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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

Linear Regression

Regularization (Ridge, Lasso) 1
Kernels (Kernel Ridge Regression)
Gaussian Processes ; — e

Y

M=9 R
0.5 ,

Y

Y

Y

e Learning with Latent Variables .
> EM and Generalizations X
> Approximate Inference

e Deep Learning

> Neural Networks
> CNNs, RNNs, RBMs, etc.
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Topics of This Lecture

e Recap: Linear Regression

e Kernels
~ Dual representations
~ Kernel Ridge Regression
~ Properties of kernels

e Gaussian Processes
> Motivation
» Gaussian Process definition
> Squared exponential covariance function
» Prediction with noise-free observations
» Prediction with noisy observations
> GP Regression
> Influence of hyperparameters

e Applications

B. Leibe



RWTH
Recap: Loss Functions for Regression

e The squared loss is not the only possible choice
» Poor choice when conditional distribution p(¢ | x) is multimodal.

e Simple generalization: Minkowski loss

L(t,y(x)) = ly(x) — | Y
- Expectation -

E[L,] = / y(x) — t]7p(x, t)dxdt

e Minimum of E[L | is given by v

> Conditional mean for g =2,

» Conditional median for ¢ =1,
» Conditional mode for ¢ =0. E

B. Leibe
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RWNTH
Recap: Linear Basis Function Models

e Generally, we consider models of the following form
M—1

y(x,w) = ) wig(x) = whe(x)
- where ¢,(x) are known as basis functions.

- In the simplest case, we use linear basis functions: ¢,(x) = .

e Other popular basis functions

1 - ‘ I

0.75H \/ 0.75}

0.5t 0.5

0.25¢/ 0.257

)
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0
Polynomial Gaussian Sigmoid
B. Leibe




RWNTH
Recap: Regularized Least-Squares

e Consider more general regularization functions

, “Lynorms”: Z{t —w(xn)} + Z\wﬂq

w2 a w2 5

&

e Effect: Sparsity for ¢ < 1.

»  Minimization tends to set many coefficients to zero
B. Leibe
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Image source: C.M. Bishop, 2006



RWNTH
Recap: Lasso as Bayes Estimation

e L, regularization (“The Lasso”)

N M

. .1

W =argmin g 2:1{7577, — WTCb(Xn)}2 - )\zjl |w;|
n= J=

e Interpretation as Bayes Estimation
- We can think of |w |? as the log-prior density for w..

e Prior for Lasso (¢ = 1): Laplacian distribution

1 ] - ]
P(W) — > eXP{—|W|/’T} with T= = u
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Topics of This Lecture

e Kernels
~ Dual representations
~ Kernel Ridge Regression
> Properties of kernels
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Introduction to Kernel Methods

e Dual representations

> Many linear models for regression and classification can be
reformulated in terms of a dual representation, where
predictions are based on linear combinations of a kernel
function evaluated at training data points.

» For models that are based on a fixed nonlinear feature space
mapping ¢(x), the kernel function is given by

k(x,x') = o(x)" p(x')

» We will see that by substituting the inner product by the kernel,
we can achieve interesting extensions of many well-known
algorithms...
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RWNTH
Dual Representations: Derivation

e Consider a regularized linear regression model

1 A
J(w) = 5 Z{WTqb(Xn) — tn}2 + §WTW
n=1

with the solution

W= o S W) — i} o(xn)

- We can write this as a linear combination of the ¢(x,) with
coefficients that are functions of w:

N
w = Z and(x,) = ®'a
n=1

with q, = —%{qub(xn) —tn}

B. Leibe
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RWTH
Dual Representations: Derivation

¢ Dual definition

> Instead of working with w, we can formulate the optimization
for a by substituting w = ®’a into J(w):

R A
J(wW) = 3 Z{WTgb(Xn) — tn}2 + §WTW
n=1

1 1 A
J(a) = 5:Q{FchI)Tc1>c1>Ta —al'ea’t + §tTt + 5afl”cpcb‘lla

. Define the kernel matrix K = & &1 with elements

Kpm = Cb(xn)TCb(Xm) = k(xn, Xm)

> Now, the sum-of-squares error can be written as

1 1 A
J(a) = §aTKKa —alKt + §tTt + gaTKa

B. Leibe
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Kernel Ridge Regression

1 1 A
J(a) = §aTKKa —alKt + §tTt + gaTKa
> Solving for a, we obtain st
a = (K+AIy)™ 't
o Prediction for a new input x: T s

- Writing k(x) for the vector with elements £, (x) = k(x,,X)
y(x) =wlg(x) = a’ dp(x) = k(x)T (K + My) 't
—> The dual formulation allows the solution to be entirely

expressed in terms of the kernel function k(x,x’).

— The resulting form is known as Kernel Ridge Regression
and allows us to perform non-linear regression.
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RWTH
Why use k(x,x’) instead of ¢(x)"¢(x’)?

1. Memory usage
- Storing ¢(x,),... , ¢(xy) requires O(/NM) memory.
- Storing k(x, X.),... , k(x,, X) requires O(N?) memory.

2. Speed

- We might find an expression for k(x;, x;) that is faster to
evaluate than first forming ¢(x) and then computing ¢(x)"¢(x').

~ Example: comparing angles (x € [o, 27]):

(0(x:),9(25)) = ([cos(zs),sin(z;)], [cos(z;), sin(z;)])

— cos(z;) cos(z;) + sin(x;) sin(z;)

k(zi,x;) = cos(z; — z;)

13

Slide credit: Christoph Lampert B. Leibe



RWTH
Why use k(x,x’) instead of ¢(x)"¢(x’)?

3. Flexibility

- There are kernel functions k(x;, x;) for which we know that a
feature transformation ¢ exists, but we don’t know what ¢ is.

~ This allows us to work with far more general similarity functions.
- We can define kernels on strings, trees, graphs, ...

4. Dimensionality

» Since we no longer need to explicitly compute ¢(x), we can
work with high-dimensional (even infinite-dim.) feature spaces.

e In the following, we take a closer look at the
background behind kernels and at how to use them...
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Properties of Kernels

e Definition (Positive Definite Kernel Function)

- Let X’ be a non-empty set. A function & : X x X — R is called
positive definite kernel function, iff

> kis symmetric, i.e. k(x, =) = k(z’, z) for all x, 2" € X, and
~ for any set of points x ,... , ,, € X, the matrix

Kij = (k(zs,24))i

is positive (semi-)definite, i.e. for all vectors x € R":

N
Z XiKinj 2 0

1,0=1

Slide credit: Christoph Lampert B. Leibe

16



Hilbert Spaces

e Definition (Hilbert Space)
» A Hilbert Space 7 is a vector space H with an inner product
(., .)%, €.8. @ mapping
<.,.>7_[ - HxH—R

e We can treat a Hilbert space like some R”, if we only use
concepts like vectors, angles, distances.

e Note: dim#H = oo is possible!

B. Leibe

(o] . .

= which is

= - symmetric: (v, V)4, = (V', v)y, forallv, v € H,
=

> - positive definite: (v, v), > 0 forallv € H,

= where (v, v)3y =0only forv =0 € H.

Q

Ta:l: - bilinear: (av, v')y, = a(v, V'), forv e H, a € R
S (Ut 0, V)5 = (0, V7)y + (U, V)
=

©

3

S

3

<
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Properties of Kernels

e Theorem

> Letk: Xx X — R be a positive definite kernel function. Then
there exists a Hilbert Space H and a mapping © : X — H such

that
k(z,3") = ((6(2), ()

- where (., .),, is the inner product in H.

e Translation
» Take any set X' and any function k£ : A x X — R.

» If k is a positive definite kernel, then we can use k to learn a
(soft) maximum-margin classifier for the elements in A’

e Note
> X can be any set, e.g. X' = “all videos on YouTube" or X = “all
permutations of {1, . . ., k}", or X = "the internet".

Slide credit: Christoph Lampert
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RWTH
Example: Bag of Visual Words Representation

e General framework in visual recognition
» Create a codebook (vocabulary) of prototypical image features
» Represent images as histograms over codebook activations
. Compare two images by any histogram kernel, e.g. x? kernel

F2(h, h') = oxp (_} Z (hy = h3) )

hi + b

/ i
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The “Kernel Trick”

Any algorithm that uses data only in the form

of inner products can be kernelized.

e How to kernelize an algorithm
> Write the algorithm only in terms of inner products.
- Replace all inner products by kernel function evaluations.

= The resulting algorithm will do the same as the linear
version, but in the (hidden) feature space .

» Caveat: working in 7 is not a guarantee for better performance.
A good choice of k£ and model selection are important!

20

Slide credit: Christoph Lampert B. Leibe
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Outlook

e Kernels are a widely used concept in Machine Learning
~ They are the basis for Support Vector Machines from ML1.

~ We will see several other kernelized algorithms in this lecture...

e Examples

> Gaussian Processes
Support Vector Regression
Kernel PCA
Kernel k-Means

Y

Y

Y

e Let’s first examine the role of kernels in probabilistic
discriminative models.
= This will lead us to Gaussian Processes.

B. Leibe
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Topics of This Lecture

e Gaussian Processes
> Motivation
» Gaussian Process definition
> Squared exponential covariance function
» Prediction with noise-free observations
» Prediction with noisy observations
> GP Regression
> Influence of hyperparameters

B. Leibe
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Gaussian Processes

e So far...
~ Considered linear regression models of the form
T
y(x,w) = w’ ¢(x)
- where w is a vector of parameters
@(x) is a vector of fixed non-linear basis functions.

- We showed that a prior distribution over w induced a prior
distribution over functions y(x,w).

~ Given a training set, we evaluated the posterior distribution
over w = corresponding posterior over regression functions.

» This implies a predictive distribution p(t | x) for new inputs x.

e Gaussian process viewpoint

~ Dispense with the parametric model and instead define a prior
probability distribution over functions directly.

B. Leibe
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Gaussian Process

e Gaussian distribution
~ Probability distribution over scalars / vectors.

e Gaussian process (generalization of Gaussian distrib.)
- Describes properties of functions.

> Function: Think of a function as a long vector where each entry
specifies the function value f(x;) at a particular point x,.

» Issue: How to deal with infinite number of points?

- If you ask only for properties of the function at a finite number of
points...

- Then inference in Gaussian Process gives you the same answer if
you ignore the infinitely many other points.

e Definition

> A Gaussian process (GP) is a collection of random variables any

finite number of which has a joint Gaussian distribution.

. 27
Slide credit: Bernt Schiele B. Leibe



Gaussian Process

e Example prior over functions p(f) )
~ Represents our prior belief about 1
functions before seeing any data. _

2 0
- Although specific functions don’t have
mean of zero, the mean of f(x) values
for any fixed x is zero (here).

1

-2

0 0.5 i
. input, x
> Favors smooth functions

- l.e. functions cannot vary too rapidly

- Smoothness is induced by the covariance function of the
Gaussian Process.

> Learning in Gaussian processes

- Is mainly defined by finding suitable properties of the covariance
function.
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Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006




Linear Regression Revisited

e Let’s return to the linear regression example and re-
derive the predictive distribution by working in terms of
distributions over functions y(x,w)...

e Linear Regression Model
y(x,w) = w' ¢(x)

~ Consider a prior distribution over w given by
p(w) = N(w[0,a'T)

~ For any given value of w, the definition induces a particular
function of x.

» The probability distribution over w therefore induces a
probability distribution over functions y(x).
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Linear Regression Revisited

e Linear Regression (cont’d)
> We want to evaluate this function at specific values of x,
e.g. at the training data points x_,...,.x .

- We are therefore interested in the joint distribution of function
values y(x,),...,y(x), which we denote by the vector y.

y = dw
» We know that y is a linear combination of Gaussian distributed

variables and is therefore itself Gaussian.
= Only need to find its mean and covariance.

Ely] = ®E[w] =0
1

covly] = Elyy?] = ®E[ww’]®! = a<I><1>T =K

- with the kernel matrix K = {k(x,,x,.)},.,.-

_ 30
B. Leibe



Gaussian Process

e This model is a particular example of a Gaussian
Process.

~ Linear regression with a zero-mean, isotropic Gaussian prior on
w.

e General definition
> A Gaussian Process is defined as a probability distribution over
functions y(x) such that the set of values of y(x) evaluated at an
arbitrary set of points x ,...,x, have a Gaussian distribution.

» A key point about GPs is that the joint distribution over N
variables vy_,...,y, is completely specified by the second-order
statistics, namely mean and covariance.
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Gaussian Process

e A Gaussian process is completely defined by
> Mean function m(x) and

m(x) = E[f(x),

» Covariance function k(x,x’)

k(x,x') = E[(f(x) — m(x)(f(x) —m(x'))]

> We write the Gaussian process (GP)

f(x) ~ GP(m(x), k(x,x))

Slide adapted from Bernt Schiele B. Leibe
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Gaussian Process

e Property

- Defined as a collection of random variables, which implies
consistency.

> Consistency means

- If the GP specifies e.g.  (y;,v3) ~ Mu,~) — [ 211 212 ]
291 22

- Then it must also specify Yy ~ N(q, 241)

» l.e. examination of a larger set of variables does not change the
distribution of a smaller set.
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({e]
-—
.
Q
P
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
(1)
3
<

Gaussian Process: Example

e Example:

. Bayesian linear regression model: f(x) = ¢(x)'w

. With Gaussian prior: w ~ N(0, )

— Covariance:

E[f(x)f(x)] = ¢(x)"Eww’]p(x)

= ¢(X)T2p¢(xl)
P(x) " p(x')

Slide credit: Bernt Schiele B. Leibe

where

¢(x)

5 ¢(x)

34
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RWTH
Gaussian Process: Squared Exponential

e Typical covariance function

> Squared exponential (SE)

- Covariance function specifies the covariance between pairs of
random variables

covlf05). x4)] = Ky ) = exp { ~ 30— 3, |

e Remarks

~ Covariance between the outputs is written as a function
between the inputs.

» The squared exponential covariance function corresponds to a
Bayesian linear regression model with an infinite number of
basis functions.

- For any positive definite covariance function £(.,.), there exists
a (possibly infinite) expansion in terms of basis functions.

. 35
Slide credit: Bernt Schiele B. Leibe



RWNTH
Gaussian Process: Prior over Functions

e Distribution over functions:

» Specification of covariance function implies distribution over
functions.

- l.e. we can draw samples from the distribution of functions
evaluated at a (finite) number of points.

> Procedure

©

o

£

=

O . .

I= - We choose a number of input points X,

= - We write the corresponding covariance

g matrix (e.g. using SE) element-wise: £ \\'/\ 3 p\

) < N -'
£ K(X*,X*) 2 0| A\ / H‘« /\
) . ° | / \ N\
© - Then we generate a random Gaussian -1 \ / \/

= : : : . \/

- vector with this covariance matrix: _2

8 N(0,K(X,, X -

c f* ™~ ( 9 ( *9 *)) 5 0 5
g input, x

) Example of 3 functions

. sampled 36
Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006



Topics of This Lecture

e Gaussian Processes
> Motivation
» Gaussian Process definition
> Squared exponential covariance function
> Prediction with noise-free observations
» Prediction with noisy observations
> GP Regression
> Influence of hyperparameters
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RWNTH
Prediction with Noise-free Observations

e Assume our observations are noise-free:
{(%n, fu) [ n=1,...,N}
e Joint distribution of the training outputs f and test
outputs f. according to the prior:

HRCEE )

> K(X, X.) contains covariances for all pairs of training and test
points.

e To get the posterior (after including the observations)

» We need to restrict the above prior to contain only those
functions which agree with the observed values.

> Think of generating functions from the prior and rejecting those
that disagree with the observations (obviously prohibitive).
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Slide credit: Bernt Schiele B. Leibe
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RWNTH
Prediction with Noise-free Observations

e Calculation of posterior: simple in GP framework

~ Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

X, X, f~N(f,,cov[f,]) £, = E[f,|X,X,,t]

> with:

f. = K(X,, X)K(X,X) 'f
covlf,] = K(X,,X,) - KX, X)K(X,X) 'K(X,X,)
~ This uses the general property of Gaussians that
a — a + Ea 2_1 o
. K, . Daa  2ab N b K b bb_(lxb Hy)
b 2pb Sap = Baa — Bav gy Sha

. 39
Slide credit: Bernt Schiele B. Leibe



Prediction with Noise-free Observations

e Example:

Prior Posterior using 5
noise-free observations

1 Q1- 8
/X 3. /
\/

rm

5 0 5 -5 "0
iInput, x input, x
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Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006
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Topics of This Lecture

e Gaussian Processes
> Motivation
» Gaussian Process definition
> Squared exponential covariance function
» Prediction with noise-free observations
» Prediction with noisy observations
> GP Regression
> Influence of hyperparameters

B. Leibe
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RWTH
Prediction with Noisy Observations

e Typically, we assume noise in the observations
t=f(x)+e e ~ N(0,02)
e The prior on the noisy observations becomes
cov[Yp, Yg = k(Xp, Xq)+07,0,
> Written in compact form:

covly] = K(X, X)+021

e Joint distribution of the observed values and the test
locations under the prior is then:

v (o[ MO0 KR

Slide credit: Bernt Schiele B. Leibe
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RWTH
Prediction with Noisy Observations

e Calculation of posterior:

~ Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

£ X,, X, t ~N(f,cov[f]) £, = E[f|X,X,,t]

f, = K(X,,X)(K(X,X)+02I) 't
covlf,] = K(X,,X,)— K(X,,X) (K(X,X)+02I)" K(X,X,)

= This is the key result that defines Gaussian process regression!
- The predictive distribution is a Gaussian whose mean and variance
depend on the test points X. and on the kernel k(x,x’), evaluated

on the training data X.

. 43
Slide credit: Bernt Schiele B. Leibe
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Gaussian Process Regression

e Example
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Gaussian Process Regression
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Discussion

o Keyresult: £ |X,, X t~N(f,cov[f,]) with

f, = K(X.,X)(K(X,X)+o2I) 't

covlf,] = K(X,, Xs) — K(X4, X) (K(X, X)"‘U?z[)_l

K(X, X,)

e Observations
> The mean can be written in linear form

flx,) =k(x,X )| K (X, X)—|—0'2I] 1t = Yozn (X, X )

a n=1
- This form is commonly encountered in the kernel literature (—-SVM)

> The variance is the difference between two terms

V(xy) = k(x,, %) — k(x,, X)[K(X, X))+ 021 k(X xj)

- J -
' h'd

Prior variance Explanation of data X

46

Slide adapted from Carl Rasmussen B. Leibe
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Computational Complexity

e Computational complexity

~ Central operation in using GPs involves inverting a matrix of size
Nx N (the kernel matrix K(X,X)):

f, = K(X.,X)|K(X,X)+o2)"
covlf,] = K(X,,X,) - K(X,,X)|(K(X, X)+ai1)‘1K(X, X,)

= Effort in O(V?) for N data points!

> Compare this with the basis function model (—Lecture 3)

1
UL X8) ~ A (50T R 008 0x.)TS i)
n | -
S = -2 —®X)®(X)" + 5.1
= Effort in O(M3) for M basis functions.

47
B. Leibe



Computational Complexity

e Complexity of GP model
. Training effort: O(IN3) through matrix inversion
. Test effort: O(IN?) through vector-matrix multiplication

e Complexity of basis function model
. Training effort: O(M3)
. Test effort: O(M?)

e Discussion

~ If the number of basis functions A/ is smaller than the number of
data points /V, then the basis function model is more efficient.
- However, advantage of GP viewpoint is that we can consider

covariance functions that can only be expressed by an infinite
number of basis functions.

» Still, exact GP methods become infeasible for large training sets,
B. Leibe
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Topics of This Lecture

e Gaussian Processes
> Motivation
» Gaussian Process definition
> Squared exponential covariance function
» Prediction with noise-free observations
» Prediction with noisy observations
> GP Regression
> Influence of hyperparameters
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Influence of Hyperparameters

* Most covariance functions have some free parameters.
» Example:

)2
ky(Xp,Xq) = 0F exp { (Xp — Xg) } + 0720

212

- Parameters: (l,o¢,0,)
- Signal variance: O
- Range of neighbor influence (called “length scale”): [
. . 2
- Observation noise: 0,

Slide credit: Bernt Schiele B. Leibe
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Influence of Hyperparameters

2 { (xp = %g)°

ky(Xp, Xq) = 0 exp 5.2 } +0720pq

e Examples for different settings of the length scale

= (l, of, Un) — (o parameters set by optimizing
g the marginal likelihood)

c

= = (0.3,1.08,0.00005) =(1,1,0.1) = (3.0,1.16,0.89)
= 3 : : . 3 : : . 3

= |

8 al 2 2r N i

- 1t 1t 1t

()

=N < of 0} 0

i =

o +

= +

g | +

§ - inpgt, X > - inpgt X ° ™ inpSt, X >
<

. 51
Slide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williams, 2006
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Topics of This Lecture

e Recap: Linear Regression

e Kernels
» Dual representations
» Kernel Ridge Regression
~ Properties of kernels

e Gaussian Processes
> Motivation
~ Gaussian Process definition
» Squared exponential covariance function
» Prediction with noise-free observations
» Prediction with noisy observations
» GP Regression
> Influence of hyperparameters
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Application: Non-Linear Dimensionality Reduction

2D space
2D manifold 5

in 3D space

':;.,;;.cv = 7"._-~__1. 2D Iatent

space

30D 05
. v
articulated d ¥
body space
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Slide credit: Andreas Geiger
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Gaussian Process Latent Variable Mode

e At each time step t, we express our observations y as a
combination of basis functions ) of latent variables x.

D

v
Yyt = ij%' (x¢) + Ot
J

B,

D ﬁ'@...

e This is modeled as a Gaussian process...
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Slide credit: Andreas Geiger B. Leibe
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RWTH
Example: Style-based Inverse Kinematics

Learned GPLVMs using a walk, a jump shot and a baseball pitch

Slide credit: Andreas Geiger B. Leibe
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RWTH
Application: Modeling Body Dynamics

e Task: estimate full body pose in m video frames.
» High-dimensional Y.

> Model body dynamics using hierarchical Gaussian process latent
variable model (hGPLVM) [Lawrence & Moore, ICML 2007].

———— Time (frame #) T=[t; € R] Training

Latent space

Configuration
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Slide credit: Bernt Schiele B. Leibe [Andriluka, Roth, Schiele, CVPR’08]
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Articulated Motion in Latent Space (ditferent work)

e Gaussian Process regression from latent space to
» Pose [—>= p(Pose|z) to recover original pose from latent space]
> Silhouette [ = p(Silhouette | z) to do inference on silhouettes]

Walking cycles have one Additional DOF encodes
main (periodic) DOF ,walking style“
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Results

454 frames (~35 sec)
23 Pedestrians
20 detected by multi-body tracker
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RWNTH
References and Further Reading

e Kernels and Gaussian Processes are (shortly) described
in Chapters 6.1 and 6.4 of Bishop’s book.

Christopher M. Bishop = PATTERN RECOGNITION &

Pattern Recognition and Machine Learning ZPSNINATF G
Springer, 2006

Carl E. Rasmussen, Christopher K.I. Williams
Gaussian Processes for Machine Learning
MIT Press, 2006

e A better introduction can be found in Chapters 1 and 2
of the book by Rasmussen & Williams (also available
online: http://www.gaussianprocess.org/gpml/)

, 59
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