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Topics of This Lecture

¢ Recap: Sampling approaches
» Sampling from a distribution
» Rejection Sampling
» Importance Sampling
» Sampling-Importance-Resampling

¢ Markov Chain Monte Carlo
» Markov Chains
» Metropolis Algorithm
» Metropolis-Hastings Algorithm
» Gibbs Sampling
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Recap: Sampling from a pdf

¢ In general, assume we are given the pdf p(x) and the
corresponding cumulative distribution:

F(z) = / p(z)dz

¢ To draw samples from this pdf, we can invert the
cumulative distribution function:

u ~ Uniform(0,1) = F~*(u) ~ p(x)

ide credit: Bernt Schiele Image source: .M, Bishop, 200d
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This Lecture: Advanced Machine Learning
f: X =R
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* Regression Approaches
» Linear Regression
» Regularization (Ridge, Lasso)
» Gaussian Processes

¢ Learning with Latent Variables
» Probability Distributions
» Approximate Inference

¢ Deep Learning
» Neural Networks
» CNNs, RNNs, ResNets, etc.

B. Leibe

Recap: Sampling Idea

¢ Objective:
» Evaluate expectation of a function f(z) "%
w.r.t. a probability distribution p(z).

Bif = [ faiada
e Sampling idea

» Draw L independent samples z() with [ = 1,..., L from p(z).
» This allows the expectation to be approximated by a finite sum

1k
p_ !
f= I Z f(z")
. As long as the samples z) are drawn independently from p(z),
then Bf] — 17

= Unbiased estimate, independent of the dimension of z!

4
Image source: C.M, Bishop, 200d

ide adapted from Rernt Schiele B. Leibe
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General Advice

¢ Use library functions whenever
possible

» Many efficient algorithms available
for known univariate distributions
(and some other special cases)

» This book (free online) explains
how some of them work

» http://www.nrbook.com/devroye/

ide credit: lain Murray B. Leibe



http://www.nrbook.com/devroye/
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Recap: Rejection Sampling

e Assumptions
» Sampling directly from p(z) is difficult.
» But we can easily evaluate p(z) (up to some norm. factor Z):
z) = —p(z
. Idea p(z) pr( )

» We need some simpler distribution ¢(z) (called proposal
distribution) from which we can draw samples.
~ Choose a constant k such that: Vz : kq(z) > p(z)

¢ Sampling procedure
» Generate a number z, from ¢(z).

» Generate a number w, from the
uniform distribution over [0,kq(z,)].

. If uo > p(z0) reject sample, otherwise accept;

Slide adapted from Bernt Schiele B. Leibe Image source: CM, Bishop, 200

Importance Sampling

e Idea

» Method approximates expectations directly
(but does not enable to draw samples from p(z) directly).

Use a proposal distribution ¢(z) from we can easily draw samples

Express expectations in the form of a finite sum over samples
{z"} drawn from ¢(z

_/f

L
p(z'
gq(zm N T

v

v

=
» with importance weights
p(z®)
=
L q@D) )
ide credit: Bernt Schiele B. Leibe
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RWTH//CHE
Importance Sampling

¢ Removing the unknown normalization constants
» We can use the sample set to evaluate the ratio of normalization

constants
L
a)is = £

% _ 1 / 2)dz— Ezu)

» and therefore ;
Elf] ~ 3 wf(z")
=1

- #(z)
with wy = L = ﬂgm)
Zmm 3, B
= In contrast to Rejection Sampling, all generated samples are
retained (but they may get a small weight).

B. Leibe
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Evaluating Expectations

¢ Motivation

» Often, our goal is not sampling from p(z) by itself, but to
evaluate expectations of the form

lf] = [ St
» Assumption again: can evaluate p(z) up to normalization factor.
¢ Simplistic strategy: Grid sampling

» Discretize z-space into a uniform grid.
» Evaluate the integrand as a sum of the form

L
E[f] =" f(z")p(z"))dz
=1

» Problem: number of terms grows exponentially with number of
dimensions!

ide credit: Bernt Schiele B. Leibe

Importance Sampling

¢ Typical setting:
» p(z) can only be evaluated up to an unknown normalization
constant p(z) = ﬁ(z)/Zp
» ¢(z) can also be treated in a similar fashion.

(=) = 4(2)/2,

» Then .
Blf ~ [t e
p L
Zy 1 -
~ L EfEY)
L]
)
» with: 7 = ”(z(l))
ide credit: Bernt Schiele B. Leibe 1
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ide credit: Bernt Schiele B. Leibe
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Importance Sampling - Discussion

¢ Observations
» Success of importance sampling depends crucially on how well
the sampling distribution ¢(z) matches the desired distribution
p(z).
» Often, p(z)f(z) is strongly varying and has a significant propor-
tion of its mass concentrated over small regions of z-space.
= Weights r; may be dominated by a few weights having large
values.
» Practical issue: if none of the samples falls in the regions where
p(z) f(z) is large...
- The results may be arbitrary in error.
- And there will be no diagnostic indication (no large variance in r)!

» Key requirement for sampling distribution ¢(z):
- Should not be small or zero in regions where p(z) is significant!
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Sampling-Importance-Resampling (SIR)

¢ Observation

» Success of rejection sampling depends on finding a good value
for the constant k.

» For many pairs of distributions p(z) and ¢(z), it will be
impractical to determine a suitable value for k.

- Any value that is sufficiently large to guarantee ¢(z) > p(z) will
lead to impractically small acceptance rates.

« Sampling-Importance-Resampling Approach
» Also makes use of a sampling distribution ¢(z), but avoids
having to determine k.

B. Leibe

Curse of Dimensionality

e Problem

» Rejection & Importance Sampling both scale badly with high
dimensionality.

» Example:

p(z) ~ -J\‘IF(O: ‘r)! CI(ZJ r~ J\'—(O 0'2[)

¢ Rejection Sampling

» Requires o > 1. Fraction of proposals accepted: o ~P.

¢ Importance Sampling 2 D/2
» Variance of importance weights: a—_ —1
2-1/0?

7S 1/V2

» Infinite / undefined variance if

ide credit: lain Murra B. Leibe
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ide credit: Zouhin i B. Leibe
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Independent Sampling vs. Markov Chains

e So far
» We’ve considered three methods, Rejection Sampling,
Importance Sampling, and SIR, which were all based on
independent samples from ¢(z).
» However, for many problems of practical interest, it is often
difficult or impossible to find ¢(z) with the necessary properties.

~ In addition, those methods suffer from severe limitations in
high-dimensional spaces.

« Different approach

» We abandon the idea of independent sampling.

» Instead, rely on a Markov Chain to generate dependent samples
from the target distribution.
Independence would be a nice thing, but it is not necessary for
the Monte Carlo estimate to be valid.

v
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Sampling-Importance-Resampling
e Two stages

» Draw L samples z("),..., z(") from ¢(z).

» Construct weights using importance weighting

- Bz'")
1 3(z1)

w; = — = R
plz(m])
PINE S -l
and draw a second set of samples z("),..., z(L) with probabilities
given by the weights w,..., w(l),

¢ Result

» The resulting L samples are only approximately distributed
according to p(z), but the distribution becomes correct in the
limit L — oo.

B. Leibe

Topics of This Lecture

¢ Markov Chain Monte Carlo
» Markov Chains
» Metropolis Algorithm
» Metropolis-Hastings Algorithm
» Gibbs Sampling

B. Leibe
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RWTHACHEN
MCMC - Markov Chain Monte Carlo

¢ Overview
» Allows to sample from a large class of distributions.
» Scales well with the dimensionality of the sample space.
e |dea
» We maintain a record of the current state z(?
» The proposal distribution depends on the current state: ¢(z|z(")
» The sequence of samples forms a Markov chain z("), z@,...

o Setting
» We can evaluate p(z) (up to sqr(ne normalizing factor Z):
_plz
p(z) = -

P
» At each time step, we generate a candidate sample from the
proposal distribution and accept the sample according to a
criterion.

ide credit: Bernt Schiele B. Leibe
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MCMC - Metropolis Algorithm

¢ Metropolis algorithm [Metropolis et al., 1953]
» Proposal distribution is symmetric: ¢(za|zg) = q(zB|z4)
. The new candidate sample z" is accepted with probability
o N p(z")
A(z*,2'™) = min <1, )
¢ Implementation
» Choose random number u uniformly from unit interval (0,1).
. Accept sample if A(z*,2(7) > u.

* Note
. New candidate samples always accepted if j(z*) > {(z(").
- l.e. when new sample has higher probability than the previous one.
» The algorithm sometimes accepts a state with lower probability.

19
Slide credit: Bernt Schiele B. Leibe
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MCMC - Metropolis Algorithm
e Property
» When ¢(z,41zp) > 0 for all z, the distribution of z™ tends to p(z)
as 7 — 00.
* Note

. Sequence z(!), z(@),... is not a set of independent samples from
p(z), as successive samples are highly correlated.

» We can obtain (largely) independent samples by just retaining
every Mth sample. =

¢ Example: Sampling from a Gaussian
» Proposal: Gaussian with o = 0.2.

» Green: accepted samples
» Red: rejected samples »
] T T TR R T
ide credit: Berpt Schiele B. Lethe Image source: CM, Bishon, 200
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Line Fitting Example (cont’d)

¢ Metropolis algorithm

. e . e

| | B |
e | I P

- Perturb parameters: ()(z';2), e.g. Mz, 0?)
peD))
p(z|D)

» Accept with probability min (1.

» Otherwise, keep old parameters.

ide credit: lain Murra B. Leibe
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MCMC - Metropolis Algorithm

e Two cases
» If new sample is accepted:
. Otherwise: 2T+ = 5

2D —

» This is in contrast to rejection sampling, where rejected samples
are simply discarded.

= Leads to multiple copies of the same sample!

20

ide credit: Bernt Schiele B. Leibe
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Line Fitting Example
¢ Importance Sampling weights
s e e e s e . ',\'.4 . e
A | A% S | s
w =0.00648 w =1.568e-08 i =9.6be-06 w=0.371 w =0.103
. -\-. s % 5 % 5 % s %
& LA A I e s
w=1.01e-08 w=0.111 i =1.92e-09 i =0.0126 w=1.1e-51
= Many samples with very low weights...
22
ide credit: lain Mucra B. Leibe
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Markov Chains

¢ Question
» How can we show that z7 tends to p(z) as 7 — oo?

¢ Markov chains
» First-order Markov chain:

» (z<m+1>|z<1>, . ,Z(mo) =p (z<m+1)‘z<m>)
» Marginal probability

p (z<m+1>) =3 (z(m+1> ‘z<m>) p (z“’”)

2(m)

» A Markov chain is called homogeneous if the transition
probabilities p(z(™+) | z(™) are the same for all m.

24
ide adanted from Rernt Schiele B. Leibe




Markov Chains - Properties Detailed Balance

¢ Invariant distribution

» A distribution is said to be invariant (or stationary) w.r.t. a
Markov chain if each step in the chain leaves that distribution
invariant.

» Transition probabilities:
T (z(m)’ z(m+l)) = (Z(m+l)‘z(m))
» For homogeneous Markov chain, distribution p’(z) is invariant if:

pi(2) =) T(z,2)p"()

¢ Detailed balance means
» If we pick a state from the target distribution p(z) and make a
transition under 7'to another state, it is just as likely that we
will pick z, and go from z, to z than that we will pick z; and
go from z; to z 4.

v

It can easily be seen that a transition probability that satisfies
detailed balance w.r.t. a particular distribution will leave that
distribution invariant, because

S0 ET () = Y (T ()

¢ Detailed balance
» Sufficient (but not necessary) condition to ensure that a
distribution is invariant:
P*(2)T (z,2) =p*(2)T (7, 2)
» A Markov chain which respects detailed balance is reversible. »

= p(2) ) p(2|z) =p*(2)

Advanced Machine Learning Winter’16
Advanced Machine Learning Winter’16
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Slide credit: Bernt Schiele B. Leibe B. Leibe
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Ergodicity in Markov Chains Mixture Transition Distributions
¢ Remark ¢ Mixture distributions
» Our goal is to use Markov chains to sample from a given » In practice, we often construct the transition probabilities from
distribution.

a set of ‘base’ transitions B,,..., By.
» This can be achieved through a mixture distribution

K
T(z',z) = Zakﬂk(z', z)
k=1

We can achieve this if we set up a Markov chain such that the
desired distribution is invariant.

However, must also require that for m —oo, the distribution
p(z'™) converges to the required invariant distribution p*(z)
irrespective of the choice of initial distribution p(z(®).

This property is called ergodicity and the invariant distribution
is called the equilibrium distribution.

It can be shown that this is the case for a homogeneous Markov
chain, subject only to weak restrictions on the invariant
distribution and the transition probabilities.

v

v

with mixing coefficients oy, > 0 and X, o, = 1.

v

¢ Properties
» If the distribution is invariant w.r.t. each of the base transitions,
then it will also be invariant w.r.t. T(z’,z).
» If each of the base transitions satisfies detailed balance, then
the mixture transition T will also satisfy detailed balance.
» Common example: each base transition changes only a subset of
variables.

Advanced Machine Learning Winter’16
5
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MCMC - Metropolis-Hastings Algorithm

¢ Metropolis-Hastings Algorithm
» Generalization: Proposal distribution not required to be
symmetric.
» The new candidate sample z" is accepted with probability

= p* (T) | p*
A(z",27) = min (1, w)
() qi(z*[27))

¢ Properties
» We can show that p(z) is an invariant distribution of the Markov
chain defined by the Metropolis-Hastings algorithm.
» We show detailed balance:
. plz')qi(zlz’)
Az z) — PRacall
(2'.2) nuu{ o)
. where k labels the members of the set of possible transitions pl2)an(z'|2) Ax(2' 2) = min{p(z)g(2']2), 52 ) (z]2)}

considered. = min {i(z')qy (z[z'). p(z)q: (2'|z) }

plz)an(z|2) Az’ z) = p(z')ai(zlz)) Ax(z,2)

i(z)l(z.2z) = plz')I(z.2)

¢ Note
» Evaluation of acceptance criterion does not require normalizing
constant Z,.

~ When the proposal distributions are symmetric, Metropolis-

Note: This is wrong in the Bishop book!
Hastings reduces to the standard Metropolis algorithm.
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ide credit: Bernt Schicle B. Leibe B. Leibe
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Random Walks MCMC - Metropolis-Hastings Algorithm

¢ Example: Random Walk behavior
» Consider a state space consisting of the integers z € Z with
initial state z(1) = 0 and transition probabilities
p(z7 T = (7 0.5
p(2m) =27 4 1) = 025
p(2™) =20 —1) = 025

¢ Schematic illustration
» For continuous state spaces, a common
choice of proposal distribution is a
Gaussian centered on the current state.
= What should be the variance of the n\
proposal distribution?
- Large variance: rejection rate will be high for complex problems.
- The scale p of the proposal distribution should be as large as

. Analysis possible without incurring high rejection rates.
. Expected state at time 7 : ]E[Z(T)] -0 = p should be of the same order as the smallest length scale oy,.
. Variance: E[(Z(T))Q] = 'r/2 » This causes the system to explore the distribution by means of a

random walk.
- Undesired behavior: number of steps to arrive at state that is
independent of original state is of order (o nay/ T min)?-

- Strong correlations can slow down the Metropolis(-Hastings)
algorithm!

» After 7 steps, the random walk has only traversed a distance
that is on average proportional to .

= Central goal in MCMC is to avoid random walk behavior!

Advanced Machine Learning Winter’16
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Image source: CM, Bishop, 200¢

Gibbs Sampling Gibbs Sampling

e Approach
» MCMC-algorithm that is simple and widely applicable.
» May be seen as a special case of Metropolis-Hastings.

e Example
» Assume distribution p(z,, z,, z,).

. Replace z{” with new value drawn from ™" ~ p(z|2{”, 2{)

™ - Idea ° » Replace 2{™ with new value drawn fromz{" " ~ p(z,|2{") 2{7)

:..:' » Sample variable-wise: replace z; by a value drawn from the %’ » Replace z;) with new value drawn from z§7+1) ~ p(Z3|z§*“>,z§*“>

H distribution p(z;|z;). H » And so on...

8 - This means we update one coordinate at a time. E’

= g

5 ~ Repeat procedure either by cycling through all variables or by 8

% choosing the next variable. =

: £

8 8

= =

-3 o

@ 3

o 1=

c c

© ©
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ide adapted from Bernt Schiele B. Lethe ide credit: Rernt Schiele B. Leibe
Gibbs Sampling Discussion

¢ Properties
. Since the components are unchanged by sampling: z*,, = z,.
» The factor that determines the acceptance probability in the

¢ Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:
» Conditionals with a few discrete settings can be explicitly

Metropolis-Hastings is thus determined by normalized: ( )
* * *| gk z* z* pla, X, Thi i i
A ) = P donlals) _ I pla, el plaibeis) = oy < andeasy
' plz)a(z* 2] pleilzg)p(ze)p(z;|zg) wl PAT X .

. (we have used ¢,(z*|z) = p(z",Jzy) and p(z) = p(z,]zy) p(2y)- » Continuous conditionals are often only univariate.

= amenable to standard sampling methods.
» l.e. we get an algorithm which always accepts!

» In case of graphical models, the conditional distributions depend

= If you can compute (and sample from) the conditionals, you can only on the variables in the corresponding Markov blankets.
apply Gibbs sampling.

= The algorithm is completely parameter free.

= Can also be applied to subsets of variables.
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ide adapted from Zoubin G i B. Leibe

ide adapted from lain Murra 5. Leibe
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Gibbs Sampling How Should We Run MCMC?

* Example
» 20 iterations of Gibbs sampling on a bivariate Gaussian.

e Arbitrary initialization means starting iterations are bad
» Discard a “burn-in” period.

¢ How do we know if we have run for long enough?
» You don’t. That’s the problem.

¢ The samples are not independent
» Solution 1: Keep only every Mth sample (“thinning”).
» Solution 2: Keep all samples and use the simple Monte Carlo
estimator on MCMC samples
- It is consistent and unbiased if the chain has “burned in”.
= Use thinning only if computing f(x()) is expensive.

« For opinion on thinning, multiple runs, burn in, etc.

» Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science.
7(4):473{483, 1992. (http://www.jstor.org/stable/2246094)

» Note: strong correlations can slow down Gibbs sampling.

Advanced Machine Learning Winter’16
Advanced Machine Learning Winter’16

Slide credit: Zoubin i B. Leibe

ide adapted from lain Murra 8. Leibe
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Summary: Approximate Inference References and Further Reading

¢ Exact Bayesian Inference often intractable. ¢ Sampling methods for approximate inference are

« Rejection and Importance Sampling described in detail in Chapter 11 of Bishop’s book.

» Generate independent samples.

: . . . . Christopher M. Bishop
» Impractical in high-dimensional state spaces.

H
Pattern Recognition and Machine Learning

Information Theory. feenc, N
g eaming gooms Springer, 2006
¢ Markov Chain Monte Carlo (MCMC) g
» Simple .& effective (even though typically computationally s ALY A Mackay
expenswe). A ad Information Theory, Inference, and Learning Algorithms

. Scales well with the dimensionality of the state space. Cambridge University Press, 2003

~ Issues of convergence have to be considered carefully.

¢ Another good introduction to Monte Carlo methods can
be found in Chapter 29 of MacKay’s book (also available

online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)

¢ Gibbs Sampling
» Used extensively in practice.
» Parameter free

» Requires sampling conditional distributions.
B. Leibe
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