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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Learning with Latent Variables

 EM and Generalizations

 Approximate Inference

• Deep Learning

 Neural Networks

 CNNs, RNNs, RBMs, etc.

B. Leibe
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Topics of This Lecture

• Recap: Linear Regression

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Gaussian Processes
 Motivation

 Gaussian Process definition

 Squared exponential covariance function

 Prediction with noise-free observations

 Prediction with noisy observations

 GP Regression

 Influence of hyperparameters

• Applications
3
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Recap: Loss Functions for Regression

• The squared loss is not the only possible choice

 Poor choice when conditional distribution p(t|x) is multimodal.

• Simple generalization: Minkowski loss

 Expectation

• Minimum of E[Lq] is given by  

 Conditional mean    for q = 2,

 Conditional median for q = 1,

 Conditional mode for q = 0.
4

B. Leibe

E[Lq] =

Z Z
jy(x)¡ tjqp(x; t)dxdt



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
6

Recap: Linear Basis Function Models

• Generally, we consider models of the following form

 where Áj(x) are known as basis functions.

 In the simplest case, we use linear basis functions: Ád(x) = xd.

• Other popular basis functions

5
B. Leibe

Polynomial Gaussian Sigmoid
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Recap: Regularized Least-Squares

• Consider more general regularization functions

 “Lq norms”:

• Effect: Sparsity for q  1.

 Minimization tends to set many coefficients to zero
6

B. Leibe Image source: C.M. Bishop, 2006
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Recap: Lasso as Bayes Estimation

• L1 regularization (“The Lasso”)

• Interpretation as Bayes Estimation

 We can think of |wj|
q as the log-prior density for wj.

• Prior for Lasso (q = 1): Laplacian distribution

7
B. Leibe

with

Image source: Wikipedia
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Topics of This Lecture

• Recap: Linear Regression

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Gaussian Processes
 Motivation

 Gaussian Process definition

 Squared exponential covariance function

 Prediction with noise-free observations

 Prediction with noisy observations

 GP Regression

 Influence of hyperparameters

• Applications
8
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Introduction to Kernel Methods

• Dual representations

 Many linear models for regression and classification can be 

reformulated in terms of a dual representation, where 

predictions are based on linear combinations of a kernel 

function evaluated at training data points.

 For models that are based on a fixed nonlinear feature space 

mapping Á(x), the kernel function is given by

 We will see that by substituting the inner product by the kernel, 

we can achieve interesting extensions of many well-known 

algorithms…

9
B. Leibe
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Dual Representations: Derivation

• Consider a regularized linear regression model

with the solution

 We can write this as a linear combination of the Á(xn) with 

coefficients that are functions of w:

with

10
B. Leibe
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Dual Representations: Derivation

• Dual definition

 Instead of working with w, we can formulate the optimization 

for a by substituting w = ©Ta into J(w):

 Define the kernel matrix K = ©©T with elements

 Now, the sum-of-squares error can be written as

11
B. Leibe
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Kernel Ridge Regression

 Solving for a, we obtain

• Prediction for a new input x:

 Writing k(x) for the vector with elements

The dual formulation allows the solution to be entirely 

expressed in terms of the kernel function k(x,x’).

The resulting form is known as Kernel Ridge Regression

and allows us to perform non-linear regression.
12

B. Leibe Image source: Christoph Lampert
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Why use k(x,x’) instead of Á(x)TÁ(x’)?

1. Memory usage

 Storing Á(x1),… , Á(xN) requires O(NM) memory.

 Storing k(x1, x1),… , k(xN, xN) requires O(N2) memory.

2. Speed

 We might find an expression for k(xi, xj) that is faster to 

evaluate than first forming Á(x) and then computing Á(x)TÁ(x’).

 Example: comparing angles (x 2 [0, 2¼]):

13
B. LeibeSlide credit: Christoph Lampert
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Why use k(x,x’) instead of Á(x)TÁ(x’)?

3. Flexibility

 There are kernel functions k(xi, xj) for which we know that a 

feature transformation Á exists, but we don’t know what Á is.

 This allows us to work with far more general similarity functions.

 We can define kernels on strings, trees, graphs, …

4. Dimensionality

 Since we no longer need to explicitly compute Á(x), we can 

work with high-dimensional (even infinite-dim.) feature spaces.

• In the following, we take a closer look at the 

background behind kernels and at how to use them…

14
B. LeibeSlide adapted from Christoph Lampert
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Properties of Kernels

• Definition (Positive Definite Kernel Function)

 Let X be a non-empty set. A function k : X × X ! R is called 

positive definite kernel function, iff

 k is symmetric, i.e. k(x, x’) = k(x’, x) for all x, x’ 2 X, and

 for any set of points x1,… , xn 2 X, the matrix

is positive (semi-)definite, i.e. for all vectors x 2 Rn:

16
B. LeibeSlide credit: Christoph Lampert



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
6

Hilbert Spaces

• Definition (Hilbert Space)

 A Hilbert Space H is a vector space H with an inner product 

h. , .iH, e.g. a mapping

which is

 symmetric: hv, v‘iH = hv‘, viH for all v, v‘ 2 H,

 positive definite: hv, viH ¸ 0 for all v 2 H,

where hv, viH = 0 only for v = 0 2 H.

 bilinear: hav, v‘iH = ahv, v‘iH for v 2 H, a 2 R

hv + v‘, v‘‘iH = hv, v‘‘iH + hv‘, v‘‘iH

• We can treat a Hilbert space like some Rn, if we only use 

concepts like vectors, angles, distances. 

• Note: dimH = 1 is possible!
17
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h:; :iH : H £H !R

Slide credit: Christoph Lampert
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Properties of Kernels

• Theorem

 Let k: X × X ! R be a positive definite kernel function. Then 

there exists a Hilbert Space H and a mapping ' : X ! H such 

that

 where h. , .iH is the inner product in H.

• Translation

 Take any set X and any function k : X × X ! R.

 If k is a positive definite kernel, then we can use k to learn a 

(soft) maximum-margin classifier for the elements in X!

• Note

 X can be any set, e.g. X = "all videos on YouTube" or X = "all 

permutations of {1, . . . , k}", or X = "the internet".
18

Slide credit: Christoph Lampert
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Example: Bag of Visual Words Representation

• General framework in visual recognition

 Create a codebook (vocabulary) of prototypical image features

 Represent images as histograms over codebook activations

 Compare two images by any histogram kernel, e.g. Â2 kernel

19
B. LeibeSlide adapted from Christoph Lampert
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The “Kernel Trick”

Any algorithm that uses data only in the form 

of inner products can be kernelized.

• How to kernelize an algorithm

 Write the algorithm only in terms of inner products.

 Replace all inner products by kernel function evaluations.

 The resulting algorithm will do the same as the linear 
version, but in the (hidden) feature space H.

 Caveat: working in H is not a guarantee for better performance. 

A good choice of k and model selection are important!

20
B. LeibeSlide credit: Christoph Lampert
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Outlook

• Kernels are a widely used concept in Machine Learning

 They are the basis for Support Vector Machines from ML1.

 We will see several other kernelized algorithms in this lecture…

• Examples

 Gaussian Processes

 Support Vector Regression

 Kernel PCA

 Kernel k-Means

 …

• Let’s first examine the role of kernels in probabilistic 

discriminative models.

 This will lead us to Gaussian Processes.
21
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Topics of This Lecture

• Recap: Linear Regression

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Gaussian Processes
 Motivation

 Gaussian Process definition

 Squared exponential covariance function

 Prediction with noise-free observations

 Prediction with noisy observations

 GP Regression

 Influence of hyperparameters

• Applications
25
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Gaussian Processes

• So far…

 Considered linear regression models of the form

 where w is a vector of parameters

Á(x) is a vector of fixed non-linear basis functions.

 We showed that a prior distribution over w induced a prior 

distribution over functions y(x,w).

 Given a training set, we evaluated the posterior distribution 

over w  corresponding posterior over regression functions.

 This implies a predictive distribution p(t|x) for new inputs x.

• Gaussian process viewpoint

 Dispense with the parametric model and instead define a prior 

probability distribution over functions directly.

26
B. Leibe
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Gaussian Process

• Gaussian distribution

 Probability distribution over scalars / vectors.

• Gaussian process (generalization of Gaussian distrib.)

 Describes properties of functions.

 Function: Think of a function as a long vector where each entry 

specifies the function value f(xi) at a particular point xi.

 Issue: How to deal with infinite number of points?

– If you ask only for properties of the function at a finite number of 

points… 

– Then inference in Gaussian Process gives you the same answer if 

you ignore the infinitely many other points.

• Definition

 A Gaussian process (GP) is a collection of random variables any 

finite number of which has a joint Gaussian distribution.
27

B. LeibeSlide credit: Bernt Schiele
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Gaussian Process

• Example prior over functions p(f)

 Represents our prior belief about 

functions before seeing any data.

 Although specific functions don’t have 

mean of zero, the mean of f(x) values 

for any fixed x is zero (here).

 Favors smooth functions

– I.e. functions cannot vary too rapidly

– Smoothness is induced by the covariance function of the 

Gaussian Process.

 Learning in Gaussian processes

– Is mainly defined by finding suitable properties of the covariance 

function.

28
B. LeibeSlide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006
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Linear Regression Revisited

• Let’s return to the linear regression example and re-

derive the predictive distribution by working in terms of 
distributions over functions y(x,w)…

• Linear Regression Model

 Consider a prior distribution over w given by

 For any given value of w, the definition induces a particular 

function of x.

 The probability distribution over w therefore induces a 

probability distribution over functions y(x).

29
B. Leibe
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Linear Regression Revisited

• Linear Regression (cont’d)

 We want to evaluate this function at specific values of x, 

e.g. at the training data points x1,…,xN.

 We are therefore interested in the joint distribution of function 

values y(x1),…,y(xN), which we denote by the vector y.

 We know that y is a linear combination of Gaussian distributed 

variables and is therefore itself Gaussian.

 Only need to find its mean and covariance.

 with the kernel matrix K = {k(xn,xm)}nm. 

30
B. Leibe

E[y] = ©E[w] = 0

cov[y] = E[yyT ] = ©E[wwT ]©T =
1

®
©©T =K
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Gaussian Process

• This model is a particular example of a Gaussian 

Process.

 Linear regression with a zero-mean, isotropic Gaussian prior on 

w.

• General definition

 A Gaussian Process is defined as a probability distribution over 

functions y(x) such that the set of values of y(x) evaluated at an 

arbitrary set of points x1,…,xN have a Gaussian distribution. 

 A key point about GPs is that the joint distribution over N

variables y1,…,yN is completely specified by the second-order 

statistics, namely mean and covariance.

31
B. Leibe
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Gaussian Process

• A Gaussian process is completely defined by

 Mean function m(x) and

 Covariance function k(x,x’)

 We write the Gaussian process (GP)

32
B. Leibe

m(x) = E[f(x)]

k(x;x0) = E[(f(x)¡m(x)(f(x0)¡m(x0))]

f(x) » GP(m(x); k(x;x0))

Slide adapted from Bernt Schiele
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Gaussian Process

• Property

 Defined as a collection of random variables, which implies 

consistency.

 Consistency means

– If the GP specifies e.g.     (y1,y2) » N(¹,§)

– Then it must also specify        y1 » N(¹1,§11)

 I.e. examination of a larger set of variables does not change the 

distribution of a smaller set.

33
B. Leibe

§=

·
§11 §12

§21 §22

¸

Slide credit: Bernt Schiele
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Gaussian Process: Example

• Example:

 Bayesian linear regression model:

 With Gaussian prior:

 Mean:

 Covariance:

34
B. Leibe

f(x) = Á(x)Tw

w »N(0;§p)

E[f(x)] = Á(x)TE[w] = 0

E[f(x)f(x0)] = Á(x)TE[wwT ]Á(x0)

= Á(x)T§pÁ(x
0)

Slide credit: Bernt Schiele

= ~Á(x)T ~Á(x0) where
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Gaussian Process: Squared Exponential

• Typical covariance function

 Squared exponential (SE)

– Covariance function specifies the covariance between pairs of 

random variables

• Remarks

 Covariance between the outputs is written as a function 

between the inputs.

 The squared exponential covariance function corresponds to a 

Bayesian linear regression model with an infinite number of 

basis functions.

 For any positive definite covariance function k(.,.), there exists 

a (possibly infinite) expansion in terms of basis functions.

35
B. LeibeSlide credit: Bernt Schiele
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Gaussian Process: Prior over Functions

• Distribution over functions:

 Specification of covariance function implies distribution over 

functions.

 I.e. we can draw samples from the distribution of functions 

evaluated at a (finite) number of points.

 Procedure

– We choose a number of input points

– We write the corresponding covariance

matrix (e.g. using SE) element-wise:

– Then we generate a random Gaussian

vector with this covariance matrix:

36
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X?

K(X?;X?)

f? »N(0;K(X?;X?))

Example of 3 functions 

sampled
Slide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006
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Topics of This Lecture

• Recap: Linear Regression

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Gaussian Processes
 Motivation

 Gaussian Process definition

 Squared exponential covariance function

 Prediction with noise-free observations

 Prediction with noisy observations

 GP Regression

 Influence of hyperparameters

• Applications
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Prediction with Noise-free Observations

• Assume our observations are noise-free:

• Joint distribution of the training outputs f and test 

outputs f* according to the prior:

 K(X, X*) contains covariances for all pairs of training and test 

points.

• To get the posterior (after including the observations)

 We need to restrict the above prior to contain only those 

functions which agree with the observed values.

 Think of generating functions from the prior and rejecting those 

that disagree with the observations (obviously prohibitive).
38
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Prediction with Noise-free Observations

• Calculation of posterior: simple in GP framework

 Corresponds to conditioning the joint Gaussian prior distribution 

on the observations:

 with:

 This uses the general property of Gaussians that

39
B. LeibeSlide credit: Bernt Schiele

¹f? = E[f?jX;X?; t]
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Prediction with Noise-free Observations

• Example:

40
B. LeibeSlide credit: Bernt Schiele

Prior Posterior using 5

noise-free observations

Image source: Rasmussen & Williams, 2006
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Topics of This Lecture

• Recap: Linear Regression

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Gaussian Processes
 Motivation

 Gaussian Process definition

 Squared exponential covariance function

 Prediction with noise-free observations

 Prediction with noisy observations

 GP Regression

 Influence of hyperparameters

• Applications
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Prediction with Noisy Observations

• Typically, we assume noise in the observations

• The prior on the noisy observations becomes

 Written in compact form:

• Joint distribution of the observed values and the test 

locations under the prior is then:

42
B. LeibeSlide credit: Bernt Schiele

² »N(0; ¾2n)
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Prediction with Noisy Observations

• Calculation of posterior:

 Corresponds to conditioning the joint Gaussian prior distribution

on the observations:

 with:

 This is the key result that defines Gaussian process regression!

– The predictive distribution is a Gaussian whose mean and variance 

depend on the test points X* and on the kernel k(x,x’), evaluated 

on the training data X.

43
B. LeibeSlide credit: Bernt Schiele

¹f? = E[f?jX;X?; t]
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Gaussian Process Regression

• Example

44
B. LeibeSlide credit: Bernt Schiele
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Gaussian Process Regression

45
B. LeibeSlide credit: Bernt Schiele



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in

te
r’

1
6

Discussion

• Key result:                                               with

• Observations

 The mean can be written in linear form

– This form is commonly encountered in the kernel literature (SVM)

 The variance is the difference between two terms

46
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Prior variance Explanation of data X

Slide adapted from Carl Rasmussen

®
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Computational Complexity

• Computational complexity

 Central operation in using GPs involves inverting a matrix of size 

N£N (the kernel matrix K(X,X)):

 Effort in O(N3) for N data points!

 Compare this with the basis function model (Lecture 3)

 Effort in O(M3) for M basis functions.

47
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Computational Complexity

• Complexity of GP model

 Training effort: O(N3) through matrix inversion

 Test effort: O(N2) through vector-matrix multiplication

• Complexity of basis function model

 Training effort: O(M3)

 Test effort: O(M2)

• Discussion

 If the number of basis functions M is smaller than the number of 

data points N, then the basis function model is more efficient.

 However, advantage of GP viewpoint is that we can consider 

covariance functions that can only be expressed by an infinite 

number of basis functions.

 Still, exact GP methods become infeasible for large training sets.
48
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Topics of This Lecture

• Recap: Linear Regression

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Gaussian Processes
 Motivation

 Gaussian Process definition

 Squared exponential covariance function

 Prediction with noise-free observations

 Prediction with noisy observations

 GP Regression

 Influence of hyperparameters

• Applications
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Influence of Hyperparameters

• Most covariance functions have some free parameters.

 Example:

 Parameters:

– Signal variance:

– Range of neighbor influence (called “length scale”): l

– Observation noise: 

50
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¾2
f

Slide credit: Bernt Schiele
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Influence of Hyperparameters

• Examples for different settings of the length scale

51
B. LeibeSlide credit: Bernt Schiele

= (3:0;1:16;0:89)

(¾ parameters set by optimizing

the marginal likelihood)

Image source: Rasmussen & Williams, 2006

= (1;1;0:1)= (0:3;1:08;0:00005)
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Topics of This Lecture

• Recap: Linear Regression

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Gaussian Processes
 Motivation

 Gaussian Process definition

 Squared exponential covariance function

 Prediction with noise-free observations

 Prediction with noisy observations

 GP Regression

 Influence of hyperparameters

• Applications
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Application: Non-Linear Dimensionality Reduction

53
B. LeibeSlide credit: Andreas Geiger
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Gaussian Process Latent Variable Model

• At each time step t, we express our observations y as a 

combination of basis functions Ã of latent variables x.

• This is modeled as a Gaussian process…

54
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yt =
X

j

bjÃj(xt) + ±t

Slide credit: Andreas Geiger
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Example: Style-based Inverse Kinematics

55
B. LeibeSlide credit: Andreas Geiger

Learned GPLVMs using a walk, a jump shot and a baseball pitch
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Application: Modeling Body Dynamics

• Task: estimate full body pose in m video frames.

 High-dimensional Y*

 Model body dynamics using hierarchical Gaussian process latent 

variable model (hGPLVM) [Lawrence & Moore, ICML 2007].

56
B. Leibe [Andriluka, Roth, Schiele, CVPR’08]

Time (frame #)

Latent space

Configuration

Slide credit: Bernt Schiele

T= [ti 2 R]

Z= [zi 2 Rq]

Y = [yi 2 RD]

p(ZjT; µ̂) =

qY

i=1

N (Z:;ij0;KT)

p(YjZ; µ) =

DY

i=1

N (Y:;ij0;Kz)

Training
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Articulated Motion in Latent Space (different work)

• Gaussian Process regression from latent space to

 Pose [      = p(Pose|z) to recover original pose from latent space]

 Silhouette [       = p(Silhouette|z) to do inference on silhouettes]

57
B. Leibe [Gammeter, Ess, Leibe, Schindler, Van Gool, ECCV’08]

Walking cycles have one 

main (periodic) DOF 

Additional DOF encodes 

„walking style“
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Results

58
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454 frames  (~35 sec)

23 Pedestrians

20 detected by multi-body tracker

[Gammeter, Ess, Leibe, Schindler, Van Gool, ECCV’08]
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References and Further Reading

• Kernels and Gaussian Processes are (shortly) described 

in Chapters 6.1 and 6.4 of Bishop’s book.

• A better introduction can be found in Chapters 1 and 2 

of the book by Rasmussen & Williams (also available 

online: http://www.gaussianprocess.org/gpml/)
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