intermediate results are stored in the module.
2. Computing the gradient JE/dx of a scalar cost w.r.t. the

inputs x given the gradient 0F/Jy w.r.t. the outputs y

aE _ aE
G = module.bprop({uy)

B. Leibe

Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

Why Do We Care?

¢ Let’s consider the example again

» Using reverse-mode differentiation
from e down...

Runtime: O(#edges) 4 h‘

v

v

Result: derivative of e with

respect to every node. m m P4

= This is what we want to compute in Backpropagation!
» Forward differentiation needs one pass per node. With backward
differentiation can compute all derivatives in one single pass.

= Speed-up in O(#inputs) compared to forward differentiation!

B. Leibe

Obtaining the Gradients

¢ Approach 4: Automatic Differentiation
n(x) valx) ilx)

» Convert the network into a computational graph.

» Each new layer/module just needs to specify how it affects the
forward and backward passes.

» Apply reverse-mode differentiation.
= Very general algorithm, used in today’s Deep Learning packages
34
B. Leibe

©
by
m
2
£
=)
=
£
&
°©
3
o
=
S
a
=
©
@
o
=
8
3
<

Topics of This Lecture

¢ Practical Issues
» Nonlinearities
» Sigmoid outputs and the L, loss
» Implementing Softmax correctly
» Efficient batch processing

B. Leibe

RWTHAACHE RWTHACHE

Commonly Used Nonlinearities Commonly Used Nonlinearities (2)

* Sigmoid . ¢ Hard tanh |
gla) = o(a) .
= m - gla) = max{-1,min{l,a}} s -

« Hyperbolic tangent
gla) = tanh(a) |
= 20(2a) ~ 1 oo L

¢ Rectified linear unit (ReLU)

= = o
E; 5
= I
H H
2 E gla) = max{0,a}
£ £
g g
- - .
@] G 43 ae d @ i a0
= e« Softmax =1 « Maxout ST T :
[*] =}
2 ofa) = exp{—a;} 3 g(a) = max {w/a+b;} .
= - = _ _ =l
8 > exp{—a;} g !
% [w0
b 3
< 37 = P A T T 8
5. Leibe 5. Leibe Leode o d @ 5w
RWTH//CHE RWTH CHET
Usage Topics of This Lecture
e Output nodes
» Typically, a sigmoid or tanh function is used here.
- Sigmoid for nice probabilistic interpretation (range [0,1]).
- tanh for regression tasks
e 2
i * Internal nodes 2
i » Historically, tanh was most often used. ;m
é » tanh is better than sigmoid for internal nodes, since it is E ical
g already centered. g * Practical Issues
il . "
@ » Internally, tanh is often implemented as piecewise linear A - N.onhn.eantles
g function (similar to hard tanh and maxout). £ » Sigmoid outputs and the L, loss
< [i
= » More recently: ReLU often used for classification tasks. = » Implementing Softmax correctly
2 B
§ g
b 2
<5 ; 40 <& . 41
B. Leibe B. Leibe
RWTH//CHE RWTH CHET
Another Note on Error Functions Topics of This Lecture
E(zn) Ideal misclassification error]
Squared error
Squared error on tanh
Zero gradient!
e 2
5 No penalty for s
= “too correct” =
H data points! H
2 2
o tae{-L1} ; = o Practical Issues
g Zn = tny(x'rz) 3 i iti
® -2 -1 0 1 2 > > Nonlinearities
e 2) .
5= + Squared error on sigmoid/tanh output function = + Sigmoid outputs and the L, loss
g X o X z » Implementing Softmax correctly
- » Avoids penalizing “too correct” data points. =
§ » But: zero gradient for confidently incorrect classifications! §
g = Do not use L, loss with sigmoid outputs (instead: cross-entropy)! %’
= 2 = ’ 43
Image source: Bishon, 2004 B. Leibe

RWTHAACHE RWTHACHE

Implementing Softmax Correctly References and Further Reading

* Softmax output
» De-facto standard for multi-class outputs

N K T
E(w) = 722 {H(tn:k)lnz%}

n=1k=1

¢ More information on Backpropagation can be found in
Chapter 6 of the Goodfellow & Bengio book

lan Goodfellow, Aaron Courville, Yoshua Bengio
Deep Learning
MIT Press, in preparation

¢ Practical issue

» Exponentials get very big and can have vastly different
magnitudes.

Trick 1: Do not compute first softmax, then log,
but instead directly evaluate log-exp in the denominator.

Trick 2: Softmax has the property that for a fixed vector b
softmax(a + b) = softmax(a)
= Subtract the largest weight vector w; from the others.

v

https://goodfeli.github.io/dlbook/

v

© ©
= e
N Y
3 o
5 5
= =
= j=2)
= =
= £
© «
@ o
- g}
3 @
£ 3
g g
o o]
= =
=3 o
@ I3
g g
g g
3 3
< <

44 45
B. Leibe

B. Leibe

