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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Gaussian Processes

• Learning with Latent Variables

 EM and Generalizations

 Approximate Inference

• Deep Learning

 Neural Networks

 CNNs, RNNs, RBMs, etc.

B. Leibe
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Topics of This Lecture

• Recap: Probabilistic View on Regression

• Properties of Linear Regression
 Loss functions for regression

 Basis functions

 Multiple Outputs

 Sequential Estimation

• Regularization revisited
 Regularized Least-squares

 The Lasso

 Discussion

3
B. Leibe
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Recap: Probabilistic Regression

• First assumption: 

 Our target function values t are generated by adding noise to 

the ideal function estimate:

• Second assumption:

 The noise is Gaussian distributed.

4
B. Leibe

Target function

value

Regression function Input value Weights or

parameters

Noise

Mean Variance

(¯ precision)

Slide adapted from Bernt Schiele
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Recap: Probabilistic Regression

• Given

 Training data points:

 Associated function values:

• Conditional likelihood (assuming i.i.d. data)

 Maximize w.r.t. w, ¯

5
B. Leibe

X = [x1; : : : ;xn] 2 Rd£n

t = [t1; : : : ; tn]
T

Generalized linear

regression function

Slide adapted from Bernt Schiele
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Recap: Maximum Likelihood Regression

• Setting the gradient to zero:

 Least-squares regression is equivalent to Maximum Likelihood 

under the assumption of Gaussian noise.

6
B. Leibe

Same as in least-squares

regression!

Slide adapted from Bernt Schiele

©= [Á(x1); : : : ; Á(xn)]
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Recap: Role of the Precision Parameter

• Also use ML to determine the precision parameter ¯:

• Gradient w.r.t. ¯:

 The inverse of the noise precision is given by the residual 

variance of the target values around the regression function.

7
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Recap: Predictive Distribution

• Having determined the parameters w and ¯, we can 

now make predictions for new values of x.

• This means

 Rather than giving a point

estimate, we can now also 

give an estimate of the 

estimation uncertainty.

8
B. Leibe Image source: C.M. Bishop, 2006
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Recap: Maximum-A-Posteriori Estimation

• Introduce a prior distribution over the coefficients w.

 For simplicity, assume a zero-mean Gaussian distribution

 New hyperparameter ® controls the distribution of model 

parameters.

• Express the posterior distribution over w.

 Using Bayes’ theorem:

 We can now determine w by maximizing the posterior.

 This technique is called maximum-a-posteriori (MAP).
9
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Recap: MAP Solution

• Minimize the negative logarithm

• The MAP solution is therefore

 Maximizing the posterior distribution is equivalent to 

minimizing the regularized sum-of-squares error (with            ).
10
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MAP Solution (2)

• Setting the gradient to zero:

B. Leibe

©= [Á(x1); : : : ; Á(xn)]

11

Effect of regularization:

Keeps the inverse well-conditioned
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Bayesian Curve Fitting

• Given

 Training data points:

 Associated function values:

 Our goal is to predict the value of t for a new point x.

• Evaluate the predictive distribution

 Noise distribition – again assume a Gaussian here

 Assume that parameters ® and ¯ are fixed and known for now.
13
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X = [x1; : : : ;xn] 2 Rd£n

t = [t1; : : : ; tn]
T

What we just computed for MAP
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Bayesian Curve Fitting

• Under those assumptions, the posterior distribution is a 

Gaussian and can be evaluated analytically:

 where the mean and variance are given by

 and S is the regularized covariance matrix

14
B. Leibe Image source: C.M. Bishop, 2006
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Analyzing the result

• Analyzing the variance of the predictive distribution

15
B. Leibe

Uncertainty in the parameters w

(consequence of Bayesian

treatment)

Uncertainty in the predicted

value due to noise on the 

target variables

(expressed already in ML)
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Bayesian Predictive Distribution

• Important difference to previous example

 Uncertainty may vary with test point x!

16
B. Leibe Image source: C.M. Bishop, 2006
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Discussion

• We now have a better understanding of regression

 Least-squares regression: Assumption of Gaussian noise

 We can now also plug in different noise models and explore how 

they affect the error function.

 L2 regularization as a Gaussian prior on parameters w.

 We can now also use different regularizers and explore what 

they mean.

 This lecture…

 General formulation with basis functions Á(x).

 We can now also use different basis functions.

17
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Discussion

• General regression formulation

 In principle, we can perform regression in arbitrary spaces 

and with many different types of basis functions

 However, there is a caveat… Can you see what it is?

• Example: Polynomial curve fitting, M = 3

 Number of coefficients grows with DM!

 The approach becomes quickly unpractical for high dimensions.

 This is known as the curse of dimensionality.

 We will encounter some ways to deal with this later...
18
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Topics of This Lecture

• Recap: Probabilistic View on Regression

• Properties of Linear Regression
 Loss functions for regression

 Basis functions

 Multiple Outputs

 Sequential Estimation

• Regularization revisited
 Regularized Least-squares

 The Lasso

 Discussion

19
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Loss Functions for Regression

• Given p(y, x, w, ¯), how do we actually estimate a 

function value yt for a new point xt?

• We need a loss function, just as in the classification case

• Optimal prediction: Minimize the expected loss

20
B. LeibeSlide adapted from Stefan Roth
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Loss Functions for Regression

• Simplest case

 Squared loss:

 Expected loss 

21
B. LeibeSlide adapted from Stefan Roth

@E[L]

@y(x)
= 2

Z
fy(x)¡ tg p(x; t)dt

!
= 0

,
Z

tp(x; t)dt = y(x)

Z
p(x; t)dt
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Loss Functions for Regression

• Important result

 Under Squared loss, the optimal regression function is the 

mean E [t|x] of the posterior p(t|x).

 Also called mean prediction.

 For our generalized linear regression function and square loss, 

we obtain as result

22
B. LeibeSlide adapted from Stefan Roth

Z
tp(x; t)dt = y(x)

Z
p(x; t)dt

, y(x) =

Z
t
p(x; t)

p(x)
dt =

Z
tp(tjx)dt

, y(x) = E[tjx]
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Visualization of Mean Prediction

23
B. Leibe

mean prediction

Slide adapted from Stefan Roth Image source: C.M. Bishop, 2006
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Loss Functions for Regression

• Different derivation: Expand the square term as follows

• Substituting into the loss function

 The cross-term vanishes, and we end up with  

24
B. Leibe

fy(x)¡ tg2 = fy(x)¡ E[tjx] + E[tjx]¡ tg2

= fy(x)¡ E[tjx]g2 + fE[tjx]¡ tg2

+2fy(x)¡ E[tjx]gfE[tjx]¡ tg

Optimal least-squares predictor

given by the conditional mean

Intrinsic variability of target data

 Irreducible minimum value

of the loss function
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Other Loss Functions

• The squared loss is not the only possible choice

 Poor choice when conditional distribution p(t|x) is multimodal.

• Simple generalization: Minkowski loss

 Expectation

• Minimum of E[Lq] is given by  

 Conditional mean    for q = 2,

 Conditional median for q = 1,

 Conditional mode for q = 0.
25
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E[Lq] =

Z Z
jy(x)¡ tjqp(x; t)dxdt



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Minkowski Loss Functions

26
B. Leibe Image source: C.M. Bishop, 2006
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Topics of This Lecture

• Recap: Probabilistic View on Regression

• Properties of Linear Regression
 Loss functions for regression

 Basis functions

 Multiple Outputs

 Sequential Estimation

• Regularization revisited
 Regularized Least-squares

 The Lasso

 Discussion

• Bias-Variance Decomposition

27
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Linear Basis Function Models

• Generally, we consider models of the following form

 where Áj(x) are known as basis functions.

 Typically, Á0(x) = 1, so that w0 acts as a bias.

 In the simplest case, we use linear basis functions: Ád(x) = xd.

• Let’s take a look at some other possible basis 

functions...

28
B. LeibeSlide adapted from C.M. Bishop, 2006
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Linear Basis Function Models (2)

• Polynomial basis functions

• Properties

 Global

 A small change in x affects all 

basis functions.

29
B. LeibeSlide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006
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Linear Basis Function Models (3)

• Gaussian basis functions

• Properties

 Local

 A small change in x affects 

only nearby basis functions.

 ¹j and s control location and 

scale (width).

30
B. LeibeSlide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006
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Linear Basis Function Models (4)

• Sigmoid basis functions

 where

• Properties

 Local

 A small change in x affects 

only nearby basis functions.

 ¹j and s control location and 

scale (slope).

31
B. LeibeSlide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006
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Topics of This Lecture

• Recap: Probabilistic View on Regression

• Properties of Linear Regression
 Loss functions for regression

 Basis functions

 Multiple Outputs

 Sequential Estimation

• Regularization revisited
 Regularized Least-squares

 The Lasso

 Discussion

• Bias-Variance Decomposition

32
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Multiple Outputs

• Multiple Output Formulation

 So far only considered the case of a single target variable t.

 We may wish to predict K > 1 target variables in a vector t.

 We can write this in matrix form

 where

33
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Multiple Outputs (2)

• Analogously to the single output case we have:

• Given observed inputs,                          , and targets,

, we obtain the log likelihood function

34
B. LeibeSlide adapted from C.M. Bishop, 2006
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Multiple Outputs (3)

• Maximizing with respect to W, we obtain

• If we consider a single target variable, tk, we see that

where                           , which is identical with the 

single output case.

35
B. LeibeSlide adapted from C.M. Bishop, 2006
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Topics of This Lecture

• Recap: Probabilistic View on Regression

• Properties of Linear Regression
 Loss functions for regression

 Basis functions

 Multiple Outputs

 Sequential Estimation

• Regularization revisited
 Regularized Least-squares

 The Lasso

 Discussion

• Bias-Variance Decomposition
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Sequential Learning

• Up to now, we have mainly considered batch methods

 All data was used at the same time

 Instead, we can also consider data items one at a time

(a.k.a. online learning)

• Stochastic (sequential) gradient descent:

• This is known as the least-mean-squares (LMS) 

algorithm. 

• Issue: how to choose the learning rate ´?

 We’ll get to that in a later lecture…
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• Recap: Probabilistic View on Regression

• Properties of Linear Regression
 Loss functions for regression

 Basis functions

 Multiple Outputs

 Sequential Estimation

• Regularization revisited
 Regularized Least-squares

 The Lasso

 Discussion

• Bias-Variance Decomposition
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Regularization Revisited

• Consider the error function

• With the sum-of-squares error function and a quadratic 

regularizer, we get  

• which is minimized by

39
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Regularized Least-Squares

• Let’s look at more general regularizers

• “Lq norms”

40
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Recall: Lagrange Multipliers
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Regularized Least-Squares

• We want to minimize

• This is equivalent to minimizing

 subject to the constraint

 (for some suitably chosen ´)
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Regularized Least-Squares

• Effect: Sparsity for q  1.

 Minimization tends to set many coefficients to zero

• Why is this good?

• Why don’t we always do it, then? Any problems?
43
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The Lasso

• Consider the following regressor

 This formulation is known as the Lasso.

• Properties

 L1 regularization  The solution will be sparse

(only few coefficients will be non-zero)

 The L1 penalty makes the problem non-linear.

 There is no closed-form solution.

 Need to solve a quadratic programming problem.

 However, efficient algorithms are available with

the same computational cost as for ridge regression.
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Lasso as Bayes Estimation

• Interpretation as Bayes Estimation

 We can think of |wj|
q as the log-prior density for wj.

• Prior for Lasso (q = 1): Laplacian distribution

45
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Analysis

• Equicontours of the prior distribution

• Analysis

 For q · 1, the prior is not uniform in direction, but 

concentrates more mass on the coordinate directions.

 The case q = 1 (lasso) is the smallest q such that the constraint 

region is convex. 

 Non-convexity makes the optimization problem more difficult.

 Limit for q = 0: regularization term becomes j=1..M 1 = M.

 This is known as Best Subset Selection.
46

B. Leibe Image source: Friedman, Hastie, Tibshirani, 2009



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Discussion

• Bayesian analysis

 Lasso, Ridge regression and Best Subset Selection are Bayes 

estimates with different priors.

 However, derived as maximizers of the posterior.

 Should ideally use the posterior mean as the Bayes estimate!

 Ridge regression solution is also the posterior mean, but Lasso 

and Best Subset Selection are not.

• We might also try using other values of q besides 0,1,2…

 However, experience shows that this is not worth the effort.

 Values of q 2 (1,2) are a compromise between lasso and ridge

 However, |wj|
q with q > 1 is differentiable at 0.

 Loses the ability of lasso for setting coefficients exactly to zero.
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References and Further Reading

• More information on linear regression, including a 

discussion on regularization can be found in Chapters 

1.5.5 and 3.1-3.2 of the Bishop book.

• Additional information on the Lasso, including efficient 

algorithms to solve it, can be found in Chapter 3.4 of the 

Hastie book.
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