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Topics of This Lecture

¢ Recap: Probabilistic View on Regression

¢ Properties of Linear Regression
» Loss functions for regression
» Basis functions
» Multiple Outputs
» Sequential Estimation

¢ Regularization revisited
» Regularized Least-squares
» The Lasso
» Discussion

B. Leibe
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ide adapted from Bernt Schiele B. Leibe

Recap: Probabilistic Regression

¢ Given
. Training data points: X = [x1,...,X,] € REX"

» Associated function values: t = [tr,...,tn]7

¢ Conditional likelihood (assuming i.i.d. data)

N N
p(eX, w, 8) = [ Mltaly(xn, w), 571) = ] M(tn|w" é(x,), 571
p(t|X, w,3) (Lo |y(xp, W), 577) (tn|w” (), 577)

n=1 n=1 /

= Maximize w.r.t. w, Generalized linear
regression function
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This Lecture: Advanced Machine Learning

 Regression Approaches f X =R
» Linear Regression —

» Regularization (Ridge, Lasso) 1974
» Gaussian Processes

¢ Learning with Latent Variables
» EM and Generalizations
» Approximate Inference

¢ Deep Learning
» Neural Networks
» CNNs, RNNs, RBMs, etc.

B. Leibe

Recap: Probabilistic Regression

¢ First assumption:

» Our target function values ¢ are generated by adding noise to
the ideal function estimate:

Targetfunction ___» t=Y(X,W)+e Noise
value / \

Regression function Input value Weights or
parameters

+ Second assumption:
» The noise is Gaussian distributed.

pltix,w, 3) = N(tly(x, w). 31)
/ N

Mean Variance
(3 precision)

ide adapted from Rernt Schiele B. Leibe
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Recap: Maximum Likelihood Regression

N
Vi logp(t|X, w,3) = HZ(t,. w‘o‘(x,,_))d)(x“)
n=1

¢ Setting the gradient to zero:
N

0= -8 (t, — whoix,))e(x,)

n=1

© ’Zw(x,.) = [Z @(x..m(x”)"} w

n=1 n=1
& Bt =¢d"'w @ = [p(x1), .., B(xn)]
= (®87)'®t
& wur = ( ) ¥—— Same as in least-squares
regression!

= Least-squares regression is equivalent to Maximum Likelihood
under the assumption of Gaussian noise.

ide adapted from Bernt Schiele 5. Leibe
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Recap: Role of the Precision Parameter

¢ Also use ML to dete(_mine the precision parameter [3:

i) T 2 N . N .
logp(t|X,w,3) = -3 ;{:‘,! —wlio(xa)} + 5 log 3 — 3 log(2m
o Gradient w.r.t. (3:

N
1 " : N1
§Z{t"' w @(Xn)} + ETJ

n=1

Vialogp(t|X,w.3) =

1 1Y o 2
Bt Wz{t" W o(xa)}

n=1

= The inverse of the noise precision is given by the residual
variance of the target values around the regression function.

B. Leibe
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Recap: Maximum-A-Posteriori Estimation

¢ Introduce a prior distribution over the coefficients w.
» For simplicity, assume a zero-mean Gaussian distribution

(M+1)/2 o
p(wlo) = N(w|0,a™'T) = (%) exp {—%wi W}

» New hyperparameter « controls the distribution of model
parameters.

* Express the posterior distribution over w.
» Using Bayes’ theorem:
p(wIX,t, 5, a) o p(t|X, w, F)p(w|a)
» We can now determine w by maximizing the posterior.
» This technique is called maximum-a-posteriori (MAP).

B. Leibe
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MAP Solution (2)

N
B3 (tn — who(x))(x,) + aw
n=1

¢ Setting the gradient to zero:
N

0= -8 (t

n=1

o zt...é(x'p) = {Z d(x)e(%n)"

n=1 n=1

Vwlogp(w|X.t,. 0,a) =

whg(x,))d(x,) + aw

w+&w
8

& Bt= («MT + %I) w o B =[p(x1),. .., (%)

-1
o Waan = («M:" + %I‘)\fl’t

Effect of regularization:
Keeps the inverse well-conditioned
B. Leibe "
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Recap: Predictive Distribution

» Having determined the parameters w and 3, we can
now make predictions for new values of x.

p(EX, Wi, Ban) = N (Ey(x, W), Bagr.)

¢ This means
» Rather than giving a point
estimate, we can now also
give an estimate of the
estimation uncertainty. o

B. Leibe

Image source: CM, Bishop, 200¢

Recap: MAP Solution

¢ Minimize the negative logarithm
—logp(w[X,t, 8, 0) < —logp(t|X, w, 3) — log p(w|e)
N

log p(t|X, w, 3) = g ”Z::l{y(xm w) r,,}2 + const

o
—~logp(wla) = ;wiw + const

¢ The MAP solution is therefore
N
: in & 1 YT
arg min 2Zl{y(xn,W) b} 4wl

= Maximizing the posterior distribution is equivalent to -
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minimizing the regularized sum-of-squares error (with A = _i ).
B. Leibe oo
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Bayesian Curve Fitting
¢ Given
» Training data points: X = [x1,...,%,] € R¥*"
- Associated function values: t = [ty tn)”

» Our goal is to predict the value of ¢ for a new point x.

¢ Evaluate the predictive distribution

pltlz, X, t) = /p(t\x,w) (w|X,t)dw

What we just computed for MAP
» Noise distribition - again assume a Gaussian here
a—1
pltz,w) = N(tly(x.w),F~")

» Assume that parameters o and (3 are fixed and known for now.
B. Leibe
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Bayesian Curve Fitting Analyzing the result

¢ Under those assumptions, the posterior distribution is a
Gaussian and can be evaluated analytically:

pltlx, X, t) = N(t|m(z), s*(z))

¢ Analyzing the variance of the predictive distribution
() = 87" + ¢(x) " So(x)

8

» where the mean and variance are given by

m(z) = fple SZc::(x,. -

¢ Uncertainty in the predicted Uncertainty in the parameters w
n=l1 of¥ value due to noise on the (consequence of Bayesian
s(m)2 —g 14 zp(m)‘“Sq{:(m) . target variables treatment)

(expressed already in ML)

» and S is the regularized covariance matrix ° = !

S” 17QI+BZO(X,, x“) r

n=1
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Bayesian Predictive Distribution Discussion

* We now have a better understanding of regression
» Least-squares regression: Assumption of Gaussian noise

= We can now also plug in different noise models and explore how
they affect the error function.

0
» L2 regularization as a Gaussian prior on parameters w.

= We can now also use different regularizers and explore what
they mean.

= This lecture...

» General formulation with basis functions ¢(x).
« Important difference to previous example = We can now also use different basis functions.

» Uncertainty may vary with test point z!

Advanced Machine Learning Winter’16
Advanced Machine Learning Winter’16

16

B. Leibe lmage source: CM, Bishop, 2004

B. Leibe

Discussion Topics of This Lecture
¢ General regression formulation
» In principle, we can perform regression in arbitrary spaces
and with many different types of basis functions
~ However, there is a caveat... Can you see what it is?

¢ Properties of Linear Regression
» Loss functions for regression
» Basis functions
> Multiple Outputs
¢ Example: Polynomial curve fitting, M =3 - Sequential Estimation
D D D D D
y(x, W) = wy + Z Wy +ZZ Wi Ty + ZZZH TR ST
=1

i=1 j=1 i=1 j=1k

= Number of coefficients grows with D!

= The approach becomes quickly unpractical for high dimensions.
» This is known as the curse of dimensionality.

» We will encounter some ways to deal with this later...

B. Leibe
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Loss Functions for Regression

* Given p(y, x, w, (3), how do we actually estimate a
function value y, for a new point x,?

* We need a loss function, just as in the classification case
L: RBRxR — RT

(o y(Xa)) = Lltn, y(xy))

¢ Optimal prediction: Minimize the expected loss

E[L] = // Lt y(x))p(x, t) dx dt

Slide adapted from Stefan Roth B. Leibe

Loss Functions for Regression

[wttiar = yx) [ pxtiar

B p(x,t) «
= /t ey dtf/tp(tl )dt
< y(x) = Bltx]

< y(x)

¢ Important result

» Under Squared loss, the optimal regression function is the
mean E [¢|x] of the posterior p(t|x).
Also called mean prediction.

For our generalized linear regression function and square loss,
we obtain as result

o) = [ (e ), 571t = w ol

v

v

ide adapted from Stefan Roth B. Leibe
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Loss Functions for Regression

« Different derivation: Expand the square term as follows
{y(x) — 1}* = {y(x) — E[t|x] + E[t|x] - ¢}*
= {y(x) —Elt|x]}* + {E[t)x] -t}
+2{y(x) — Elt)x] {E[t|x] — ¢}

¢ Substituting into the loss function
» The cross-term vanishes, and we end up with

E[L] = / {y(x) — Elt|x]}* p(x) dx + j var [t|x] p(x) dx

e \

Optimal least-squares predictor Intrinsic variability of target data
given by the conditional mean = Irreducible minimum value
of the loss function
B. Leibe
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Loss Functions for Regression

BlE) = [ Lit.yptx, ) dxa

¢ Simplest case
» Squared loss:
» Expected loss

B = (o) 1p(x,0) dxa

Lit.y(x)) = {ylx) — t)*

S5}

E[L
Jy(x)

& [utxna = ye [pixod

2 [ {9 - ) plx, ) L0

21

ide adapted from Stefan Roth 8. Leibe
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Visualization of Mean Prediction

mean prediction

.

y(o) [ ==~

) T

23
Image source: C.M, Bishop, 200d

ide adapted from Stefan Roth LA
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Other Loss Functions

¢ The squared loss is not the only possible choice
» Poor choice when conditional distribution p(t|x) is multimodal.

¢ Simple generalization: Minkowski loss
L{t,y(x)) = [y(x) — ¢
» Expectation

B(L) = [ [ 1v60 ~ trplx et

¢ Minimum of E[L ] is given by
» Conditional mean for ¢=2,
» Conditional median for ¢ =1,

» Conditional mode for ¢=0.

25
B. Leibe
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Minkowski Loss Functions Topics of This Lecture
q=03 g=1

. . ¢ Properties of Linear Regression

i i » Loss functions for regression
© © » Basis functions
g g > Multiple Outputs
E t 0 E . Sequential Estimation
H ) -1 0 1 2 -2 -1 0 1 2 H
g 2 vt 5 u—t )
£ 2 2 £
@© ©
g q=2 g=10 4
i - . °
i = 3 £
: L 3
s s
= =l
L7 73
o o
g 3
> [+ b > U\ o >
2 =2 -1 0 1 2 -2 -1 0 1 2 '2 .

v B. Leibe Im:ﬂ_e’ urce: CM, Bishop, 200 B. Leibe
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Linear Basis Function Models Linear Basis Function Models (2)

* Generally, we consider models of the following form
M-1

yxw) = 3 wyy(x) = w'é(x)

Jj=0

¢ Polynomial basis functions

dyla) = ).

» where ¢,(x) are known as basis functions.
» Typically, ¢y(x) = 1, so that wj acts as a bias.
» In the simplest case, we use linear basis functions: ¢,(x) = z,.

¢ Properties
» Global

= A small change in z affects all
basis functions.

e Let’s take a look at some other possible basis
functions...

Advanced Machine Learning Winter’16
Advanced Machine Learning Winter’16
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ide adapted from C.M. Richon 2006 B. Leibe
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Linear Basis Function Models (3) Linear Basis Function Models (4)

¢ Gaussian basis functions ¢ Sigmoid basis functions

s — )2 T — L
%(I):cxp{ %} o @J(i‘)=a( Su)
» where
0.5 1

« Properties ola) = 1+exp(—a)

» Local 0.25

= A small change in z affects * Properties

only nearby basis functions. 0 » Local

» p;and s control location and
scale (width).

= A small change in z affects
only nearby basis functions.

» p;and s control location and
scale (slope).
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Topics of This Lecture Multiple Outputs

¢ Multiple Output Formulation

« Properties of Linear Regression » So far only considered the case of a single target variable ¢.

» Loss functions for regression
» Basis functions

» Multiple Outputs

» Sequential Estimation

» We may wish to predict K > 1 target variables in a vector t.
» We can write this in matrix form

y(x, W) =W'g(x)
» where
"
¥ =[,. . UK]
&%) = [L 1 (x), -, dar—1(x),]7
wy, 1 wy, K
W =

Wr—-11 0 WM-LK

Advanced Machine Learning Winter’16
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Multiple Outputs (2) Multiple Outputs (3)

¢ Analogously to the single output case we have:
p(t|x, W, 3) N(t|y(W,x),37'T)
N(t|WTe(x), 371).

¢ Maximizing with respect to W, we obtain

Wt = (@T@) o ®"T.

¢ If we consider a single target variable, ¢, we see that
¢ Given observed inputs, X = {x1.....xx}, and targets,
T =|[t:.....t~]", we obtain the log likelihood function

N

>IN (6 W (x,), 57'T)

n=1

NK ‘.‘:'5 3 N 2
- N, (E),%Z\\t_ﬁw%(xn)” .

n=1

Wi = (@TQ) o [ R

where ti = [tig, ..., txi]", which is identical with the

Inp(T|X, W, 3 -
np(T|X. W, 3) single output case.

Advanced Machine Learning Winter’16
Advanced Machine Learning Winter’16
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Topics of This Lecture Sequential Learning
¢ Up to now, we have mainly considered batch methods
» All data was used at the same time

» Instead, we can also consider data items one at a time
(a.k.a. online learning)

¢ Properties of Linear Regression
» Loss functions for regression
» Basis functions
» Multiple Outputs
» Sequential Estimation

Stochastic (sequential) gradient descent:
wiTt) = W) _ nVE,
= wiy n(tn W{T)T‘Mxnj)ﬁb(xn)-
¢ This is known as the least-mean-squares (LMS)
algorithm.

¢ Issue: how to choose the learning rate 7)?
» We’ll get to that in a later lecture...
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Topics of This Lecture Regularization Revisited

¢ Consider the error function

Ep(w) + AEw(w)
Data term + Regularization term

¢ With the sum-of-squares error function and a quadratic
regularizer, we get

1y T 2 A
EZ{tn—w d(xn)} +Iww

n=1

¢ Regularization revisited
» Regularized Least-squares
» The Lasso
» Discussion

Advanced Machine Learning Winter’16
Advanced Machine Learning Winter’16

¢ which is minimized by \is called the
W — (/\I + {,TQ) -t &7t regularization
coefficient.
38 39
B. Leibe ide adapted from C.M. Bishop, 2006 8. Leibe
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Regularized Least-Squares Recall: Lagrange Multipliers

e Let’s look at more general regularizers

1 N - by M
5 2 Atn — W hlx)}? + 5D fuy
i=1

n=1

q

e “Lqnorms”

“Lasso” “Ridge
ion?
) Regression %0
ide adapted from C.M. Bichon 2006 B. Lethe Image source: CM, Bishon, 200
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Regularized Least-Squares Regularized Least-Squares

* We want to minimize

1 N - by M
5 2 Atn — W hlx)}? + 5D fuy
i=1

n=1

o Effect: Sparsity for ¢ < 1.

» Minimization tends to set many coefficients to zero
q

) wy

Optimum for
least-squares

error without @ @
regularization

Constraint /
from ) %,
regularizer KJ

o Why is this good?
« Why don’t we always do it, then? Any problems?

B. Leibe

¢ This is equivalent to minimizing

23t W o))’

n=1

» subject to the constraint
ar
Dyl <
i=1

» (for some suitably chosen 7)
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Image source: C.M, Bishop, 200d

B. Leibe




The Lasso

¢ Consider the following regressor
1 N M
Wihasso = argmin =3 *{t, — wo(x,)}* + 3wy
i=1

“ n=1

» This formulation is known as the Lasso.

¢ Properties

» L4 regularization = The solution will be sparse
(only few coefficients will be non-zero)

» The L, penalty makes the problem non-linear.
= There is no closed-form solution.
= Need to solve a quadratic programming problem.

» However, efficient algorithms are available with
the same computational cost as for ridge regression.

Advanced Machine Learning Winter’16
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Image source: CM, Bishop, 2001

Analysis

* Equicontours of the prior distribution
g=4 q=2 g=1 qg=05 q=0.1

e Analysis

» For g < 1, the prior is not uniform in direction, but
concentrates more mass on the coordinate directions.
The case ¢ =1 (lasso) is the smallest g such that the constraint
region is convex.
= Non-convexity makes the optimization problem more difficult.

v

» Limit for ¢ = 0: regularization term becomes ¥;_; y 1= M.
= This is known as Best Subset Selection.

Advanced Machine Learning Winter’16
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Lasso as Bayes Estimation

¢ Interpretation as Bayes Estimation
1 N . M
W =argmin 5 {t. - W’cb(xﬂ)}ZH\J lle\’f

n=1

» We can think of |w,|? as the log-prior density for w,.

e Prior for Lasso (¢ = 1): Laplacian distribution
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B. Leibe Image source: Friedman. Hastie Tibshirani, 200¢
TWTH A
Discussion

* Bayesian analysis

» Lasso, Ridge regression and Best Subset Selection are Bayes
estimates with different priors.

» However, derived as maximizers of the posterior.
» Should ideally use the posterior mean as the Bayes estimate!

= Ridge regression solution is also the posterior mean, but Lasso
and Best Subset Selection are not.

¢ We might also try using other values of ¢ besides 0,1,2...
» However, experience shows that this is not worth the effort.
» Values of ¢ € (1,2) are a compromise between lasso and ridge
- However, |w |7 with ¢ > 1 is differentiable at 0.
= Loses the ability of lasso for setting coefficients exactly to zero.

Advanced Machine Learning Winter’16
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References and Further Reading

¢ More information on linear regression, including a
discussion on regularization can be found in Chapters
1.5.5 and 3.1-3.2 of the Bishop book.

Christopher M. Bishop
Pattern Recognition and Machine Learning

Springer, 2006
e i i

T. Hastie, R. Tibshirani, J. Friedman
Elements of Statistical Learning
2nd edition, Springer, 2009

¢ Additional information on the Lasso, including efficient
algorithms to solve it, can be found in Chapter 3.4 of the
Hastie book.
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