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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Gaussian Processes

• Learning with Latent Variables

 Probability Distributions

 Approximate Inference

• Deep Learning

 Neural Networks

 CNNs, RNNs, ResNets, etc.

B. Leibe
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Recap: GPs with Noise-free Observations

• Assume our observations are noise-free:

 Joint distribution of the training outputs f and test outputs f*
according to the prior:

 Calculation of posterior corresponds to conditioning the joint 

Gaussian prior distribution on the observations:

 with:

3
B. LeibeSlide adapted from Bernt Schiele
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Recap: GPs with Noisy Observations

• Joint distribution of the observed values and the test 

locations under the prior:

 Calculation of posterior corresponds to conditioning the joint 

Gaussian prior distribution on the observations:

 with:

 This is the key result that defines Gaussian process regression!

– Predictive distribution is Gaussian whose mean and variance depend 

on test points X* and on the kernel k(x,x’), evaluated on X.
4
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Recap: Bayesian Model Selection for GPs

• Goal

 Determine/learn different parameters of Gaussian Processes

• Hierarchy of parameters

 Lowest level

– w – e.g. parameters of a linear model.

 Mid-level (hyperparameters)

– µ – e.g. controlling prior distribution of w.

 Top level

– Typically discrete set of model structures Hi.

• Approach

 Inference takes place one level at a time.

5
B. LeibeSlide credit: Bernt Schiele
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Recap: Model Selection at Lowest Level

• Posterior of the parameters w is given by Bayes’ rule

• with

 p(t|X,w,Hi) likelihood and

 p(w|µ,Hi) prior parameters w,

 Denominator (normalizing constant) is independent of the 

parameters and is called marginal likelihood.

6
B. LeibeSlide credit: Bernt Schiele
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Recap: Model Selection at Mid Level

• Posterior of parameters µ is again given by Bayes’ rule

• where

 The marginal likelihood of the previous level p(t|X,µ,Hi)
plays the role of the likelihood of this level.

 p(µ|Hi) is the hyperprior (prior of the hyperparameters)

 Denominator (normalizing constant) is given by:

7
B. LeibeSlide credit: Bernt Schiele
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Recap: Model Selection at Top Level

• At the top level, we calculate the posterior of the model

• where

 Again, the denominator of the previous level p(t|X,Hi)
plays the role of the likelihood.

 p(Hi) is the prior of the model structure.

 Denominator (normalizing constant) is given by:

8
B. LeibeSlide credit: Bernt Schiele
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Recap: Bayesian Model Selection

• Discussion

 Marginal likelihood is main difference to non-Bayesian methods

 It automatically incorporates a trade-off

between the model fit and the model

complexity:

– A simple model can only account

for a limited range of possible

sets of target values – if a simple

model fits well, it obtains a high

marginal likelihood.

– A complex model can account for

a large range of possible sets of

target values – therefore, it can

never attain a very high marginal 

likelihood.
9
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Topics of This Lecture

• Approximate Inference

 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling

10
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Approximate Inference

• Exact Bayesian inference is often intractable.

 Often infeasible to evaluate the posterior distribution or to 

compute expectations w.r.t. the distribution.

– E.g. because the dimensionality of the latent space is too high.

– Or because the posterior distribution has a too complex form.

 Problems with continuous variables

– Required integrations may not have closed-form solutions.

 Problems with discrete variables

– Marginalization involves summing over all possible configurations of 

the hidden variables.

– There may be exponentially many such states.

 We need to resort to approximation schemes.

11
B. Leibe
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Two Classes of Approximation Schemes

• Deterministic approximations (Variational methods)

 Based on analytical approximations to the posterior distribution

– E.g. by assuming that it factorizes in a certain form

– Or that it has a certain parametric form (e.g. a Gaussian).

 Can never generate exact results, but are often scalable to large 

applications.

• Stochastic approximations (Sampling methods)

 Given infinite computationally resources, they can generate 

exact results.

 Approximation arises from the use of a finite amount of 

processor time.

 Enable the use of Bayesian techniques across many domains.

 But: computationally demanding, often limited to small-scale 

problems.

12
B. Leibe
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Topics of This Lecture

• Approximate Inference

 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling

13
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Sampling Idea

• Objective: 

 Evaluate expectation of a function f(z)

w.r.t. a probability distribution p(z).

• Sampling idea

 Draw L independent samples z(l) with l = 1,…,L from p(z).

 This allows the expectation to be approximated by a finite sum

 As long as the samples z(l) are drawn independently from p(z), 
then

 Unbiased estimate, independent of the dimension of z!
14
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Image source: C.M. Bishop, 2006
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Sampling – Challenges

• Problem 1: Samples might not be independent

 Effective sample size might be much smaller than apparent 

sample size.

• Problem 2: 

 If f(z) is small in regions where p(z) is large and vice versa, the 

expectation may be dominated by regions of small probability.

 Large sample sizes necessary to achieve sufficient accuracy.

15
B. Leibe Image source: C.M. Bishop, 2006
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Parametric Density Model

• Example: 

 A simple multivariate (d-dimensional) Gaussian model

 This is a “generative” model

in the sense that we can generate

samples x according to the 

distribution.

16
B. LeibeSlide adapted from Bernt Schiele
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Sampling from a Gaussian

• Given: 1-dim. Gaussian pdf (probability density function) 
p(x|¹,¾2) and the corresponding cumulative distribution:

• To draw samples from a Gaussian, we can invert the 

cumulative distribution function:

17
B. Leibe

F¹;¾2(x) =

Z x

¡1
p(xj¹; ¾2)dx

u » Uniform(0; 1)) F¡1
¹;¾2

(u) » p(xj¹;¾2)

F¹;¾2(x)p(xj¹; ¾2)

Slide credit: Bernt Schiele
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Sampling from a pdf (Transformation method)

• In general, assume we are given the pdf p(x) and the 

corresponding cumulative distribution:

• To draw samples from this pdf, we can invert the 

cumulative distribution function:

18
B. Leibe

F (x) =

Z x

¡1
p(z)dz

u » Uniform(0;1)) F¡1(u) » p(x)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Example 1: Sampling from Exponential Distrib.

• Exponential Distribution

where 0 · y < 1.

• Transformation sampling

 Indefinite Integral

 Inverse function

for a uniformly distributed input variable z.

19
B. Leibe Image source: Wikipedia
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Example 2: Sampling from Cauchy Distrib.

• Cauchy Distribution

• Transformation sampling

 Inverse of integral can be expressed as a tan function.

for a uniformly distributed input variable z.

20
B. Leibe Image source: Wikipedia
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Note: Efficient Sampling from a Gaussian

• Problem with transformation method

 Integral over Gaussian cannot be expressed

in analytical form.

 Standard transformation approach is very

inefficient.

• More efficient: Box-Muller Algorithm

 Generate pairs of uniformly distributed random numbers 

z1,z2 2 (-1,1).

 Discard each pair unless it satisfies                             . 

 This leads to a uniform distribution of points inside the unit 

circle with p(z1,z2) = 1/¼.

21
B. Leibe Image source: C.M. Bishop, 2006
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Box-Muller Algorithm (cont’d)

• Box-Muller Algorithm (cont’d)

 For each pair z1,z2 evaluate

 Then the joint distribution of y1 and y2 is given by 

 y1 and y2 are independent and each has a Gaussian distribution  

with mean ¹ and variance ¾2.

 If y ~ N(0,1), then ¾y + ¹ ~ N(¹,¾2).
22
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Box-Muller Algorithm (cont’d)

• Multivariate extension

 If z is a vector valued random variable whose components are 

independent and Gaussian distributed with N(0,1),

 Then y = ¹ + Lz will have mean ¹ and covariance §.

 Where § = LLT is the Cholesky decomposition of §.

23
B. Leibe
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Ancestral Sampling

• Generalization of this idea to directed graphical models.

 Joint probability factorizes into conditional probabilities:

• Ancestral sampling

 Assume the variables are ordered such that there are no links 

from any node to a lower-numbered node.

 Start with lowest-numbered node and draw a sample from its 

distribution.

 Cycle through each of the nodes in order and draw samples from 

the conditional distribution (where the parent variable is set to 

its sampled value).

24
B. Leibe

x̂1 » p(x1)

x̂n » p(xnjpan)

Image source: C.M. Bishop, 2006
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Logic Sampling

• Extension of Ancestral sampling

 Directed graph where some nodes are instantiated 

with observed values.

• Use ancestral sampling, except

 When sample is obtained for an observed variable, if they agree 

then sample value is retained and proceed to next variable.

 If they don’t agree, whole sample is discarded.

• Result

 Approach samples correctly from the posterior distribution.

 However, probability of accepting a sample decreases rapidly as 

the number of observed variables increases.

 Approach is rarely used in practice.

25
B. Leibe
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Discussion

• Transformation method

 Limited applicability, as we need to invert the indefinite integral 

of the required distribution p(z).

 This will only be feasible for a limited number of simple 

distributions.

• More general

 Rejection Sampling

 Importance Sampling

26
B. LeibeSlide adapted from Bernt Schiele
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Rejection Sampling

• Assumptions

 Sampling directly from p(z) is difficult.

 But we can easily evaluate p(z) (up to some normalization factor 

Zp):

• Idea

 We need some simpler distribution q(z) (called proposal 

distribution) from which we can draw samples.

 Choose a constant k such that: 

27
B. Leibe

p(z) =
1

Zp
~p(z)

8z : kq(z) ¸ ~p(z)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Rejection Sampling

• Sampling procedure

 Generate a number z0 from q(z).

 Generate a number u0 from the

uniform distribution over [0,kq(z0)].

 If                    reject sample, otherwise accept.

– Sample is rejected if it lies in the grey shaded area.

– The remaining pairs (u0,z0) have uniform distribution under the 

curve         .

• Discussion

 Original values of z are generated from the distribution q(z).

 Samples are accepted with probability

 k should be as small as possible!
28

B. LeibeSlide credit: Bernt Schiele

u0 > ~p(z0)

~p(z)

~p(z)=kq(z)

Image source: C.M. Bishop, 2006
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p(accept) ·
1

20000

Rejection Sampling – Discussion

• Limitation: high-dimensional spaces

 For rejection sampling to be of practical value, we require that 

kq(z) be close to the required distribution, so that the rate of 

rejection is minimal.

• Artificial example

 Assume that p(z) is Gaussian with covariance matrix 

 Assume that q(z) is Gaussian with covariance matrix 

 Obviously: 

 In D dimensions: k = (¾q/¾p)
D.

– Assume ¾q is just 1% larger than ¾p.

– D = 1000  k = 1.011000 ¸ 20,000

– And

 Often impractical to find good proposal distributions for high 

dimensions! 29
B. Leibe

¾2pI

¾2qI

¾2q ¸ ¾2p

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Example: Sampling from a Gamma Distrib.

• Gamma distribution

• Rejection sampling approach

 For a>1, Gamma distribution has a 

bell-shaped form.

 Suitable proposal distribution is

Cauchy (for which we can use

the transformation method).

 Generalize Cauchy slightly to ensure 

it is nowhere smaller than Gamma: y = b tan y + c for uniform y.

 This gives random numbers distributed according to 

30
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with optimal

rejection rate for
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Importance Sampling

• Approach

 Approximate expectations directly

(but does not enable to draw samples from p(z) directly).

 Goal:

• Simplistic strategy: Grid sampling

 Discretize z-space into a uniform grid.

 Evaluate the integrand as a sum of the form

 But: number of terms grows exponentially with number of 

dimensions!

31
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Importance Sampling

• Idea

 Use a proposal distribution q(z) from which it is easy to draw 

samples.

 Express expectations in the form of a finite sum over samples 

{z(l)} drawn from q(z).

 with importance weights

32
B. LeibeSlide credit: Bernt Schiele

rl =
p(z(l))

q(z(l))
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Importance Sampling

• Typical setting:

 p(z) can only be evaluated up to an unknown normalization 

constant

 q(z) can also be treated in a similar fashion.

 Then

 with:

33
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p(z) = ~p(z)=Zp

q(z) = ~q(z)=Zq

~rl =
~p(z(l))

~q(z(l))
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Importance Sampling

• Ratio of normalization constants can be evaluated

• and therefore

• with

34
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Zp

Zq
=

1

Zq

Z
~p(z)dz =

Z
~p(z(l))

~q(z(l))
q(z)dz ' 1

L

LX

l=1

~rl

wl =
~rlP
m ~rm

=

~p(z(l))

~q(z(l))P
m

~p(z(m))

~q(z(m))
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Importance Sampling – Discussion

• Observations

 Success of importance sampling depends crucially on how well 

the sampling distribution q(z) matches the desired distribution 

p(z).

 Often, p(z)f(z) is strongly varying and has a significant propor-

tion of its mass concentrated over small regions of z-space.

 Weights rl may be dominated by a few weights having large 

values.

 Practical issue: if none of the samples falls in the regions where 

p(z)f(z) is large…

– The results may be arbitrary in error.

– And there will be no diagnostic indication (no large variance in rl)!

 Key requirement for sampling distribution q(z):

– Should not be small or zero in regions where p(z) is significant!
35
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Topics of This Lecture

• Approximate Inference

 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling

36
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References and Further Reading

• Sampling methods for approximate inference are 

described in detail in Chapter 11 of Bishop’s book.

• Another good introduction to Monte Carlo methods can 

be found in Chapter 29 of MacKay’s book (also available 

online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)

B. Leibe
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