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Organization

• Lecturer

 Prof. Bastian Leibe (leibe@vision.rwth-aachen.de)

• Teaching Assistants

 Umer Rafi (rafi@vision.rwth-aachen.de)

 Lucas Beyer (beyer@vision.rwth-aachen.de)

• Course webpage

 http://www.vision.rwth-aachen.de/courses/

 Slides will be made available on the webpage

 There is also an L2P electronic repository

• Please subscribe to the lecture on the Campus system!

 Important to get email announcements and L2P access!

B. Leibe
2

mailto:leibe@vision.rwth-aachen.de
mailto:rafi@vision.rwth-aachen.de
mailto:beyer@vision.rwth-aachen.de
http://www.mmp.rwth-aachen.de/teaching/
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Language

• Official course language will be English

 If at least one English-speaking student is present.

 If not… you can choose.

• However…

 Please tell me when I’m talking too fast or when I should repeat 

something in German for better understanding!

 You may at any time ask questions in German!

 You may turn in your exercises in German.

 You may take the oral exam in German.

3
B. Leibe
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Relationship to Previous Courses

• Lecture Machine Learning (past summer semester)

 Introduction to ML

 Classification

 Graphical models

• This course: Advanced Machine Learning

 Natural continuation of ML course

 Deeper look at the underlying concepts

 But: will try to make it accessible also to newcomers

 Quick poll: Who hasn’t heard the ML lecture?

• This year: Lots of new material

 Large lecture block on Deep Learning

 Updated with some exciting new topics

4
B. Leibe
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Focus of This Lecture

5
B. Leibe

Deep Learning
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Organization

• Structure: 3V (lecture) + 1Ü (exercises)

 6 EECS credits

 Part of the area “Applied Computer Science”

• Place & Time

 Lecture/Exercises: Mon  14:15 – 15:45 room UMIC 025

 Lecture/Exercises: Thu  14:15 – 15:45 room UMIC 025

• Exam

 Oral or written exam, depending on number of participants

 Towards the end of the semester, there will be a proposed date

B. Leibe
6
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http://www.vision.rwth-aachen.de/courses/

Course Webpage

7
B. Leibe

Monday: 

Matlab tutorial

http://www.mmp.rwth-aachen.de/teaching/
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Exercises and Supplementary Material

• Exercises

 Typically 1 exercise sheet every 2 weeks.

 Pen & paper and programming exercises

– Matlab for early topics

– Theano for Deep Learning topics

 Hands-on experience with the algorithms from the lecture.

 Send your solutions the night before the exercise class.

• Supplementary material

 Research papers and book chapters

 Will be provided on the webpage.

B. Leibe
8
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Textbooks

• Many lecture topics will be covered in Bishop’s book.

• Some additional topics can be found in Rasmussen & 

Williams.

• Research papers will be given out for some topics.

 Tutorials and deeper introductions.

 Application papers

B. Leibe
9

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

(available in the  library’s “Handapparat”)

Carl E. Rasmussen, Christopher K.I. Williams

Gaussian Processes for Machine Learning

MIT Press, 2006

(also available online: http://www.gaussianprocess.org/gpml/)

http://www.gaussianprocess.org/gpml/
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How to Find Us

• Office:

 UMIC Research Centre

 Mies-van-der-Rohe-Strasse 15, room 124

• Office hours

 If you have questions to the lecture, come see us.

 My regular office hours will be announced.

 Send us an email before to confirm a time slot.

Questions are welcome!

B. Leibe
10
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Machine Learning

• Statistical Machine Learning

 Principles, methods, and algorithms for learning and prediction

on the basis of past evidence

• Already everywhere

 Speech recognition (e.g. speed-dialing)

 Computer vision (e.g. face detection)

 Hand-written character recognition (e.g. letter delivery)

 Information retrieval (e.g. image & video indexing)

 Operation systems (e.g. caching)

 Fraud detection (e.g. credit cards)

 Text filtering (e.g. email spam filters)

 Game playing (e.g. strategy prediction)

 Robotics
11

B. LeibeSlide credit: Bernt Schiele
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What Is Machine Learning Useful For?

Automatic Speech Recognition

12
B. LeibeSlide adapted from Zoubin Gharamani
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What Is Machine Learning Useful For?

Computer Vision

(Object Recognition, Segmentation, Scene Understanding)
13

B. LeibeSlide adapted from Zoubin Gharamani
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What Is Machine Learning Useful For?

Information Retrieval

(Retrieval, Categorization, Clustering, ...)
14

B. LeibeSlide adapted from Zoubin Gharamani
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What Is Machine Learning Useful For?

Financial Prediction

(Time series analysis, ...)
15

B. LeibeSlide adapted from Zoubin Gharamani
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What Is Machine Learning Useful For?

Medical Diagnosis

(Inference from partial observations)
16

B. LeibeSlide adapted from Zoubin Gharamani Image from Kevin Murphy
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What Is Machine Learning Useful For?

Bioinformatics

(Modelling gene microarray data,...)
17

B. LeibeSlide adapted from Zoubin Gharamani
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What Is Machine Learning Useful For?

Robotics

(DARPA Grand Challenge,...)
18

B. LeibeSlide adapted from Zoubin Gharamani Image from Kevin Murphy
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Machine Learning: Core Questions

• Learning to perform a task from experience

• Task

 Can often be expressed through a mathematical function

 x: Input

 y: Output

 w: Parameters (this is what is “learned”)

• Classification vs. Regression

 Regression: continuous y

 Classification: discrete y

– E.g. class membership, sometimes also posterior probability

B. Leibe
19

y = f(x;w)

Slide credit: Bernt Schiele
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Machine Learning: Core Questions

•

 w: characterizes the family of functions

 w: indexes the space of hypotheses

 w: vector, connection matrix, graph, …

B. Leibe
20

y = f(x;w)

Slide credit: Bernt Schiele
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A Look Back: Lecture Machine Learning

• Fundamentals

 Bayes Decision Theory

 Probability Density Estimation

• Classification Approaches

 Linear Discriminant Functions

 Support Vector Machines

 Ensemble Methods & Boosting

 Randomized Trees, Forests & Ferns

• Generative Models

 Bayesian Networks

 Markov Random Fields

B. Leibe
21
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This Lecture: Advanced Machine Learning

Extending lecture Machine Learning from last semester…

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Gaussian Processes

• Learning with Latent Variables

 EM and Generalizations

 Approximate Inference

• Deep Learning

 Neural Networks

 CNNs, RNNs, etc.

B. Leibe
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Let’s Get Started…

• Some of you already have basic ML background

 Who hasn’t?

• We’ll start with a gentle introduction

 I’ll try to make the lecture also accessible to newcomers

 We’ll review the main concepts before applying them

 I’ll point out chapters to review from ML lecture whenever 

knowledge from there is needed/helpful

 But please tell me when I’m moving too fast (or too slow)

23
B. Leibe
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Topics of This Lecture

• Regression: Motivation
 Polynomial fitting

 General Least-Squares Regression

 Overfitting problem

 Regularization

 Ridge Regression

• Recap: Important Concepts from ML Lecture
 Probability Theory

 Bayes Decision Theory

 Maximum Likelihood Estimation

 Bayesian Estimation

• A Probabilistic View on Regression
 Least-Squares Estimation as Maximum Likelihood

24
B. Leibe
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Regression

• Learning to predict a continuous function value

 Given: training set X = {x1, …, xN}

with target values  T = {t1, …, tN}.

 Learn a continuous function y(x) to predict the function value 

for a new input x.

• Steps towards a solution

 Choose a form of the function y(x,w) with parameters w.

 Define an error function E(w) to optimize.

 Optimize E(w) for w to find a good solution.

(This may involve math).

 Derive the properties of this solution and think about its 

limitations.

25
B. Leibe
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Example: Polynomial Curve Fitting

• Toy dataset

 Generated by function

 Small level of random

noise with Gaussian 

distribution added 

(blue dots)

• Goal: fit a polynomial function to this data

 Note: Nonlinear function of x, but linear function of the wj.
26

B. Leibe Image source: C.M. Bishop, 2006
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Error Function

• How to determine the values of the coefficients w?

 We need to define an error function to be minimized.

 This function specifies how a deviation from the target value 

should be weighted.

• Popular choice: sum-of-squares error

 Definition

 We’ll discuss the motivation

for this particular function later…

27
B. Leibe Image source: C.M. Bishop, 2006
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Minimizing the Error

• How do we minimize the error?

• Solution (Always!)

 Compute the derivative and set it to zero.

 Since the error is a quadratic function of w, its derivative will 

be linear in w.

 Minimization has a unique solution.

28
B. Leibe
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Least-Squares Regression

• We have given

 Training data points:

 Associated function values:

• Start with linear regressor:

 Try to enforce

 One linear equation for each training data point / label pair.

 This is the same basic setup used for least-squares classification!

– Only the values are now continuous.

29
B. LeibeSlide credit: Bernt Schiele

X = fx1 2 Rd; : : : ;xng
T = ft1 2 R; : : : ; tng
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Least-Squares Regression

• Setup

 Step 1: Define

 Step 2: Rewrite

 Step 3: Matrix-vector notation

 Step 4: Find least-squares solution

 Solution:

30
B. Leibe

~xi =

µ
xi
1

¶
; ~w =

µ
w

w0

¶

with

Slide credit: Bernt Schiele
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Regression with Polynomials

• How can we fit arbitrary polynomials using least-squares 

regression?

 We introduce a feature transformation (as before in ML).

 E.g.:

 Fitting a cubic polynomial.

31
B. LeibeSlide credit: Bernt Schiele

y(x) = wTÁ(x)

=

MX

i=0

wiÁi(x)

Á0(x) = 1

assume

basis functions

Á(x) = (1; x; x2; x3)T
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Varying the Order of the Polynomial.

Which one should we pick? 32
Image source: C.M. Bishop, 2006

Massive

overfitting!
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Analysis of the Results

• Results for different values of M

 Best representation of the original 

function sin(2¼x) with M = 3.

 Perfect fit to the training data with

M = 9, but poor representation of the 

original function.

• Why is that???

 After all, M = 9 contains M = 3 as a special case!
33

B. Leibe Image source: C.M. Bishop, 2006



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Overfitting

• Problem

 Training data contains some noise

 Higher-order polynomial fitted perfectly to the noise.

 We say it was overfitting to the training data.

• Goal is a good prediction of future data

 Our target function should fit well to the training data, but 

also generalize.

 Measure generalization performance on independent test set.

34
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Measuring Generalization

• E.g., Root Mean Square Error (RMS):

• Motivation

 Division by N lets us compare different data set sizes.

 Square root ensures ERMS is measured on the same scale (and in 

the same units) as the target variable t.
35
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Overfitting!

Image source: C.M. Bishop, 2006
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Analyzing Overfitting

• Example: Polynomial of degree 9

 Overfitting becomes less of a problem with more data.

36
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Relatively little data

Overfitting typical

Enough data

Good estimate

Slide adapted from Bernt Schiele Image source: C.M. Bishop, 2006
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What Is Happening Here?

• The coefficients get very large:

 Fitting the data from before with various polynomials.

 Coefficients:

37
B. Leibe Image source: C.M. Bishop, 2006Slide credit: Bernt Schiele



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Regularization

• What can we do then?

 How can we apply the approach to data sets of limited size?

 We still want to use relatively complex and flexible models.

• Workaround: Regularization

 Penalize large coefficient values

 Here we’ve simply added a quadratic regularizer, which is 

simple to optimize

 The resulting  form of the problem is called Ridge Regression.

 (Note: w0 is often omitted from the regularizer.)
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Results with Regularization (M=9)

39
B. Leibe Image source: C.M. Bishop, 2006
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RMS Error for Regularized Case

• Effect of regularization

 The trade-off parameter ¸ now controls the effective model 

complexity and thus the degree of overfitting.

40
B. Leibe Image source: C.M. Bishop, 2006
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Summary

• We’ve seen several important concepts

 Linear regression

 Overfitting

 Role of the amount of data

 Role of model complexity

 Regularization

• How can we approach this more systematically?

 Would like to work with complex models.

 How can we prevent overfitting systematically?

 How can we avoid the need for validation on separate test data?

 What does it mean to do linear regression?

 What does it mean to do regularization?
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Topics of This Lecture

• Regression: Motivation
 Polynomial fitting

 General Least-Squares Regression

 Overfitting problem

 Regularization

 Ridge Regression

• Recap: Important Concepts from ML Lecture
 Probability Theory

 Bayes Decision Theory

 Maximum Likelihood Estimation

 Bayesian Estimation

• A Probabilistic View on Regression
 Least-Squares Estimation as Maximum Likelihood
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Recap: The Rules of Probability

• Basic rules

• From those, we can derive

43

Sum Rule

Product Rule

Bayes’ Theorem

where
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Recap: Bayes Decision Theory

44
B. Leibe

x

x

x

 |p x a  |p x b

 | ( )p x a p a

 | ( )p x b p b

 |p a x  |p b x

Decision boundary

Likelihood

Posterior =
Likelihood £ Prior

NormalizationFactor

Likelihood £Prior

Slide credit: Bernt Schiele
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• One-dimensional case

 Mean ¹

 Variance ¾2

• Multi-dimensional case

 Mean ¹

 Covariance §

Recap: Gaussian (or Normal) Distribution
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N (xj¹; ¾2) =
1p
2¼¾

exp

½
¡(x¡ ¹)2

2¾2

¾

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp

½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

Image source: C.M. Bishop, 2006
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Side Note

• Notation

 In many situations, it will be necessary to work with the inverse 

of the covariance matrix §:

 We call ¤ the precision matrix.

 We can therefore also write the Gaussian as

46
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Recap: Parametric Methods

• Given 

 Data

 Parametric form of the distribution

with parameters µ

 E.g. for Gaussian distrib.:

• Learning

 Estimation of the parameters µ

• Likelihood of µ

 Probability that the data X have indeed been generated from a 

probability density with parameters µ
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x

x
X = fx1; x2; : : : ; xNg

µ = (¹;¾)

L(µ) = p(Xjµ)

Slide adapted from Bernt Schiele
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E(µ) = ¡ lnL(µ) = ¡
NX

n=1

ln p(xnjµ)

• Computation of the likelihood

 Single data point:

 Assumption: all data points                            are independent

 Log-likelihood

• Estimation of the parameters µ (Learning)

 Maximize the likelihood (=minimize the negative log-likelihood)

 Take the derivative and set it to zero.

Recap: Maximum Likelihood Approach
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L(µ) = p(Xjµ) =
NY

n=1

p(xnjµ)

p(xnjµ)

Slide credit: Bernt Schiele

@

@µ
E(µ) = ¡

NX

n=1

@
@µ

p(xnjµ)
p(xnjµ)

!
= 0

X = fx1; : : : ; xng
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Recap: Maximum Likelihood – Limitations

• Maximum Likelihood has several significant limitations

 It systematically underestimates the variance of the distribution!

 E.g. consider the case 

 Maximum-likelihood estimate:

 We say ML overfits to the observed data.

 We will still often use ML, but it is important to know about this 

effect.
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x
N = 1;X = fx1g

x

¾̂ = 0 !

¹̂

Slide adapted from Bernt Schiele
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Recap: Deeper Reason

• Maximum Likelihood is a Frequentist concept

 In the Frequentist view, probabilities are the frequencies of 

random, repeatable events.

 These frequencies are fixed, but can be estimated more 

precisely when more data is available.

• This is in contrast to the Bayesian interpretation

 In the Bayesian view, probabilities quantify the uncertainty 

about certain states or events.

 This uncertainty can be revised in the light of new evidence.

• Bayesians and Frequentists do not like

each other too well…
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Recap: Bayesian Learning Approach

• Bayesian view: 

 Consider the parameter vector µ as a random variable.

 When estimating the parameters, what we compute is

51
B. Leibe

p(xjX) =

Z
p(x; µjX)dµ

p(x; µjX) = p(xjµ;X)p(µjX)

p(xjX) =

Z
p(xjµ)p(µjX)dµ

This is entirely determined by the parameter µ
(i.e. by the parametric form of the pdf).

Slide adapted from Bernt Schiele

Assumption: given µ, this

doesn’t depend on X anymore
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Recap: Bayesian Learning Approach

• Discussion

 The more uncertain we are about µ, the more we average over 

all possible parameter values.
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p(xjX) =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

Normalization: integrate 

over all possible values of µ

Likelihood of the parametric 

form µ given the data set X.

Prior for the 

parameters µ

Estimate for x based on

parametric form µ
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Topics of This Lecture

• Regression: Motivation
 Polynomial fitting

 General Least-Squares Regression

 Overfitting problem

 Regularization

 Ridge Regression

• Recap: Important Concepts from ML Lecture
 Probability Theory

 Bayes Decision Theory

 Maximum Likelihood Estimation

 Bayesian Estimation

• A Probabilistic View on Regression
 Least-Squares Estimation as Maximum Likelihood
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Next lecture…
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