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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

Linear Regression

Regularization (Ridge, Lasso) 1
Kernels (Kernel Ridge Regression)
Gaussian Processes ; — e

Y

M=9 R
0.5 ,

Y

Y

Y

e Learning with Latent Variables .
> EM and Generalizations X
> Approximate Inference

e Deep Learning

> Neural Networks
> CNNs, RNNs, RBMs, etc.
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Topics of This Lecture

e Kernels
> Recap: Kernel trick
~ Constructing kernels

e Gaussian Processes
> Recap: Definition
Prediction with noise-free observations
» Prediction with noisy observations
~ GP Regression
Influence of hyperparameters

Y

Y

e Learning Gaussian Processes
~ Bayesian Model Selection
» Model selection for Gaussian Processes

e Applications
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Recap: Kernel Ridge Regression

¢ Dual definition

- Instead of working with w, substitute w = ®’a into J(w) and
write the result using the kernel matrix K = ®®7;

1 1
J(a) = §aTKKa —alKt + §tTt + %aTKa

» Solving for a, we obtain

a = (K+My) 't

e Prediction for a new input x:
. Writing k(x) for the vector with elements £, (x) = k(x,,X)

y(x) = W g(x) = a” Bo(x) = k(x)” (K + ALy) 't

—> The dual formulation allows the solution to be entirely
expressed in terms of the kernel function k(x,x’).

B. Leibe
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Recap: Properties of Kernels

e Theorem

> Letk: Xx X — R be a positive definite kernel function. Then
there exists a Hilbert Space H and a mapping ¢ . X — H such

that
k(z,3") = ((6(2), ()

- where (., .),, is the inner product in H.

e Translation
» Take any set X' and any function k£ : A x X — R.

» If k is a positive definite kernel, then we can use k to learn a
classifier for the elements in A
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e Note
> X can be any set, e.g. X' = “all videos on YouTube" or X = “all
permutations of {1, . . ., k}", or X = "the internet".

Slide credit: Christoph Lampert



Recap: The “Kernel Trick”

Any algorithm that uses data only in the form

of inner products can be kernelized.

e How to kernelize an algorithm
> Write the algorithm only in terms of inner products.
- Replace all inner products by kernel function evaluations.

= The resulting algorithm will do the same as the linear
version, but in the (hidden) feature space .

» Caveat: working in 7 is not a guarantee for better performance.
A good choice of k£ and model selection are important!
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Topics of This Lecture

e Gaussian Processes
> Recap: Definition
» Prediction with noise-free observations
» Prediction with noisy observations
~ GP Regression
> Influence of hyperparameters
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Recap: Gaussian Process

e Gaussian distribution
~ Probability distribution over scalars / vectors.

e Gaussian Process (generalization of Gaussian distrib.)
- Describes properties of functions.

> Function: Think of a function as a long vector where each entry
specifies the function value f(x;) at a particular point x,.

» Issue: How to deal with infinite number of points?

- If you ask only for properties of the function at a finite number of
points...

- Then inference in Gaussian Process gives you the same answer if
you ignore the infinitely many other points.

e Definition

> A Gaussian Process (GP) is a collection of random variables any

finite number of which has a joint Gaussian distribution.

. 14
Slide credit: Bernt Schiele B. Leibe
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Recap: Gaussian Process

e A Gaussian Process is completely defined by
> Mean function m(x) and

m(x) = E[f(x),

» Covariance function k(x,x’)

k(x,x') = E[(f(x) — m(x)(f(x) —m(x'))]

> We write the Gaussian Process (GP)

f(x) ~ GP(m(x), k(x,x))

Slide adapted from Bernt Schiele B. Leibe
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RWTH
Recap: GPs Define Prior over Functions

e Distribution over functions:

» Specification of covariance function implies distribution over
functions.

- l.e. we can draw samples from the distribution of functions
evaluated at a (finite) number of points.

> Procedure

=

s

£

=

(@)] . .

I= - We choose a number of input points X,

% - We write the corresponding covariance 1

g matrix (e.g. using SE) element-wise: = \\'/\ . xﬂ\

) < Y -'
: K(X., X.) 11 A\
) . ° | / \ N\
g - Then we generate a random Gaussian -1 \ Y, \/

= vector with this covariance matrix: ) \/

(¢D}

e f* NN(Oa K(X*vX*)) 5 0 5
(;S input, x

e Example of 3 functions

. sampled 16
Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006



Topics of This Lecture

e Gaussian Processes
> Recap: Definition
~ Prediction with noise-free observations
» Prediction with noisy observations
~ GP Regression
> Influence of hyperparameters
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RWNTH
Prediction with Noise-free Observations

e Assume our observations are noise-free:
{(%n, fu) [ n=1,...,N}
e Joint distribution of the training outputs f and test
outputs f. according to the prior:

HRCEE )

> K(X, X.) contains covariances for all pairs of training and test
points.

e To get the posterior (after including the observations)

» We need to restrict the above prior to contain only those
functions which agree with the observed values.

> Think of generating functions from the prior and rejecting those
that disagree with the observations (obviously prohibitive).

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(D]
=
e
(@)
®
>
©
(D]
(&)
[
©
>
©
<

. 19
Slide credit: Bernt Schiele B. Leibe



RWNTH
Prediction with Noise-free Observations

e Calculation of posterior: simple in GP framework

~ Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

X, X, f~N(f,,covlf,]) £, = E[f|X,X,,f]

> with:

f. = K(X,, X)K(X,X) 'f
covlf,] = K(X,,X,) - KX, X)K(X,X) 'K(X,X,)
~ This uses the general property of Gaussians that

_ | Maq S— ECLCL Eab = l“l’a|b — Na+2ab21;;l(xb_l~bb)
’ ba Db Sap = Zaa — ZavZpp Sha
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. 20
Slide credit: Bernt Schiele B. Leibe



Prediction with Noise-free Observations

e Example:

Prior Posterior using 5
noise-free observations

S WA A=
/X ‘é\’/

rm

= 0 5 -5 0
input, x input, X
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Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006
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Topics of This Lecture

e Gaussian Processes
> Recap: Definition
» Prediction with noise-free observations
» Prediction with noisy observations
~ GP Regression
> Influence of hyperparameters

B. Leibe
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RWTH
Prediction with Noisy Observations

e Typically, we assume noise in the observations
t=f(x)+e e ~ N(0,02)
e The prior on the noisy observations becomes
cov[Yp, Yg = k(Xp, Xq)+07,0,
> Written in compact form:

covly] = K(X, X)+021

e Joint distribution of the observed values and the test
locations under the prior is then:

v (o[ MO0 KR

Slide credit: Bernt Schiele B. Leibe
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RWTH
Prediction with Noisy Observations

e Calculation of posterior:

~ Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

£ X,, X, t ~N(f,cov[f]) £, = E[f|X,X,,t]

f, = K(X,,X)(K(X,X)+02I) 't
covlf,] = K(X,,X,)— K(X,,X) (K(X,X)+02I)" K(X,X,)

= This is the key result that defines Gaussian process regression!

- The predictive distribution is a Gaussian whose mean and variance
depend on the test points X. and on the kernel k(x,x’), evaluated
on the training data X.
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Slide credit: Bernt Schiele B. Leibe
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Gaussian Process Regression

e Example
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Slide credit: Bernt Schiele B. Leibe



RWTHAACHEN
. . UNIVERSITY
Gaussian Process Regression

3 N
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Slide credit: Bernt Schiele B. Leibe
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Discussion

o Keyresult: £ |X,, X t~N(f,cov[f,]) with
1

f, = K(X,,X) (K(X,X)+o.I) "t
cov[f*] — K(X*,X*) — K(X*,X) (K(X, X)+ai[)_1 K(X, X*)
e Observations
> The mean can be written in linear form

flx,) =k(x,X )| K (X, X)—|—0'2I] 1t = Yozn (X, X )

a n=1
- This form is commonly encountered in the kernel literature (—-SVM)

> The variance is the difference between two terms

V(xy) = k(x,, %) — k(x,, X)[K(X, X))+ 021 k(X xj)

- J -
' h'd

Prior variance Explanation of data X

28

Slide adapted from Carl Rasmussen B. Leibe
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Computational Complexity

e Computational complexity

~ Central operation in using GPs involves inverting a matrix of size
Nx N (the kernel matrix K(X,X)):

f, = K(X.,X)|K(X,X)+o2)"
covlf,] = K(X,,X,) - K(X,,X)|(K(X, X)+ai1)‘1K(X, X,)

= Effort in O(V?) for N data points!

> Compare this with the basis function model (—Lecture 3)

1
UL X8) ~ A (50T R 008 0x.)TS i)
n | -
S = -2 —®X)®(X)" + 5.1
= Effort in O(M3) for M basis functions.

, 30
B. Leibe



Computational Complexity

e Complexity of GP model
. Training effort: O(IN3) through matrix inversion
. Test effort: O(IN?) through vector-matrix multiplication

e Complexity of basis function model
. Training effort: O(M3)
. Test effort: O(M?)

e Discussion

> If the number of basis functions ) is smaller than the number of
data points /V, then the basis function model is more efficient.

- However, advantage of GP viewpoint is that we can consider
covariance functions that can only be expressed by an infinite
number of basis functions.

~ Still, exact GP methods become infeasible for large training sets,,
B. Leibe
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GP Regression Algorithm

e Very simple algorithm!

input: X (inputs). y (targets). k (covariance function), o2 (noise level).
X, (test input)

R

. L := cholesky(K + o21)
o

1 f _ iTE{L\y) } predictive mean eq. (2.25)
6: ‘;rf[; ]L-.\k;(x X,) —Vv'v } predictive variance eq. (2.26)
log p(y|X) :::—%yTa — > ;log Ly — 5 log 27 eq. (2.30)

8: return: f, (mean), V[f,| (variance), log p(y|X) (log marginal likelihood)

~ Based on the following equations (Matrix inv. < Cholesky fact.)
fo = K (K+02D) ¢
covif. = k(x.,x,) — k! (K + 0721[)_1 k,
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1 _ 1 N
logp(t|X) = —<t! (K +021) 1t—§10g|K+aiI|—7log27r

2 | 32
B. Leibe

Image source: Rasmussen & Williams, 2006
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Influence of Hyperparameters

* Most covariance functions have some free parameters.
» Example:

)2
ky(Xp,Xq) = 0F exp { (Xp — Xg) } + 0720

212

- Parameters: (l,o¢,0,)
- Signal variance: O
- Range of neighbor influence (called “length scale”): [
. . 2
- Observation noise: 0,

Slide credit: Bernt Schiele B. Leibe
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Influence of Hyperparameters

2 { (xp = %g)°

ky(Xp, Xq) = 0 exp 5.2 } +0720pq

e Examples for different settings of the length scale

2 (l, of, Un) — (o parameters set by optimizing
g the marginal likelihood)

c

= = (0.3,1.08,0.00005) =(1,1,0.1) = (3.0,1.16,0.89)
% of 2t ot N

3 1t 1t 1t i

c I o :

e

S | 1

= +

G +

(&] .

§ - inpgt, X > - inpgt X ° ™ inpSt, X >
©

<

' 34
Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006



Topics of This Lecture

e Learning Gaussian Processes
» Bayesian Model Selection
» Model selection for Gaussian Processes
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RW""'L;: >HEN

Learning Kernel Parameters

e Can we determine the length scale and noise levels from
training data?
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Slide credit: Bernt Schiele B. Leibe
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Bayesian Model Selection

e Goal
- Determine/learn different parameters of Gaussian Processes

e Hierarchy of parameters

» Lowest level
— w - e.g. parameters of a linear model.

> Mid-level (hyperparameters)
- 0 - e.g. controlling prior distribution of w.

> Top level
- Typically discrete set of model structures ..

e Approach

» Inference takes place one level at a time.

Slide credit: Bernt Schiele B. Leibe
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Model Selection at Lowest Level

e Posterior of the parameters w is given by Bayes’ rule
p(t’X, W, 97 %z)P(Wma X) Hz)

p(W’t,X,@,Hq;) = p(t|X,9,H7;)
_ p(t| X, w, H;)p(wl|0, H;)
p(t|X,9,H7;)
e with
> p(t| X,w,H;) likelihood and
> p(w|0,H,) prior parameters w,

> Denominator (normalizing constant) is independent of the
parameters and is called marginal likelihood.

p(]X, 8, 1,) = [ p(6]X, w0, Ho)p(wl|8, Hs)dw

Slide credit: Bernt Schiele B. Leibe
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Model Selection at Mid Level

e Posterior of parameters 6 is again given by Bayes’ rule

p(t|X, 0, H;:)p(0| X, H;)

p(t‘X, H@)
X0
p(t‘X, Hz)

e where

- The marginal likelihood of the previous level p(t | X,0,H,)
plays the role of the likelihood of this level.

> p(0|H,) is the hyperprior (prior of the hyperparameters)
> Denominator (normalizing constant) is given by:

(e Ho) = [ p(t]X,0, Hop(6]H:)
which is again a marginal likelihood (at the mid level).

Slide credit: Bernt Schiele B. Leibe
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Model Selection at Top Level

e At the top level, we calculate the posterior of the model

p(t| X, H;)p(H;)
p(t|X)

p(%i|ta X) —

e where

- Again, the denominator of the previous level p(t| X, H,)
plays the role of the likelihood.

> p(H,;) is the prior of the model structure.
> Denominator (normalizing constant) is given by:

p(t|X) Zp t|X, Hs)p(Hs)
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Slide credit: Bernt Schiele B. Leibe



Bayesian Model Selection

e Discussion
> Marginal likelihood is main difference to non-Bayesian methods

~ It automatically incorporates a trade-off
between the model fit and the model

complexity:
- A simple model can only account o[- simple
for a limited range of possible | e

sets of target values - if a simple
model fits well, it obtains a high
posterior.

- A complex model can account for
a large range of possible sets of
target values - therefore, it can
never attain a very high posterior.

marginal likelihood, p(yIX,H.

Y
all possible data sets
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Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006
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Bayesian Model Selection

e Computational issues

» Requires the evaluation of several integrals, which may or may
not be analytically tractable, depending on details of the
models.

> In general, one may have to resort to analytic approximations or
MCMC methods. (—Lecture 7)

e Model selection for GP regression
» GP regression models with Gaussian noise are an (important)
exception:
- Integrals over the parameters are analytically tractable and
- At the same time, the models are flexible.

. 42
Slide credit: Bernt Schiele B. Leibe
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Slide credit: Bernt Schiele
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Example

log—likelihood
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Slide credit: Bernt Schiele B. Leibe



RWTHAACHEN
UNIVERSITY
Example

log—likelihood
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107 10° 10
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Slide credit: Bernt Schiele B. Leibe
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Example

-.._---".' -1.5—

Slide credit: Bernt Schiele

B. Leibe

log—likelihood
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RWTHAACHEN
UNIVERSITY
Example

log-likelihood
|
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Slide credit: Bernt Schiele B. Leibe



RWTHAACHEN
UNIVERSITY
Example

log-likelihood
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Slide credit: Bernt Schiele B. Leibe



Example

Slide credit: Bernt Schiele
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log-likelihood
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Example
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Topics of This Lecture

e Kernels
~ Recap: Kernel trick
» Constructing kernels

e Gaussian Processes
» Recap: Definition
> Prediction with noise-free observations
» Prediction with noisy observations
» GP Regression
> Influence of hyperparameters

e Learning Gaussian Processes
» Bayesian Model Selection
~ Model selection for Gaussian Processes

e Applications

B. Leibe

CHEN
UNIVERSITY
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Application: Non-Linear Dimensionality Reduction

2D manifold
in 3D space

30D
articulated
body space

Slide credit: Andreas Geiger

B. Leibe

2D space

':l;.,;;. o= 7"._-~__1. 2D Iatent
e space
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Gaussian Process Latent Variable Mode

e At each time step t, we express our observations y as a
combination of basis functions ) of latent variables x.

D

v
Yyt = ij%' (x¢) + Ot
J

B,

D ﬁ'@...

e This is modeled as a Gaussian process...
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Slide credit: Andreas Geiger B. Leibe
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Example: Style-based Inverse Kinematics

Learned GPLVMs using a walk, a jump shot and a baseball pitch
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Slide credit: Andreas Geiger B. Leibe
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Application: Modeling Body Dynamics

e Task: estimate full body pose in m video frames.
» High-dimensional Y.

> Model body dynamics using hierarchical Gaussian process latent
variable model (hGPLVM) [Lawrence & Moore, ICML 2007].

Training

- Time (frame #) T =[t; € R

Latent space

Configuration
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Slide credit: Bernt Schiele B. Leibe [Andriluka, Roth, Schiele, CVPR’08]
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Application: Mapping b/w Pose and Appearance

e Appearance prediction
~ Regression problem
~ High-dimensional data on both sides %‘K

= Low-dim. representation needed .
for learning! /

e 3D joint locations « segm. image
e 60-dim. e ~2500-dim.

e Training with Motion-capture data possible
> Synthesized silhouettes for training
~ Background subtraction for test
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[Jaeggli, Koller-Meier, Van Gool, ACCV’07]



Learning a Generative Mapping

Body Pose -~ \Lgarn LLE dim. red.
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Experimental Results

e Difficulties
> Changing viewpoints
> Low resolution (50 px)
> Compression artifacts
~ Disturbing objects
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Original video
[Jaeggli, Koller-Meier, Van Gool, ACCV’07]
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Articulated Motion in Latent Space (ditferent work)

e Gaussian Process regression from latent space to

» Pose [—>= p(Pose|z) to recover original pose from latent space]
> Silhouette [ = p(Silhouette | z) to do inference on silhouettes]

Walking cycles have one Additional DOF encodes
main (periodic) DOF ,walking style“
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B. Leibe [Gammeter, Ess, Leibe, Schindler, Van Gool, ECCV’08]




Results

454 frames (~35 sec)
23 Pedestrians
20 detected by multi-body tracker
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References and Further Reading

e Kernels and Gaussian Processes are (shortly) described
in Chapters 6.1 and 6.4 of Bishop’s book.

Christopher M. Bishop = PATTERN RECOGNITION &

Pattern Recognition and Machine Learning ZPSNINATF G
Springer, 2006

Carl E. Rasmussen, Christopher K.I. Williams
Gaussian Processes for Machine Learning
MIT Press, 2006

e A better introduction can be found in Chapters 3 and 5
of the book by Rasmussen & Williams (also available
online: http://www.gaussianprocess.org/gpml/)
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