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Recap: GPs with Noise-free Observations

RWTH/CHED

Recap: GPs with Noisy Observations

* Assume our observations are noise-free:
{(%ny fn) | m=1,...,N}

» Joint distribution of the training outputs f and test outputs f.
according to the prior:

{;‘ ] NN(07[K(X’X) K(X,XQ})

¢ Joint distribution of the observed values and the test
locations under the prior:
{ t } N (O {K(X, X)+ell K(X.X,) ])
f. l ! K(X.. X) K(X, X,)
» Calculation of posterior corresponds to conditioning the joint
Gaussian prior distribution on the observations:

LIX, Xt~ N(fcovlf]) £ = E[f|X,X,,¢

KX, X) KX, X.)

» Calculation of posterior corresponds to conditioning the joint
Gaussian prior distribution on the observations:

> with:
- _ 1
£ X, X f ~ N(£.. cov[f,]) f, = E[f|X, X,,f]

f. = K(X., X)(K(X,X)+02I) "t
covif,] = K(X., X.)— K(X., X) (E(X,X)+020) " K(X, X.)

» with:
f. = K(X,, X)K(X,X)"'f
covlf,] = K(X, X.)- K(X,, X)K(X,X) 'K(X,X,)

= This is the key result that defines Gaussian process regression!
- Predictive distribution is Gaussian whose mean and variance depend
on test points X. and on the kernel k(x,x’), evaluated on X.
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RWTH//CHE
Recap: Bayesian Model Selection for GPs

RWTH CHET
Recap: Model Selection at Lowest Level

¢ Goal
» Determine/learn different parameters of Gaussian Processes

¢ Posterior of the parameters w is given by Bayes’ rule

plwlt, X.0,%,) p(t| X, w, 8, H;)p(wl|d, X, H,;)

¢ Hierarchy of parameters p(t|X,0,H,)
» Lowest level _ p(t X, w H)p(wlf, Hi)
— w - e.g. parameters of a linear model. - P(t|X; g, ’H;)
» Mid-level (hyperparameters) o with
- 6 - e.g. controlling prior distribution of w. . p(t1X,w,H,) likelihood and
- Top level > p(wl0,H;) prior parameters w,

- Typically discrete set of model structures H,.
ypicaly ' » Denominator (normalizing constant) is independent of the

parameters and is called marginal likelihood.

P8, He) = [ (61X, w, w6, o)t

e Approach

» Inference takes place one level at a time.
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RWTH//CHE
Recap: Model Selection at Mid Level

RWTH CHET
Recap: Model Selection at Top Level

* Posterior of parameters 6 is again given by Bayes’ rule

p(t| X, 8, H:)p(0| X, H;)
Pt X, Hi)

_ p(t|X.8,M)p(8]Ms)

- p(t|X, H;)

¢ At the top level, we calculate the posterior of the model

p(t| X, Hi)p(Hi)

POt X, Hi) = p(tX)

p(Ha‘tX) =

e where

» The marginal likelihood of the previous level p(t|X,0,H;)
plays the role of the likelihood of this level.

» p(01H,;) is the hyperprior (prior of the hyperparameters)
» Denominator (normalizing constant) is given by:

P H0) = [ plelX.0)p(01)00

¢ where

» Again, the denominator of the previous level p(t | X,H,;)
plays the role of the likelihood.

» p(H;) is the prior of the model structure.
» Denominator (normalizing constant) is given by:

P(EIX) = p(6| X, Ho)p(H)
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Recap: Bayesian Model Selection Topics of This Lecture
o Discussion e Approximate Inference
» Marginal likelihood is main difference to non-Bayesian methods » Variational methods
p(e1,7) = [ plel,0,)p(617)0 - Sampling approaches
o . It automatically incorporates a trade-off Y ¢ Sampling approaches
g between the model fit and the model g » Sampling from a distribution
£ complexity: — £ - Ancestral Sampling
o - A simple model can only account - | intermeciate =4 » Rejection Sampling
g for a limited range of possible E T eamplex E . Importance Sampling
3 sets of target values - if a simple : 3
) s & s n ] .
o) mode_l flts_we!l, it obtains a high E M| ¢ Markov Chain Monte Carlo
£ marginal likelihood. 3 =
S = 5 » Markov Chains
s - A complex model can account for 3 ] N B
E a large range of possible sets of Ed E - Metropolis Algorithm
3 target values - therefore, it can € (3 » Metropolis-Hastings Algorithm
§ never attain a very high marginal - Ea— rE— E » Gibbs Sampling
] likelihood. all possiole data sets
2 . 2 10
ide credit: Berpt Schiele B. Lethe Image source: Rasmussen & Williame, 2009 B. Leibe
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Approximate Inference Two Classes of Approximation Schemes
« Exact Bayesian inference is often intractable.
» Often infeasible to evaluate the posterior distribution or to
compute expectations w.r.t. the distribution.
- E.g. because the dimensionality of the latent space is too high.
- Or because the posterior distribution has a too complex form.

¢ Deterministic approximations (Variational methods)
~ Based on analytical approximations to the posterior distribution
- E.g. by assuming that it factorizes in a certain form
- Or that it has a certain parametric form (e.g. a Gaussian).
= Can never generate exact results, but are often scalable to large
» Problems with continuous variables applications.

- Required integrations may not have closed-form solutions. e Stochastic approximations (Sampling methods)

» Given infinite computationally resources, they can generate
exact results.

» Approximation arises from the use of a finite amount of
processor time.

= Enable the use of Bayesian techniques across many domains.

= But: computationally demanding, often limited to small-scale
problems.

» Problems with discrete variables

- Marginalization involves summing over all possible configurations of
the hidden variables.

- There may be exponentially many such states.

= We need to resort to approximation schemes.
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Topics of This Lecture

« Sampling approaches
» Sampling from a distribution
» Ancestral Sampling
» Rejection Sampling
» Importance Sampling

B. Leibe

RWTH//CHE
Sampling - Challenges

¢ Problem 1: Samples might not be independent

= Effective sample size might be much smaller than apparent
sample size.

e Problem 2:

» If f(z) is small in regions where p(z) is large and vice versa, the
expectation may be dominated by regions of small probability.
= Large sample sizes necessary to achieve sufficient accuracy.

15
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RWTH//CHE
Sampling from a Gaussian

¢ Given: 1-dim. Gaussian pdf (probability density function)
p(x|u,0%) and the corresponding cumulative distribution:

@
Fp@) = [ plali )i
—o0
¢ To draw samples from a Gaussian, we can invert the
cumulative distribution function:
u ~ Uniform(0,1) = F;l (u) ~ p(x|p, o)

02

ide credit: Bernt Schiele B. Leibe
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Sampling Idea

¢ Objective:
~ Evaluate expectation of a function f(z)
w.r.t. a probability distribution p(z).
Bi7l = [ flata)da
¢ Sampling idea
» Draw L independent samples z() with [ = 1,..., L from p(z).
» This allows the expectation to be approximated by a finite sum

»(z)

1k
p_ I
f= I Z f(z)
=1
. As long as the samples z) are drawn independently from p(z),
then Bf] — 17

= Unbiased estimate, independent of the dimension of z!

ide adapted from Bernt Schiele 8. Leibe Jmage source: CM, Bishop, 200

Parametric Density Model

e Example:

» A simple multivariate (d-dimensional) Gaussian model
_ 1 1 Ty—1
p(x|p, X) = W‘”‘P{*g(x*ﬂ) = (X*H)}

» This is a “generative” model
in the sense that we can generate

samples x according to the Qé.‘., °
distribution. . ..gé?’

ide adapted from Rernt Schiele B. Leibe
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RWTH CHET
Sampling from a pdf (Transformation method)
¢ In general, assume we are given the pdf p(x) and the

corresponding cumulative distribution:

Fa) = [ sz

¢ To draw samples from this pdf, we can invert the

cumulative distribution function:

u ~ Uniform(0,1) = F~Y(u) ~ p(z)

18
Image source: C.M, Bishop, 200d
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RWTH//CHE
Example 1: Sampling from Exponential Distrib.

* Exponential Distribution 4 aoa

—_—
A=15

ply) = Aexp(-Ay) =7

where 0 < y < oco.

¢ Transformation sampling
» Indefinite Integral h(y) =1—exp(—Ay)
» Inverse function
y=h(y) ' =-A"n(l-2)

for a uniformly distributed input variable z.

B. Leibe

Image source: Wikipedi
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Note: Efficient Sampling from a Gaussian

1

¢ Problem with transformation method

» Integral over Gaussian cannot be expressed
in analytical form.

» Standard transformation approach is very

inefficient. \

1 - o

¢ More efficient: Box-Muller Algorithm
» Generate pairs of uniformly distributed random numbers

2,7, € (-1,1).

Discard each pair unless it satisfies 1% = z7 + 22 < 1.

This leads to a uniform distribution of points inside the unit
circle with p(z,,z,) = 1/m.

v

v

21
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Box-Muller Algorithm (cont’d)

¢ Multivariate extension

» If z is a vector valued random variable whose components are
independent and Gaussian distributed with A(0,1),

» Then y = p + Lz will have mean g and covariance X.
» Where X = LL7 is the Cholesky decomposition of 3.

B. Leibe
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Example 2: Sampling from Cauchy Distrib.

e Cauchy Distribution o

¢ Transformation sampling
» Inverse of integral can be expressed as a tan function.

y=h(y)~" = tan(z)
for a uniformly distributed input variable z.

20

Image source: Wikipedi
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Box-Muller Algorithm (cont’d)

¢ Box-Muller Algorithm (cont’d)
» For each pair z,,z, evaluate

—olnr2\? —2mnr2\
h==a\|\—53— V=2 —
T '

» Then the joint distribution of y, and y, is given by
3(21. 22)
Ay1.v2)

1 2 1 2 }
——exp(—y7/2)| | —=—=exp(—y3/2
| i) [z et
= y, and y, are independent and each has a Gaussian distribution

with mean p and variance o2.
- If y ~ N(0,1), then oy + p ~ N, 02).

B. Leibe

pln,yz) = pla,z2)
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RWTH CHET
Ancestral Sampling

¢ Generalization of this idea to directed graphical models.
» Joint probability factorize§ into conditional probabilities: o

K
p(x) = ] plklpay)
k=1

Y

¢ Ancestral sampling “Q 0=

» Assume the variables are ordered such that there are no links
from any node to a lower-numbered node.

» Start with lowest-numbered node and draw a sample from its
distribution. &1 ~ p(ry)

» Cycle through each of the nodes in order and draw samples from
the conditional distribution (where the parent variable is set to
its sampled value).

:L.TL ~ p(‘rn|pa’ﬂ/)

24
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Logic Sampling Discussion
« Extension of Ancestral sampling

» Directed graph where some nodes are instantiated
with observed values.

¢ Transformation method
» Limited applicability, as we need to invert the indefinite integral
of the required distribution p(z).

» This will only be feasible for a limited number of simple
distributions.

¢ Use ancestral sampling, except

» When sample is obtained for an observed variable, if they agree
then sample value is retained and proceed to next variable.

» If they don’t agree, whole sample is discarded.

* More general
» Rejection Sampling

» Importance Samplin
¢ Result P ping

» Approach samples correctly from the posterior distribution.

» However, probability of accepting a sample decreases rapidly as
the number of observed variables increases.

= Approach is rarely used in practice.

Advanced Machine Learning Winter’12
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Rejection Sampling Rejection Sampling

e Assumptions
» Sampling directly from p(z) is difficult.

» But we can easily evaluate p(z) (up to some normalization factor
Z):
P

e Sampling procedure
~ Generate a number z, from ¢(z).
» Generate a number u, from the
uniform distribution over [0,kq(z,)].
- If ugp > p(z0) reject sample, otherwise accept.
- Sample is rejected if it lies in the grey shaded area.

- The remaining pairs (u,,z,) have uniform distribution under the
curve p(z).

p(z) = Zl—pzxz)

¢ |dea
» We need some simpler distribution ¢(z) (called proposal
distribution) from which we can draw samples.
» Choose a constant k such that: Vz : kq(z) > p(z)

kq(z)

¢ Discussion
» Original values of z are generated from the distribution ¢(z).
» Samples are accepted w_ith probability ﬁ(Z)/kq(Z)

Advanced Machine Learning Winter’12
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z 1 .
placcept) = B(2) q(z)dz = - [ p(z)d=
Fq(z) k
= k should be as small as possible!
27 28
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Rejection Sampling - Discussion Example: Sampling from a Gamma Distrib.
¢ Limitation: high-dimensional spaces
» For rejection sampling to be of practical value, we require that
kq(z) be close to the required distribution, so that the rate of
rejection is minimal.

¢ Gamma distribution
Gam(z|a,

ba a—1

exp(—bz) @1

015

¢ Rejection sampling approach

» For a>1, Gamma distribution has a 01
bell-shaped form. (2}
Suitable proposal distribution is 005
Cauchy (for which we can use
the transformation method). B
Generalize Cauchy slightly to ensure
it is nowhere smaller than Gamma: y = btan y + ¢ for uniform y.

This gives random numbers distributed according to

¢ Artificial example
» Assume that p(z) is Gaussian with covariance matrix U;‘:I
» Assume that ¢(z) is Gaussian with covariance matrix U?I
» Obviously: crg > UZ
» In D dimensions: k = (o,/0,)".
- Assume o is just 1% larger than o, 2s
- D=1000 = k = 1.0110% > 20,000
- And p(accept) -

v

0 10 20 30|

v

v

20000 C s

o~ L]
= =
= i
o) [}
2 2
= =
=] =
= i=
= <
£ £
3 3
= =
o o
= =
£ £
] o
S S
= =
3 3
o Qo
= <
s g
H H

q(z) = k with optimal c=a-1
= Often impractical to find good proposal distributions for h1gh 1+ (2—¢)2/b?  rejection rate for 2 — o 1
dimensions! 29 = e
ide credit: Berpt Schiele B. Leibe Image source: CM, Bishoo, 200 B. Leibe Image source: CM, Bishoo, 200d
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Importance Sampling

e Approach

~ Approximate expectations directly
(but does not enable to draw samples from p(z) directly).

- Goal: E[f] :[f(z)j)(z)tiz

¢ Simplistic strategy: Grid sampling
» Discretize z-space into a uniform grid.
» Evaluate the integrand as a sum of the form
L

E[f) = f(z")p(z"))dz
=1

» But: number of terms grows exponentially with number of
dimensions!

Slide credit: Bernt Schiele B. Leibe

Importance Sampling

¢ Typical setting:
» p(z) can only be evaluated up to an unknown normalization
constant p(z) — ﬁ(z)/Zp
» ¢(z) can also be treated in a similar fashion.

q(z) = 4(2)/Z,

» Th
eri Zy [ plz)
Bl = [ sptayia = 5 [ )2 a(a)an
Z1 &
o 2 nfE")
=1
LB
> with: 7= q(zﬂ))
ide credit: Bernt Schiele B. Leibe 3
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TRWTH/ACHEN
Importance Sampling - Discussion

¢ Observations
» Success of importance sampling depends crucially on how well
the sampling distribution ¢(z) matches the desired distribution
p(z).
» Often, p(z)f(z) is strongly varying and has a significant propor-
tion of its mass concentrated over small regions of z-space.
= Weights r; may be dominated by a few weights having large
values.
» Practical issue: if none of the samples falls in the regions where
z) f(z) is large...
- The results may be arbitrary in error.
- And there will be no diagnostic indication (no large variance in 7)!

» Key requirement for sampling distribution ¢(z):

- Should not be small or zero in regions where p(z) is significant!
35
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Importance Sampling
¢ |dea
» Use a proposal distribution ¢(z) from which it is easy to draw
samples.

» Express expectations in the form of a finite sum over samples
{z"} drawn from ¢(z).

Blf = [ fawaiz = [ 10" g

~ Z ,zm)f 0y
L

| —

. with importance weights /
@) /]
= P2 /
q(z®)

ide credit: Bernt Schiele B. Leibe
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Importance Sampling

* Ratio of normalization constants can be evaluated
_ (= (l)
7= g o= [ Ko~ 13
¢ and therefore

Elf ~ Y wif)
1=1

o with

N (=)
w n =)
= = T oMy
B(z(™)
Yo Y, o)
34
ide credit: Bernt Schiele B. Leibe
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Topics of This Lecture

¢ Markov Chain Monte Carlo
» Markov Chains
» Metropolis Algorithm
» Metropolis-Hastings Algorithm
» Gibbs Sampling

B. Leibe
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References and Further Reading

« Sampling methods for approximate inference are
described in detail in Chapter 11 of Bishop’s book.

ot Christopher M. Bishop I
Pattern Recognition and Machine Learning =
ol b Springer, 2006
M%) - David MacKay
& i Information Theory, Inference, and Learning Algorithms

Cambridge University Press, 2003

¢ Another good introduction to Monte Carlo methods can
be found in Chapter 29 of MacKay’s book (also available
online: http://www.inference.phy.cam.ac.uk/mackay/itgrnn/book.html)
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