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RWTH/V/
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
> Regularization (Ridge, Lasso) 1
> Gaussian Processes

M=9 R
0.5 ,

e Learning with Latent Variables
> Probability Distributions Ao
> Approximate Inference

e Deep Learning

> Neural Networks
> CNNs, RNNs, ResNets, etc.
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RWTH
Recap: GPs with Noise-free Observations

e Assume our observations are noise-free:
{(Xn, fn) | m=1,...,N}

> Joint distribution of the training outputs f and test outputs f.
according to the prior:

HEQLEE )

» Calculation of posterior corresponds to conditioning the joint
Gaussian prior distribution on the observations:

£ X, X, f~ N(f,,covlfy]) £, = E[f|X,X,,f]

> with:

=
|

KX, X)K(X,X) 'f
covlf,] = K(X,,X,) - KX, X)K(X,X) 'K(X, X,)
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RWTH
Recap: GPs with Noisy Observations

e Joint distribution of the observed values and the test
locations under the prior:

o (o k)

» Calculation of posterior corresponds to conditioning the joint
Gaussian prior distribution on the observations:

f,|X., X, t ~ N(f, covlf,])  f, = E[f,|X,X,,t]
> with:

f, = K(X,,X)(K(X,X)+02I) 't

covlf,] = K(X,,X,) - K(X,,X) (KX, X)+02I)  K(X,X,)

= This is the key result that defines Gaussian process regression!

- Predictive distribution is Gaussian whose mean and variance depend
on test points X. and on the kernel k(x,x’), evaluated on X.
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RWTH
Recap: Bayesian Model Selection for GPs

e Goal
- Determine/learn different parameters of Gaussian Processes

e Hierarchy of parameters
- Lowest level
— w - e.g. parameters of a linear model.
> Mid-level (hyperparameters)
- 0 - e.g. controlling prior distribution of w.

> Top level
- Typically discrete set of model structures ..

e Approach

> Inference takes place one level at a time.
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RWTH
Recap: Model Selection at Lowest Level

e Posterior of the parameters w is given by Bayes’ rule
p(t’X, W, 97 %z)P(Wma X) Hz)

p(W’t,X,@,Hq;) = p(t|X,9,H7;)
_ p(t| X, w, H;)p(wl|0, H;)
p(t|X,9,H7;)
e with
> p(t| X,w,H;) likelihood and
> p(w|0,H,) prior parameters w,

> Denominator (normalizing constant) is independent of the
parameters and is called marginal likelihood.

p(]X, 8, 1,) = [ p(6]X, w0, Ho)p(wl|8, Hs)dw
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RWTH
Recap: Model Selection at Mid Level

e Posterior of parameters 6 is again given by Bayes’ rule

p(t|X, 0, H;:)p(0| X, H;)

p(t‘X, H@)
X0
p(t‘X, Hz)

e where

- The marginal likelihood of the previous level p(t | X,0,H,)
plays the role of the likelihood of this level.

> p(0|H,) is the hyperprior (prior of the hyperparameters)
> Denominator (normalizing constant) is given by:

p(b1X, Hy) = / p(b1X, 0, H:)p(6H:)do
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RWTH
Recap: Model Selection at Top Level

e At the top level, we calculate the posterior of the model

p(t| X, H;)p(H;)
p(t|X)

p(%i|ta X) —

e where

- Again, the denominator of the previous level p(t| X, H,)
plays the role of the likelihood.

> p(H,;) is the prior of the model structure.
> Denominator (normalizing constant) is given by:

p(t|X) Zp t|X, Hs)p(Hs)
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RWTH
Recap: Bayesian Model Selection

e Discussion
> Marginal likelihood is main difference to non-Bayesian methods

p(b1X, Hy) = / p(b6|X, 0, H:)p(6]H:)do

o ~ It automatically incorporates a trade-off

5 between the model fit and the model

= complexity: .

= . R T simple
> - A simple model can only account =" intermediate
g for a limited range of possible = - - complex
e sets of target values - if a simple =

o model fits well, it obtains a high 3

= marginal likelihood. %

& - A complex model can account for 3 ‘.i

E a large range of possible sets of S b

o target values - therefore, it can £ P '

§ never attain a very high marginal e P

2 likelihood. all possible data sets

' 9
Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006
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Topics of This Lecture

e Approximate Inference
~ Variational methods
- Sampling approaches

e Sampling approaches
~ Sampling from a distribution
~ Ancestral Sampling
~ Rejection Sampling
> Importance Sampling

e Markov Chain Monte Carlo
> Markov Chains
» Metropolis Algorithm
» Metropolis-Hastings Algorithm
> Gibbs Sampling

B. Leibe
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Approximate Inference

e Exact Bayesian inference is often intractable.

~ Often infeasible to evaluate the posterior distribution or to
compute expectations w.r.t. the distribution.
- E.g. because the dimensionality of the latent space is too high.
- Or because the posterior distribution has a too complex form.

~ Problems with continuous variables
- Required integrations may not have closed-form solutions.

> Problems with discrete variables

- Marginalization involves summing over all possible configurations of
the hidden variables.

- There may be exponentially many such states.

= We need to resort to approximation schemes.

11
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RWTH
Two Classes of Approximation Schemes

e Deterministic approximations (Variational methods)

- Based on analytical approximations to the posterior distribution
- E.g. by assuming that it factorizes in a certain form
- Or that it has a certain parametric form (e.g. a Gaussian).

= Can never generate exact results, but are often scalable to large
applications.

e Stochastic approximations (Sampling methods)

» Given infinite computationally resources, they can generate
exact results.

> Approximation arises from the use of a finite amount of
processor time.

= Enable the use of Bayesian techniques across many domains.

= But: computationally demanding, often limited to small-scale
problems.

12
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Topics of This Lecture

e Sampling approaches
~ Sampling from a distribution
~ Ancestral Sampling
~ Rejection Sampling
> Importance Sampling
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Sampling Idea

e Objective:
» Evaluate expectation of a function f(z) p(2)
w.r.t. a probability distribution p(z).

~ [ ta)p(a)dz

e Sampling idea -

- Draw L independent samples z!) with [ = 1,...,L from p(z).

f(z)

aY

> This allows the expectatlon to be approximated by a finite sum
L
1=1
- As long as the samples z()) are drawn independently from p(z),
then Em = E[/]

= Unbiased estimate, independent of the dimension of z!
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Sampling - Challenges

e Problem 1: Samples might not be independent

= Effective sample size might be much smaller than apparent

sample size.
p(2) f(z)

) /

e Problem 2: T

» If f(z) is small in regions where p(z) is large and vice versa, the
expectation may be dominated by regions of small probability.

= Large sample sizes necessary to achieve sufficient accuracy.

(9|
-
.
Q
P
=
(@))
.E
C
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
©
3
<

15
Image source: C.M. Bishop, 2006

B. Leibe



Parametric Density Model

e Example:
> A simple multivariate (d-dimensional) Gaussian model

P D) = s enn { 5 W TR - ) |

~ This is a “generative” model
in the sense that we can generate

° 3)00
samples x according to the ° %@"m ’
distribution. . ,;5’§§°

ogo ©0o
S8
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Sampling from a Gaussian

e Given: 1-dim. Gaussian pdf (probability density function)
p(x|u,0%) and the corresponding cumulative distribution:

Fuorla) = [ plaln,ode

— OO
e To draw samples from a Gaussian, we can invert the

cumulative distribution function:
u ~ Uniform(0,1) = Fu_iz (u) ~ p(x|w, o?)

p(alu, o) =
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RWTH
Sampling from a pdf (Transformation method)

e In general, assume we are given the pdf p(x) and the
corresponding cumulative distribution:
F(x) :/ p(z)dz

e To draw samples from this pdf, we can invert the
cumulative distribution function:

w ~ Uniform(0,1) = F~ 1 (u) ~ p(z)

1
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RWNTH
Example 1: Sampling from Exponential Distrib.

1.6

e Exponential Distribution N

1.2} A=l

A=15
p(y) = Aexp (—Ay) giﬁ\ |

0.6}

where 0 < y < 0. 0.4 K
0.2t

G'UU 1 2 3 4 3

e Transformation sampling
> Indefinite Integral h(y) —1—exp (_)\y)

> Inverse function
y=h(y)" =-2""In(1-2)

for a uniformly distributed input variable z.
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Example 2: Sampling from Cauchy Distrib.

0.7

1 1 o Ay
p(y) o 7?1 -+ y2 Inak
0.2
0= 2 0 2 4

e Transformation sampling
> Inverse of integral can be expressed as a tan function.

y=h(y)"" = tan(z)

for a uniformly distributed input variable z.
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RWTH
Note: Efficient Sampling from a Gaussian

. . 1
e Problem with transformation method
> Integral over Gaussian cannot be expressed
in analytical form. )
~ Standard transformation approach is very '
inefficient.
a1

* More efficient: Box-Muller Algorithm
~ Generate pairs of uniformly distributed random numbers
2,2, € (-1,1).
. Discard each pair unless it satisfies 72 = zf + z% < 1.

~ This leads to a uniform distribution of points inside the unit
circle with p(z,,z,) = 1/m.

21

B. Leibe Image source: C.M. Bishop, 2006
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Box-Muller Algorithm (cont’d)

e Box-Muller Algorithm (cont’d)
- For each pair z,z, evaluate

—9nr2\ 2 92\ Y2
poa (202 (22
r r
- Then the joint distribution of y, and y, is given by
8(21, ZQ)
P\Y1,Y2) = P(z1,22
rve) = P2 [0, )

= lx/lz—WeXp(—y%/Q): [\/127

= vy, and y, are independent and each has a Gaussian distribution

with mean u and variance o2.
. If y ~ N0,1), then oy + 1 ~ Mu,o0?).

B. Leibe

exp(—Yys/ 2)]
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Box-Muller Algorithm (cont’d)

e Multivariate extension

» If z is a vector valued random variable whose components are
independent and Gaussian distributed with A/(0,1),

> Then y = u + Lz will have mean y and covariance 3..
- Where X = LL" is the Cholesky decomposition of X.

B. Leibe
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Ancestral Sampling

e Generalization of this idea to directed graphical models.
- Joint probability factorizes into conditional probabilities: .

p(x) = ] | p(=xlpay)

e Ancestral sampling

> Assume the variables are ordered such that there are no links
from any node to a lower-numbered node.

~ Start with lowest-numbered node and draw a sample from its
distribution. &1 ~ plxr)

> Cycle through each of the nodes in order and draw samples from
the conditional distribution (where the parent variable is set to

its sampled value).
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Logic Sampling

e Extension of Ancestral sampling

~ Directed graph where some nodes are instantiated
with observed values.

e Use ancestral sampling, except

> When sample is obtained for an observed variable, if they agree
then sample value is retained and proceed to next variable.

~ If they don’t agree, whole sample is discarded.

e Result

~ Approach samples correctly from the posterior distribution.

- However, probability of accepting a sample decreases rapidly as
the number of observed variables increases.

= Approach is rarely used in practice.

25
B. Leibe
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Discussion

e Transformation method

» Limited applicability, as we need to invert the indefinite integral
of the required distribution p(z).

> This will only be feasible for a limited number of simple
distributions.

e More general
~ Rejection Sampling
> Importance Sampling

26
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Rejection Sampling

e Assumptions
» Sampling directly from p(z) is difficult.
» But we can easily evaluate p(z) (up to some normalization factor

Z,): 1
g p(z) — Z—p(z)
e |ldea g

- We need some simpler distribution ¢(z) (called proposal
distribution) from which we can draw samples.

. Choose a constant k such that: Vz : kq(z) > p(2)

kq(2o) kg(z)

20 z
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Rejection Sampling
e Sampling procedure kq(zo) kq(z)
- Generate a number z, from g(z).

- Generate a number v, from the / p()
uniform distribution over [0,kq(z,)]. --- .

20 z

- If ug > p(zy) reject sample, otherwise accept.
- Sample is rejected if it lies in the grey shaded area.
- The remaining pairs (u,,z,) have uniform distribution under the

curve p(z).
e Discussion
» Original values of z are generated from the distribution ¢(z).
. Samples are accepted with probability p(2)/kq(2)

p(accept) = ] ]fq(é))q(z)dz = %/ﬁ(z)dz

= k should be as small as possible!
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Rejection Sampling - Discussion

e Limitation: high-dimensional spaces

~ For rejection sampling to be of practical value, we require that
kq(z) be close to the required distribution, so that the rate of
rejection is minimal.

e Artificial example
Assume that p(z) is Gaussian with covariance matrix O'Z%I

Y

Assume that ¢(z) is Gaussian with covariance matrix JSI

Y

Obviously: 02 > aﬁ 05

Y

> In D dimensions: k = (0,/0,)". o
- Assume o is just 1% larger than o,. 0.5
- D=1000= £k = 1.0111000 > 20,000
- And p(accept) -

NI Lz N |
= Often impractical to find good proposal distributions for high

dimensions! 29
Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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RWTH
Example: Sampling from a Gamma Distrib.

¢ Gamma distribution

1
Gam(z|a,b) =

['(a)

b2 exp(—bz) a>1

0.15

e Rejection sampling approach

> For a>1, Gamma distribution has a 0.1}
bell-shaped form. ()

~ Suitable proposal distribution is 0.05 |
Cauchy (for which we can use

the transformation method). 5

» Generalize Cauchy slightly to ensure 2
it is nowhere smaller than Gamma: y = b tan y + ¢ for uniform .

~ This gives random numbers distributed according to

k with optimal c = a—1
14+ (2 —1c¢)?/b® rejectionratefor 2 _— 9, _ 1

q(z) =
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Importance Sampling

e Approach

~ Approximate expectations directly
(but does not enable to draw samples from p(z) directly).

- Goal: gy [ F (2)p(2)dz

e Simplistic strategy: Grid sampling
» Discretize z-space into a uniform grid.
» Evaluate the integrand as a sum of the form

E[f] =) f(z)p(z!")dz
=1

> But: number of terms grows exponentially with number of
dimensions!

Slide credit: Bernt Schiele B. Leibe
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Importance Sampling

e Idea

» Use a proposal distribution ¢(z) from which it is easy to draw
samples.

» Express expectations in the form of a finite sum over samples
{z"} drawn from ¢(z).

Bl = [ e~ [ 1@E g

2
STE
[

g~
N
S
=
~n
TN
N/‘\
—

> with importance weights

p(z")
q(z)

Slide credit: Bernt Schiele B. Leibe
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Importance Sampling

e Typical setting:
> p(z) can only be evaluated up to an unknown normalization
constant p(z) _ ﬁ(z)/Zp
> ¢(z) can also be treated in a similar fashion.

q(z) = q(z)/Z,

Blfl = [ £ dz——[f Z
Zq 1
Zy

L
- z_: (l)

2

> with: fFl ==
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Importance Sampling

e Ratio of normalization constants can be evaluated
p(zY) 1 <
___/ dz_/ i2D) (Z)dZZZ;”

e and therefore

L
~ Z wy f(z)
=1

e with ~ p(zM)

I D))
B P p(z(™)
2em T Yo

Slide credit: Bernt Schiele B. Leibe
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RWTH
Importance Sampling - Discussion

e Observations

~ Success of importance sampling depends crucially on how well
the sampling distribution ¢(z) matches the desired distribution
p(z).

- Often, p(z) f(z) is strongly varying and has a significant propor-
tion of its mass concentrated over small regions of z-space.

= Weights r, may be dominated by a few weights having large
values.

» Practical issue: if none of the samples falls in the regions where
p(z) f(z) is large...
- The results may be arbitrary in error.
- And there will be no diagnostic indication (no large variance in ;)!

- Key requirement for sampling distribution ¢(z):

- Should not be small or zero in regions where p(z) is significant!

. 35
Slide credit: Bernt Schiele B. Leibe



Topics of This Lecture

e Markov Chain Monte Carlo
> Markov Chains
» Metropolis Algorithm
» Metropolis-Hastings Algorithm
> Gibbs Sampling
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RWNTH
References and Further Reading

e Sampling methods for approximate inference are
described in detail in Chapter 11 of Bishop’s book.

Owvd) € vaoy Christopher M. Bishop g PATTERN RECOGNITION [
Pattern Recognition and Machine Learnin
b et Thacy Rt g g § > MACHINE LEARNING [ &

and Learning Algorithms Springer, 2006 5 CRISTOPHER M. BISHOP E

- ) David MacKay

Cambridge University Press, 2003

e Another good introduction to Monte Carlo methods can
be found in Chapter 29 of MacKay’s book (also available
online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)

. 53
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