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Topics of This Lecture

¢ Kernels
» Recap: Kernel trick
» Constructing kernels

¢ Gaussian Processes
» Recap: Definition
» Prediction with noise-free observations
» Prediction with noisy observations
~ GP Regression
Influence of hyperparameters

v

¢ Learning Gaussian Processes
» Bayesian Model Selection
» Model selection for Gaussian Processes

¢ Applications

B. Leibe
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ide credit: Christoph | ampert.

Recap: Properties of Kernels

¢ Theorem
» Let k: X x X — R be a positive definite kernel function. Then

there exists a Hilbert Space H and a mapping ¢ : X — H such
that , ‘ ,
k(z,2') = (#(z), 6(a'))u
» where (., .),, is the inner product in H.
¢ Translation

» Take any set X and any function k: X' x X — R.

» If k is a positive definite kernel, then we can use k to learn a
classifier for the elements in A1

¢ Note
» X can be any set, e.g. X = “all videos on YouTube" or X = “all
permutations of {1, . . ., k}", or X = “the internet”.
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This Lecture: Advanced Machine Learning

 Regression Approaches f X =R
» Linear Regression T ,' ~
» Regularization (Ridge, Lasso) 1974 \\ Aot
» Kernels (Kernel Ridge Regression)
» Gaussian Processes

¢ Learning with Latent Variables
» EM and Generalizations
» Approximate Inference

¢ Deep Learning
» Neural Networks
» CNNs, RNNs, RBMs, etc. e

B. Leibe

Recap: Kernel Ridge Regression

¢ Dual definition

. Instead of working with w, substitute w = ®’a into J(w) and
write the result using the kernel matrix K = ®&7:

1 - 1 4 A
J(a) = —a"KKa—a"Kt + -t"t + —a’Ka
2 2 2
» Solving for a, we obtain
a = (K+/\I;v]_lt

¢ Prediction for a new input x:
» Writing k(x) for the vector with elements k,(x) = k(x,,x)
y(x) = wlig(x) = a’ Po(x) = k(x)" (K + \y) 't

=> The dual formulation allows the solution to be entirely
expressed in terms of the kernel function k(x,x’).

B. Leibe
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Recap: The “Kernel Trick”

Any algorithm that uses data only in the form
of inner products can be kernelized.

¢ How to kernelize an algorithm
» Write the algorithm only in terms of inner products.
» Replace all inner products by kernel function evaluations.

= The resulting algorithm will do the same as the linear
version, but in the (hidden) feature space #.
» Caveat: working in # is not a guarantee for better performance.
A good choice of k& and model selection are important!

ide credit: Christoph Lampert B. Leibe




Topics of This Lecture Recap: Gaussian Process
¢ Gaussian distribution
» Probability distribution over scalars / vectors.

¢ Gaussian Process (generalization of Gaussian distrib.)
» Describes properties of functions.
» Function: Think of a function as a long vector where each entry
specifies the function value f(x;) at a particular point x;.
» Issue: How to deal with infinite number of points?

- If you ask only for properties of the function at a finite number of
points...

¢ Gaussian Processes
» Recap: Definition
» Prediction with noise-free observations
» Prediction with noisy observations
» GP Regression
» Influence of hyperparameters

- Then inference in Gaussian Process gives you the same answer if
you ignore the infinitely many other points.

¢ Definition
» A Gaussian Process (GP) is a collection of random variables any
finite number of which has a joint Gaussian distribution.
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Recap: Gaussian Process Recap: GPs Define Prior over Functions

¢ A Gaussian Process is completely defined by
» Mean function m(x) and

m(x) = E[f(x)]

» Covariance function k(x,x’)

k(x,x') = E[(f(x) = m(x)(f(x) = m(x))]

¢ Distribution over functions:
» Specification of covariance function implies distribution over
functions.

» l.e. we can draw samples from the distribution of functions
evaluated at a (finite) number of points.

» Procedure
- We choose a number of input points X,

- We write the corresponding covariance
matrix (e.g. using SE) element-wise:
K(X., X.)
- Then we generate a random Gaussian -1
vector with this covariance matrix:

fo ~N(0, K(X,, X))

~ We write the Gaussian Process (GP)

f(&x) ~ GP(m(x), k(x, X))

output, f(x)
°

input, x
Example of 3 functions
sampled 16
Willams, 2004

ide credit: Rernt Schiele LA Jmage source: Rasmussen &
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Topics of This Lecture Prediction with Noise-free Observations

¢ Assume our observations are noise-free:
{(xn, fu) [ n=1,...,N}
¢ Joint distribution of the training outputs f and test
outputs f. according to the prior:

[ ff } ~N<0, [ ;I(((())(H)(()) l’lf(((;(())((*))D

¢ Gaussian Processes
» Recap: Definition
» Prediction with noise-free observations
» Prediction with noisy observations
» GP Regression

» K(X, X.) contains covariances for all pairs of training and test
> Influence of hyperparameters

points.

¢ To get the posterior (after including the observations)
» We need to restrict the above prior to contain only those
functions which agree with the observed values.
» Think of generating functions from the prior and rejecting those
that disagree with the observations (obviously prohibitive).
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Prediction with Noise-free Observations

¢ Calculation of posterior: simple in GP framework

» Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

f.|X,, X, £~ N(£,, cov[f.]) f, = E[f.|X, X,,f]

» with:

f, = K(X.,. X)K(X,X)"'f
covlf,] = K(X,,X,)- K(X.,,X)K(X, X)“K(X.X‘)
» This uses the general property of Gaussians that

. Mol 5 Y S N Bapp = Mo+ ZanZy (x5 — 1)
’ b b Bap = Baa — BarSp, Sha

Slide credit: Bernt Schiele B. Leibe

Topics of This Lecture

¢ Gaussian Processes
» Recap: Definition
» Prediction with noise-free observations
» Prediction with noisy observations
~ GP Regression
> Influence of hyperparameters

B. Leibe
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RWTH//CHE
Prediction with Noisy Observations

¢ Calculation of posterior:

» Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

LIX. Xt~ N eovifl]) £ = BEIX, Xt

» with:
£, = K(X.,X)(K(X,X)+o21) " ¢
covlf,] = K(X.,X.) - K(X., X) (K(X, X)+02I) ' K(X,X.)

= This is the key result that defines Gaussian process regression!
- The predictive distribution is a Gaussian whose mean and variance
depend on the test points X. and on the kernel k(x,x’), evaluated
on the training data X.
25

ide credit: Rernt Schiele B. Leibe
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Prediction with Noise-free Observations

e Example:

Prior Posterior using 5
noise-free observations

/

+

output, f(x)
L o

output, f(x)
|

] -2
-5 0 5 -5 0 £
input, x input, x
ide credit: Bernt Schiele 8. Leibe Image source: Rasmussen & Williams, 200
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Prediction with Noisy Observations

¢ Typically, we assume noise in the observations
t=f(x)+e e~ N(0,02)
¢ The prior on the noisy observations becomes
cov[yp, Yy] = k(xp. ) +02 6,
» Written in compact form:
covly| = K(X, X)+o] 1

¢ Joint distribution of the observed values and the test
locations under the prior is then:
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¢ ] (o [EX X0l K(X X))
f, : ’ K(X,.X) K(X,,X.)
24
ide credit: Rernt Schiele LA
RWTH/CHET

Gaussian Process Regression

¢ Example

26

ide credit: Bernt Schiele B. Leibe
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Gaussian Process Regression

f

Slide credit: Bernt Schiele B. Leibe

Computational Complexity

* Computational complexity

» Central operation in using GPs involves inverting a matrix of size
NxN (the kernel matrix K(X,X)):

£ = K(X., XO[K(X, X)+020) "}t
cvlf,] = K(X. X.)— K(X,, \)[(K(X, X)=o21) " |K (X, X.)

= Effort in O(N?) for N data points!

» Compare this with the basis function model (—>Lecture 3)
1 . .
U Xt) ~ A7 (o) ST B0 6k, "8 00,
n

1 1 -1
s = H<I>(X)n1>(1() +T;

= Effort in O(M?) for M basis functions.

B. Leibe

©
T
W
2
£
=
=
bS]
o
a
o
=
S
a
=
©
@
o
=
I
3
<

GP Regression Algorithm

¢ Very simple algorithm!

input: X (inputs), y (targets), k (covariance function), o2 (noise level),

X, (test input)
2 L= cholesky(K + a7 1)

o L'\(L\y) . .
: - L redictive mean eq. (2.2°
v o=k a }l)uthzlne mean eq. (2.25)
vi=L\k
; N - redictive variance eq. (2.26
6 V][] = kxx) = vV } predictive variance eq. (2.26)
logp(y|X) == -3y a -3, log Ly — 2 log 27 eq. (2.30)
& return: f, (mean), V[f.] (variance). log p(y|X) (log marginal likelihood)

» Based on the following equations (Matrix inv. «» Cholesky fact.)
Fo= K (K+020) "t
covlf.] = k(xa,x.) -k (K +a20) 'k,

log p(t|X)

Lopsp ap— 1 p N
_Et‘ (K +a2I) lt—glng\f\’-#nﬁfl—?lug?.rr

B. Leibe

Image source: Rasmussen & Williams, 200
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Discussion

e Keyresult: f,|X,. X, t ~N(f.,cov[f.])
£, = K(X.. X)(K(X, X)+o1) "¢
eovlf)] = K(X., X.)— K(X,, X) (K(X, X)+%1)~

with

YR(X, X))

¢ Observations
» The mean can be written in linear form

N
Foo) = k(x, X)E (X, X) + 020] 't =3 ank(x,x,).
(7

n=1
- This form is commonly encountered in the kernel literature (-»SVM)

» The variance is the difference between two terms
V(x,) = k(x,,x,) — k(x,, X)[K(X, X) + o217 k(X, x.)
-

Prior variance Explanation of data X

28

ide adapted from Carl B. Leibe

Computational Complexity

¢ Complexity of GP model
. Training effort: O(IN3) through matrix inversion
. Test effort: O(N?) through vector-matrix multiplication

e Complexity of basis function model
» Training effort: O(M?)
. Test effort: O(M?)

¢ Discussion
» If the number of basis functions ) is smaller than the number of
data points NN, then the basis function model is more efficient.
» However, advantage of GP viewpoint is that we can consider

covariance functions that can only be expressed by an infinite
number of basis functions.

~ Still, exact GP methods become infeasible for large training sets,
B. Leibe
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RWTH CHET
Influence of Hyperparameters

¢ Most covariance functions have some free parameters.
» Example:
X,

. X, —%4)° 2e
ky(xp, x4) = ff_f F‘CP{—(”QT‘)} + 028

- Parameters: (I,cy.0p)
- Signal variance: O
- Range of neighbor influence (called “length scale”): [
. . 2
- Observation noise:

ide credit: Bernt Schiele B. Leibe
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Influence of Hyperparameters Topics of This Lecture
P X, — X, 2 9 e
Foy (%, Xg) = rrf exp {7 ([27“)} + aiom
« Examples for different settings of the length scale
= {i. o (-;”) = (o parameters set by optimizing =
K ' the marginal likelihood) 5
= £
3 =(0.3,1.08,000005)  =(1,1,01) = (3.0,1.16,0.89) 2
c ] 2 2
g 1 Il N 1 ;-’p\\ 4 1 . E
[ > v - \ - — o . .
2 Hp ) N AR Fow 7 l| ¢ Learning Gaussian Processes
e 5 f‘f\\*\; X‘J"‘I | “'ﬂi 31 #ﬂ A, \\ /\f'/ E T // S -~ Bayesian Model Selection
z i it = W/ 2 P = » Model selection for Gaussian Processes
3 v 4 v l . 8
g S whe N T wmx §
2 R 2
slide credit: Bernt Schiele B. Leibe Jmage source: Rasmussen & Williams, 200 8. Leibe _
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Learning Kernel Parameters Bayesian Model Selection

* Can we determine the length scale and noise levels from
training data?

¢ Goal
» Determine/learn different parameters of Gaussian Processes

¢ Hierarchy of parameters
» Lowest level
— W - e.g. parameters of a linear model.
» Mid-level (hyperparameters)
- - e.g. controlling prior distribution of w.
» Top level
- Typically discrete set of model structures #,.

e Approach

» Inference takes place one level at a time.

Advanced Machine Learning Winter’16
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ide credit: Bernt Schiele B. Lethe ide credit: Bernt Schiele. B. Leibe
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Model Selection at Lowest Level Model Selection at Mid Level

¢ Posterior of the parameters w is given by Bayes’ rule
p(t| X, w, 0, H;)p(w|8, X, H;)

o Posterior of parameters 6 is again given by Bayes’ rule
p(E|X, 0, H,)p(0| X, M)

p(wlt, X, 0, H;) = DX, 0.7)) p(Bt, X, H;) = DX, )
_ DX, w, Hap(wl, Hi) _ p(6X. 8, Ha)p(8]H,)
p(t|X,0,H;) p(t| X, H,)
e with e where
» p(t|X,w,H;) likelihood and » The marginal likelihood of the previous level p(t|X,0,H,;)
> p(w|0,H;) prior parameters w, plays the role of the likelihood of this level.

» p(01H,;) is the hyperprior (prior of the hyperparameters)
» Denominator (normalizing constant) is given by:

p(e1,7) = [ plel,0,)p(617)0

» Denominator (normalizing constant) is independent of the
parameters and is called marginal likelihood.

p(U,0.7) = [ (e, e (o]0, 2w

Advanced Machine Learning Winter’16
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which is again a marginal likelihood (at the mid level).

ide credit: Rernt Schiele B. Leibe ide credit: Rernt Schiele 5. Leibe
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Model Selection at Top Level

* At the top level, we calculate the posterior of the model

P X, Ha)p(Hi)

PRI = )

e where

» Again, the denominator of the previous level p(t| X, H;)
plays the role of the likelihood.

» p(H,;) is the prior of the model structure.
» Denominator (normalizing constant) is given by:

P X) =D p(t|X, Ha)p(H)

40
B. Leibe

Slide credit: Bernt Schiele

Bayesian Model Selection

« Computational issues

» Requires the evaluation of several integrals, which may or may
not be analytically tractable, depending on details of the
models.

~ In general, one may have to resort to analytic approximations or
MCMC methods. (—Lecture 7)

¢ Model selection for GP regression
~ GP regression models with Gaussian noise are an (important)
exception:
- Integrals over the parameters are analytically tractable and
- At the same time, the models are flexible.

P

ide credit: Bernt Schiele B. Leibe
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Example

44
B. Leibe

ide credit: Rernt Schiele
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Bayesian Model Selection

¢ Discussion
» Marginal likelihood is main difference to non-Bayesian methods
» It automatically incorporates a trade-off
between the model fit and the model
complexity:

- A simple model can only account
for a limited range of possible
sets of target values - if a simple
model fits well, it obtains a high
posterior.

- A complex model can account for
a large range of possible sets of
target values - therefore, it can
never attain a very high posterior.

simple:
intermediale
compiex

marginal likelincod, p(yX,H)

all possible da?a sets

ide credit: Bernt Schiele 8. Leibe Image source: Rasmussen & Williams, 200

Example

43

ide credit: Bernt Schiele B. Leibe
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Example

Jog-likelihood
b

45

ide credit: Bernt Schiele B. Leibe




Example
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Slide credit: Bernt Schiele

B. Leibe
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Example

Advanced Machine Learni

ide credit: Bernt Schiele
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Example
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ide credit: Bernt Schiele

B. Leibe

10"
length scale
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ide credit: Bernt Schiele

Tog-tikelibood

47
B. Leibe

Example

10" 10" 10’
leagth scale

Advanced Machine Learning Winter’16
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Topics of This Lecture

* Applications

B. Leibe

RWTH//CHE
Gaussian Process Latent Variable Model

* At each time step ¢, we express our observations y as a
combination of basis functions 1 of latent variables x.

) ® ® -

yi = Zbﬂ/fj(xt) + 0y
J

¢ This is modeled as a Gaussian process...

(B)
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ide credit: Andreas Gejoar B. Lethe
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Application: Modeling Body Dynamics
¢ Task: estimate full body pose in m video frames.
» High-dimensional Y.
» Model body dynamics using hierarchical Gaussian process latent
variable model (hGPLVM) [Lawrence & Moore, ICML 2007].
b Time (frame #) T=[cR| Training
q
-y p(2T() = [ 42,10 Kr)
#E1
- Latent space Z=[z; eRY
L d D
; v p(Y(Z.9) = [[N(Y.il0.K,)
- ! i=1
Configuration Y =[y; e RV
69
ide credit: Berpt Schisle B. Leibe [Andriluka, Roth, Schiele, CVPR'OR]
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Application: Non-Linear Dimensionality Reduction

2D manifold

2D space
in 3D space :

2D latent

P e space
30D 7 =3
articulated & Fl V
body space < ;. !
4

‘L“\, ........ o
66
ide credit: Andreas Geiger. B. Leibe

Example: Style-based Inverse Kinematics

™ >

i

Learned GPLVMs using a walk, a jump shot and a baseball pitch
68

ide credit: Andreas Geiger, B. Leibe
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TRWTH/ T
Application: Mapping b/w Pose and Appearance

¢ Appearance prediction
» Regression problem y
» High-dimensional data on both sides *:rk
= Low-dim. representation needed \
for learning!

/
« 3D joint locations « segm. image

« 60-dim. « ~2500-dim.

¢ Training with Motion-capture data possible
» Synthesized silhouettes for training
» Background subtraction for test

Liaegeli, Koller-Meier, Van Gool ACCV’(:




Learning a Generative Mapping

Body Pose ~ ==~ <Leamn LLE dim. red.

-7 >
X : Body Pose X : Body Pose

rs pose

dynamic prior,

likelihood

generative mapping

Y:lmage |5, y:Appearance
PCA ti
high dim. ,ﬂ Descriptor: (low dim.

Appearance

Advanced Machine Learning Winter’16
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Articulated Motion in Latent Space (ifferent work)
* Gaussian Process regression from latent space to

» Pose [=—>= p(Pose|z) to recover original pose from latent space]
» Silhouette [ = p(Silhouette | z) to do inference on silhouettes]

Walking cycles have one
main (periodic) DOF

Additional DOF encodes
»walking style“

Advanced Machine Learning Winter’16
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B. Leibe

Ess.Leibe, schindler, Van Gool ECCV'08]
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References and Further Reading

¢ Kernels and Gaussian Processes are (shortly) described
in Chapters 6.1 and 6.4 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

Carl E. Rasmussen, Christopher K.I. Williams
Gaussian Processes for Machine Learning
MIT Press, 2006

¢ A better introduction can be found in Chapters 3 and 5
of the book by Rasmussen & Williams (also available
online: http://www.gaussianprocess.org/gpml/)
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B. Leibe

Experimental Results

¢ Difficulties
» Changing viewpoints
» Low resolution (50 px)
» Compression artifacts
Disturbing objects

Advanced Machine Learning Winter’16

Original video
Koller-Meier, Van Gool, ACCV'(;

Laegeli

Results

454 frames (~35 sec)
23 Pedestrians
20 detected by multi-body tracker
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Ess.Leibe, schindler, Van Gool ECCV'08]

B. Leibe



http://www.gaussianprocess.org/gpml/

