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Announcements (2)

¢ Feedback to the lecture evaluation
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Repetition

¢ Image Processing Basics

» Image Formation

» Binary Image Processing

» Linear Filters

» Edge & Structure Extraction
¢ Segmentation & Grouping
« Object Recognition P,

¢ Local Features & Matching

;

° ObJeCt Categorlzatlon Lenses, focal length, aperture

¢ 3D Reconstruction
¢ Motion and Tracking

Color sensors

B. Leibe

Announcements

e Exam
» 15t Date: Monday, 29.02., 13:30 - 17:30h
> 2nd Date: Thursday, 31.03., 09:30 - 12:30h
» Closed-book exam, the core exam time will be 2h.

We will send around an announcement with the exact starting
times and places by email.

v

¢ Test exam
» Date: Thursday, 11.02., 14:15 - 15:45h, room UMIC 025
» Core exam time will be 1h
» Purpose: Prepare you for the questions you can expect.
» Possibility to collect bonus exercise points!

Computer Vision WS 15/16

B. Leibe

TWTHACHE
Announcements (3)

¢ Today, I’ll summarize the most important points from
the lecture.
» It is an opportunity for you to ask questions...
» ..or get additional explanations about certain topics.
» So, please do ask.

¢ Today’s slides are intended as an index for the lecture.
» But they are not complete, won’t be sufficient as only tool.

» Also look at the exercises - they often explain algorithms in
detail.

Computer Vision WS 15/16

B. Leibe

RWTH ACHET
Recap: Pinhole Camera
¢ (Simple) standard and abstract model today

» Box with a small hole in it
» Works in practice

image
plane

- pinhole - vinual
image
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RWTHAACHE RWTHAACHE

Recap: Focus and Depth of Field Recap: Field of View and Focal Le/ngth

a Thin lens: e As f gets smaller,.image //
= f !"t ents.d ?ct‘f"et becomes more wide angle /

F i > oM regld points at distinc » More world points project

: L e~ B depths come in focus onto the finite image plane

S w2 RN L at different image

A sgPr PR - planes. Field of view
o e . (Real camera lens :
© ‘ s systems have greater © L f,
2 “circles of confusion” depth of field.) § . ﬁs f gets larger, irlnage ) fy
. . . ecomes more telescopic = ---- i e S

5| * Depth of field: distance between image planes where g small ¢ of th z
g blur is tolerable 2 > amarer part of the wor
2 2 projects onto the finite
£ 2 image plane
=3 o
£ g
o I=3
S 7 g 8

Source: Shapiro & Stockman B. Leibe B. Leibe from R. Duraiswami]

RWTH CHE
Recap: Color Sensing in Digital Cameras Repetition

Bayer grid

* Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

Estimate missing compo-
nents from neighboring
values (demosaicing)

¢ Segmentation & Grouping

e Object Recognition \y:' % : E/ D

A B=(ASBIBE

¢ Local Features & Matching Morphological Operators
¢ Object Categorization
¢ 3D Reconstruction

l —— Incoming Light

Filter Layes

Sensor Array

:

¢ Motion and Tracking

Computer Vision WS 15/16
Computer Vision WS 15/16

Connected Components

9 10

B. Leibe ource; Steve Seit;

B. Leibe

RWTHA/CHEN

Recap: Binary Processing Pipeline Hriggss, Recap: Robust Thresholding
—— emO

¢ Convert the image into binary form

» Thresholding s .
frequency Ideal histogram,
light object on
¢ Clean up the thresholded image ablect dark background
» Morphological operators H
grey level
“N e« Extract individual objects 9
o » Connected Components Labelin: o
o P s 2 frequency Actual observed
= = histogram with
§ « Describe the objects E noise
5 > Region properties 3 .
=3 =3
g g plcl velue Assumption here:
8 8 only two modes "
B. Leibe Image Source: D Kim et al,, Cytometry 35(1), 1909 ource: Robvn Owen B. Leibe




RWTH G
Recap: Global Binarization [Otsu’79] Exe,;;‘;
11

» Precompute a cumulative grayvalue histogram h.
» For each potential threshold T
1.) Separate the pixels into two clusters according to T.

2.) Compute both cluster means £4(T) and 1,(T).
Look up n;, n, in h

nl(T) = ‘{I(Z,y) < T}lv nQ(T) = ‘{I(Iay) > T}l
3.) Compute the between-class variance Opuyee, (T)

e (D) = nu(T)na(T) [y (T) — pa(T)]°

¢ Choose the threshold that maximizes
T = arg mj@x [O—Zetween (T)}

Computer Vision WS 15/16

B. Leibe

Recap: Dilation

¢ Definition
> “The dilation of A by B is the set i
of all displacements z, such that :

(B), and A overlap by at least one
element”. A

. ((B), is the mirrored version of B,
shifted by z)

* Effects

» If current pixel z is foreground, set all B, M
pixels under (B), to foreground. ‘

= Expand connected components

= Grow features

= Fill holes A®B,

Computer Vision WS 15/16

15

B. Leibe Image Source: R.C, Gonzales & RE, Wood

Recap: Opening

¢ Definition
» Sequence of Erosion and Dilation _ N
A-B=(ASB)®B o ‘ b

o Effect
» A ° Bis defined by the points that
are reached if B is rolled around
inside A. pA A

= Remove small objects,
keep original shape. s

=R

A B=(48HSB
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B. Leibe

lmage Source: R.C, Gonzales & R.E, Wood:

RWTH/CET
Recap: Background Surface Fitting

¢ Document images often contain a smooth gradient

=Try to fit that gradient with a polynomial function
' ‘ )

av |

Fitted surface

Computer Vision WS 15/16

Shading compensation

Binarized result

ource: 5. Lu & C. Tan, ICDAR'C; B. Leibe

Recap: Erosion

¢ Definition

> “The erosion of A by B is the set ; I
of all displacements Z, such that : |

(B), is entirely contained in A”. B
A AGB,
o Effects
» If not every pixel under (B), is
foreground, set the current pixel z S EY RN
to background. A6B
= Erode connected components B, AGR,

= Shrink features
= Remove bridges, branches, noise

Computer Vision WS 15/16

16
Image Source: R.C. Gonzales & R.E. Wood:

B. Leibe

Recap: Closing

¢ Definition
» Sequence of Dilation and Erosion I—w—L
A+B=(A®B)OB = A
) 3
/7 (:
) |

J

o Effect |
» A - Bis defined by the points that
are reached if B is rolled around
on the outside of A.

= Fill holes,
keep original shape.

A-B-(ABE)SE

5 / LAY
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lmage Source: R.C, Gonzales & R.E, Wood:

B. Leibe




Computer Vision WS 15/16

Computer Vision WS 15/16

RWTH/CET
Recap: Connected Components Labeling

¢ Process the image from left to
right, top to bottom:
1.) If the next pixel to process is 1

i.) If only one of its neighbors
(top or left) is 1, copy its label.

ii.) If both are 1 and have the
same label, copy it.

é iii.) If they have different labels

— Copy the label from the left.
— Update the equivalence table.
iv.) Otherwise, assign a new label.
* Re-label with the smallest of equivalent g{ 2, 71
labels % 6, 8}
19
ide credit; J, Neira B. Leibe
Recap: Moment Invariants Exerges

* Normalized central moments
Hpq pP+q
= =——+1
1 =
* From those, a set of invariant moments can be defined
for object description.
A =N+,
& =175 _7702)2 + 477121
&= (173 _37712)2 + (3171~ 7703)2
By = (1750 + 7712)2 + (10 + 7703)2

¢ Robust to translation, rotation & scaling,
but don’t expect wonders (still summary statistics).

pa

(Additional invariant

moments ¢, ¢, ¢

can be found in the
literature).

B. Leibe
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Recap: Effect of Filtering

* Noise introduces high frequencies.

To remove them, we want to apply a /J‘\_ ,_JL

“low-pass” filter. T

The ideal filter shape in the

frequency domain would be a box.
But this transfers to a spatial sinc,
which has infinite spatial support.

¢ A compact spatial box filter i
transfers to a frequency sinc, which
creates artifacts. 5

¢ A Gaussian has compact support in
both domains. This makes it a
convenient choice for a low-pass
filter.

B. Leibe

Computer Vision WS 15/16

Computer Vision WS 15/16

Recap: Region Properties

» From the previous steps, we can

obtain separated objects.

* Some useful features can be

extracted once we have connected

components, including

» Area

» Centroid

» Extremal points, bounding box
Circularity
Spatial moments

v

v

B. Leibe

Repetition

* Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

¢ Segmentation & Grouping
¢ Object Recognition

¢ Local Features & Matching
¢ Object Categorization

¢ 3D Reconstruction

¢ Motion and Tracking

B. Leibe

~

Gaussian Smoothing

Derivative operators

- e
o

Gaussian/Laplacian pyramid

22
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Recap: Gaussian Smoothing

¢ Gaussian kernel

_ 1 _ :522+§;2

= e o
2mo?

¢ Rotationally symmetric
¢ Weights nearby pixels more
than distant ones

» This makes sense as
‘probabilistic’ inference
about the signal

T

¢ A Gaussian gives a good model
of a fuzzy blob

B. Leibe

24

lmage Source: Forsvth & Pong
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Recap: Smoothing with a Gaussian

¢ Parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel and controls the amount of smoothing.

‘.

.

M= l/q }
for sigma=1:3:10

h = fspecial ('gaussian', fsize, sigma);
out = imfilter(im, h);
imshow (out) ;
pause;
end

ide credit: Kristen Grauman B. Leibe

Recap: The Gaussian Pyramid

Low resolution

High resolution 27

B. Leibe Source: lrani & Basr]
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1st derivative | I\
P\
I Maxima of first
“ || " derivative
© 1 I 3 "
| | ‘ X
@ | O R o ) |
- 1 I
i | | 2nd derivative | |
I B “zero crossings” — | __— "
- —1T I/
ol second 1
derivative ! |

Recap: Resampling with Prior Smoothing

256 x 256 128 x 128 64 x 64 32 x 32 16 x 16

LS U L L TR R - Artifacts!
LAY -OICIIII L] -

no
smoothing

Gaussian
o=1

nnnu‘_

Gaussian
oc=2

* Note: We cannot recover the high frequencies, but we
can avoid artifacts by smoothing before resampling.

Computer Vision WS 15/16

. 2
B. Leibe Image Source: Forsvth & Ponce

Recap: Median Filter

* Basic idea
» Replace each pixel by the Tz o0
median of its neighbors. 10]1°
23(90|27
> 2 Sort
Median value ___| 33]31]30] l
* Properties 10 15 20 23 30 31 33 90
» Doesn’t introduce new pixel l1ol15(20 I Replace
values [23]27]27]
» Removes spikes: good for ;;x 31 m]

impulse, salt & pepper noise
» Nonlinear

» Edge preserving

Computer Vision WS 15/16

ide credit: Kristen Grauman B. Leibe

Recap: 2D Edge Detection Filters

A=

see
E“'e’cise 25
.51

Laplacian of Gaussian

Gaussian Derivative of Gaussian |
2,2 P ‘
1 _u4e F) > il
ho(u,v) = ——=e 202 ——ho(u,v) V<ho (u, v)
2702 dx

« V2is the Laplacian operator:
20 9% L P
Vef = 922 + dy?

©
&=
Ir}
B
%]
=
c
2
2
>
g
S
=
£
S
o

ide credit; Kristen Grauman LA




Repetition

¢ Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

Canny edge detector

* Segmentation & Grouping

Chamfer matching
= p-

¢ Object Recognition

'\

o Local Features & Matching = |
¢ Object Categorization
¢ 3D Reconstruction

¢ Motion and Tracking

Hough transform for lines

Computer Vision WS 15/16

Hough transform for circles
8. Leibe

Recap: Edges vs. Boundaries

A e
S

g
2
0
; .
5| Edges useful signal to
@ indicate occluding
S .
T boundaries, shape.
é Here the raw edge ..but quite often boundaries of interest
5] output is not so bad... are fragmented, and we have extra
< e “clutter” edge points. 3
ide credit: Kristen Grauman
RWTH ACHET

Recap: Fitting and Hough Transform

L 2%

Given a model of interest,
we can overcome some of]|
the missing and noisy
edges using fitting tech-
niques.

With voting methods like
the Hough transform,
detected points vote on
possible model parame-
ters.
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ide credit; Kristen Grauman
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RWTH/ACHE

Srergee
Cis,
€26

Recap: Canny Edge Detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):
» Define two thresholds: low and high

» Use the high threshold to start edge curves and the low
threshold to continue them

e MATLAB:
>> edge (image, ‘canny’) ;
>> help edge

adapted from D. Lowe, L. Fei-Fe|

Recap: Chamfer Matching

¢ Chamfer Distance
» Average distance to nearest feature

. 1
Denumser(To 1) = erhm
teT

» This can be computed efficiently by correlating the edge
template with the distance-transformed image

Edge image

Distance transform image
[D. Gavrila, DAGM’99]
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RWTH ACHE
Recap: Hough Transform erose
v y=matb b T
) NI
(0, Yo) — b, ::;() —
n ba-xim+y;
my m

Image space

Hough (parameter) space

¢ How can we use this to find the most likely parameters
(m,b) for the most prominent line in the image space?

» Let each edge point in image space vote for a set of possible
parameters in Hough space

» Accumulate votes in discrete set of bins; parameters with the
most votes indicate line in image space.

ide credit; Steve Seitz
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RWTH/CET
Recap: Hough Transf. Polar Parametrization

e Usual (m,b) parameter space problematic: can take on
infinite values, undefined for vertical lines.

d : perpendicular distance
from line to origin

@ : angle the perpendicular
makes with the x-axis

xcos@—ysing=d
¢ Point in image space
= sinusoid segment in
Hough space

ide credit: Steve Seit:

RWTH/ACHEN
Recap: Generalized Hough Transform

¢ What if want to detect arbitrary shapes defined by
boundary points and a reference point?

At each boundary point,
compute displacement
vector: I =a—p;.

For a given model shape:
store these vectors in a
table indexed by gradient
orientation 6.

Image space

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

39
Slide credit: Kristen Grauman
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Recap: Gestalt Theory

¢ Gestalt: whole or group
» Whole is greater than sum of its parts
» Relationships among parts can yield new properties/features

¢ Psychologists identified series of factors that predispose
set of elements to be grouped (by human visual system)

“I stand at the window and see a house, trees, sky.
Theoretically | might say there were 327 brightnesses
and nuances of colour. Do | have "327"? No. | have sky,
house, and trees.”
Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923

http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
B. Leibe

RWTH/ I
Recap: Hough Transform for Circles Steraie
11

e Circle: center (a,b) and radius r
(% —a)’ +(y,—b)* =r?

¢ For an unknown radius I, unknown gradient direction

r

G

Image space :

Hough space

Computer Vision WS 15/16

lide credit: Kristen Grauman

Repetition

* Image Processing Basics

¢ Segmentation & Grouping
» Segmentation and Grouping
» Segmentation as Energy Minimization

Gestalt factors

¢ Object Recognition @ a
e Local Features & Matching J

¢ Object Categorization

. K-Means & EM clustering
¢ 3D Reconstruction

¢ Motion and Tracking

Computer Vision WS 15/16

Mean-shift clustering
B. Leibe

RWTH ACHET
Recap: Gestalt Factors
[- e o o o @ Nopouped
Parallelism
{ . e .. ® @ Protimity
e o Similarity O s
» - Symimetry
> ® ) ) ® @ Soin ’ i

o ot e e CommonFae

Continuity

Common Region

Closure

* These factors make intuitive sense, but are very difficult to
translate into algorithms.
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B. Leibe Image source: Forsvth & Ponc



http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

RWTHACHE
Recap: Image Segmentation

¢ Goal: identify groups of pixels that go together

7

Computer Vision WS 15/16

43

ide credit: Steve Seitz, Kristen Grauman B. Leibe

RWTH/JCHET]
Recap: Expectation Maximization (EM)

&

¢ Goal
»  Find blob parameters ¢ that maximize the likelihood function:

N
pldatald) = | ] plx.|8)
e Approach: n=1

1. E-step: given current guess of blobs, compute ownership of each point

2. M-step: given ownership probabilities, update blobs to maximize
likelihood function

3. Repeat until convergence

Computer Vision WS 15/16

) 45
ide credit: Steve Seit B. Leibe

RWTH/ACHEN
Recap: Mean-Shift Clustering

e Cluster: all data points in the attraction basin of a mode

¢ Attraction basin: the region for which all trajectories
lead to the same mode
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47

ide by Y, Ukrainitz & B, Sarel B. Leibe

RWTHACHE
Recap: K-Means Clustering

¢ Basic idea: randomly initialize the k cluster centers, and
iterate between the two following steps

1. Randomly initialize the cluster centers, c4, ..., ¢«
2. Given cluster centers, determine points in each cluster
- For each point p, find the closest c;. Put p into cluster i
3. Given points in each cluster, solve for c;
- Set c; to be the mean of points in cluster i
4. If ¢; have changed, repeat Step 2

©
Sl
3
2 « Properties
s > Will always converge to some solution
g » Can be a “local minimum”
g - Does not always find the global minimum of objective function:
2 2
£ > Y el
g clusters i points p in cluster i
44
ide credit: Steve Seit; B. Leibe
RWTH/ACHEN
Recap: Mean-Shift Algorithm Bxergee
12 . : R } ) €32
1a
a
a
.
© 2 : :
: 1l ‘ ‘l’ |
) :
@ . [l L]
2 % =] 2 0 ]
5 ¢ lterative Mode Search
< 1. Initialize random seed, and window W
3 2. Calculate center of gravity (the “mean”) of W: Y~ wH(a)
E- 3. Shift the search window to the mean zeW
3 4. Repeat Step 2 until convergence
46
ide credit: Steve Seit; B. Leibe
RWTH/ACHEN
Recap: Mean-Shift Segmentation E»\'er;_f:s
.3/

¢ Find features (color, gradients, texture, etc)
¢ Initialize windows at individual pixel locations
¢ Perform mean shift for each window until convergence

¢ Merge windows that end up near the same “peak” or
mode 7

o 1.
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48

ide credit: Svetlana | azebnik. B. Leibe




Repetition

¢ Image Processing Basics

* Segmentation & Grouping
» Segmentation and Grouping
» Segmentation as Energy Minimization

¢ Object Recognition
¢ Local Features & Matching

¢ Object Categorization N
: s
* 3D Reconstruction Graph cuts

¢ Motion and Tracking

Computer Vision WS 15/16

49
B. Leibe

¢ Unary potentials ¢
» Encode local information about the given pixel/patch

» How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

¢ Pairwise potentials ¢
» Encode neighborhood information

> How different is a pixel/patch’s label from that of its neighbor?
(e.g. based on intensity/color/texture difference, edges)
B. Leibe

Computer Vision WS 15/16

51

RWTHACHEN
Recap: Energy Formulation
¢ Energy function o y)
Elxy) = ) oleiy) +) vlwnz) Fik
i , i ,
Unary Pairwise
potentials potentials

RWTH ACHET
Recap: How to Set the Potentials?

¢ Pairwise potentials

» Potts Model
(i, w3 0p) = Oypd(; # )
- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.

» Extension: “Contrast sensitive Potts model”
(@i, w5, 95 (Y); Oy) = Ougi; (y)d(w; # ;)
where

a,0=¢ M1 p=2ravg(|y -y

= Discourages label changes except in places where there is also a
large change in the observations.
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53
B. Leibe

RWTHACHE
Recap: MRFs for Image Segmentation

e MRF formulation

= Minimize the energy

Unary Exy) =S oz u
potentials (x¥) l}, Bz, yi)
Wi, yi) ‘

+ Z-T*‘"(Tf z;)
Pairwise potentials

(s, 25)

N

Computer Vision WS 15/16

Data (D)

de adapted from Phil Torr

Unary likelihood Pair-wise Terms MAP Solution
50

RWTH CHE
Recap: How to Set the Potentials?

¢ Unary potentials
» E.g. color model, modeled with a Mixture of Gaussians

Wi, Y53 04) = log > _ 0 (s, k)p(klas) N (i3 T, i)
k

= Learn color distributions for each label

d(zp=1,9p) M

d(zp =0,yp)

Computer Vision WS 15/16

B. Leibe

RWTH/ACHET
Recap: Graph-Cuts Energy Minimizaticege

¢ Solve an equivalent graph cut problem

1. Introduce extra nodes: source and sink

2. Weight connections to source/sink (t-links)
by ¢(z; = s) and ¢(z; = t), respectively.

3. Weight connections between nodes (n-links)
by ¥(z;, 1]‘)-

4. Find the minimum cost cut that separates
source from sink.

= Solution is equivalent to minimum of the energy.

¢ s-t Mincut can be solved efficiently 9
» Dual to the well-known max flow problem
» Very efficient algorithms available for regular
grid graphs (1-2 MPixels/s) 4
» Globally optimal result for 2-class problems
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Recap: When Can s-t Graph Cuts Be Applied?

Unary potentials Pairwise potentials

E(L) = > E,(L,) + ZNE(LP,Lq
g t-links P n-links

¢ s-t graph cuts can only globally minimize binary energies
that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

RWTHAACHE

)
L, e{s,t}

‘ E(L) can be minimized ‘ <> [E(9)+ELY<EGD+EES)]

by s-t graph cuts

¢ Submodularity is the discrete equivalent to convexity.
» Implies that every local energy minimum is a global minimum.

= Solution will be globally optimal.

B. Leibe

Submodularity (“convexity”)

Recap: Appearance-Based Recognition

e Basic assumption
» Objects can be represented

by a set of images \
(“appearances”). 3D object |

» For recognition, it is
sufficient to just compare

the 2D appearances. a
» No 3D model is needed.

= Fundamental paradigm shift in the 90’s

B. Leibe

RWTHACHEN
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Recap: Comparison Measures

e Vector space interpretation
» Euclidean distance

¢ Statistical motivation
» Chi-square
» Bhattacharyya

¢ Information-theoretic motivation
» Kullback-Leibler divergence, Jeffreys divergence

¢ Histogram motivation
» Histogram intersection

¢ Ground distance
» Earth Movers Distance (EMD)

&1
#
nll
59

Repetition
¢ Image Processing Basics a
¢ Segmentation & Grouping Appearance-based

RWTHAACHE

§

recognition

7

7

7

Object Recognition oL
s

» Global Representations :p ;
e Local Features & Matching

Histogram

. . . representations
¢ Object Categorization P

¢ 3D Reconstruction
¢ Motion and Tracking

Computer Vision WS 15/16

B. Leibe

.

Comparison measures

@.l.s

'II *|||

¢ E.g. histogram comparison

Test image \

Computer Vision WS 15/16

B. Leibe

RWTH CHE
Recap: Recognition Using Global Features

Known objects

58

e Simple algorithm

> More exactly, for each view of each object
2. Build a histogram h for the test image.
3. Compare h, to each h;eH
> Using a suitable comparison measure
4. Select the object with the best matching score
> Orreject the test image if no object is similar enough.

“Nearest-Neighbor” strategy
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B. Leibe

RWTH ACHE
Recap: Recognition Using Histograms &e. s

1. Build a set of histograms H={h;} for each known object

Cise 42

10



Recap: Multidimensional Representations

¢ Combination of several descriptors
» Each descriptor is
applied to the whole image. D,

» Corresponding pixel values
are combined into one D
feature vector.

- Feature vectors are collected LaQ,
in multidimensional histogram.

Computer Vision WS 15/16

B. Leibe

Histogram
— based
recognition)

Circle
detection

Binary
Segmen-
tation

Computer Vision WS 15/16

“sou Skin color detection

Moment descriptors
Image Source: 2806412807/

Recap: Local Feature Matching Pipeline

. Find a set of
distinctive key-
points

-

N

. Define a region
around each
keypoint

3. Extract and
normalize the
region content

Similarity
measure

%\.m<:> il

“Npixels d(f,, fg)<T

4. Compute a local
descriptor from the
normalized region

5. Match local
descriptors
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B. Leibe

Recap: Colored Derivatives

¢ Generalization: derivatives along
» Y axis — intensity differences
» €y axis — red-green differences
» C, axis — blue-yellow differences

¢ Application:
» Brand identification in video

Computer Vision WS 15/16

[Hall & Crowlev, 2000

RWTH/ZCTEY

Repetition " (aw%)w(aﬂ{ HCS) uy«rn)]

L1y(0)  17(05)

Harris & Hessian Hes(1) = l
detector

Image Processing Basics

Segmentation & Grouping

Object Recognition

¢ Local Features & Matching

» Local Features -
Detection and Description

g » Recognition with Local Features
5
- . . .
o - Object Categorization
1 + 3D Reconstruction
S - .
5| ¢ Motion and Tracking
H
£
8
’ 64
B. Leibe SIF T descriptor

Recap: Requirements for Local Features
e Problem 1:
» Detect the same point independently in both images

e Problem 2:
» For each point correctly recognize the corresponding one

‘ We need a repeatable detector! ‘

‘ We need a reliable and distinctive descriptor!
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ide credit: Darva Frolova. Denis Simakoy B. Leibe
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Recap: Harris Detector [Harrisss]

¢ Compute second moment matrix
(autocorrelation matrix)
2
M(a.,cp)=g(m)*[ ) '*'V("")J

Lly(o0)  15(op)

1. Image

derivatives
]2
2. Square of 1
derivatives .
3. Gaussian
filter g(oy)

4. Cornerness function - two strong eigenvalues
R=det[M (o, 0 ,)]—altrace(M (0,5 ,))]
=9(1)9(17) -[9(1,1,)F —alg(1)) +9(I))F

5. Perform non-maximum suppression
ide credit: Krystian Mikolajczyk B. Leibe

Computer Vision WS 15/16

Recap: Hessian Detector (seaudet7s)

Exe, e
RO R

¢ Hessian determinant

Xy

Hessian (1) =BXX :W}

det(Hessian(1)) =1,,1,, —12
In Matlab:
Loex D, —(1,)0°2

ide credit: Krystian Mikolaiczvk B. Leibe

Computer Vision WS 15/16

Recap: Automatic Scale Selection

¢ Function responses for increasing scale (scale signature)

A 4
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S
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2 - —
c 4 *, . e
=} f LN . e
2 o N 4
g . ‘
: — ff
-
5 i |
=3 Tve e B i I
5 scale {
3 f(l, . (x0) (1, (X,07)
) 71
ide credit: Krystian Mikolaiczyk, B Lefbe

Computer Vision WS 15/16
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Recap: Harris Detector Responses [Harrisas]

Effect: A very precise
corner detector.

ide credit: Krystian Mikolajczyk

Recap: Hessian Detector Responses [seaudet7s)

Effect: Responses mainly
on corners and strongly
textured areas.

ide credit: Krystian Mi
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Recap: Laplacian-of-Gaussian (LoG)

¢ Interest points:

» Local maxima in scale o’ m
space of Laplacian-of-
o
/ =

Gaussian
Y

QY L (o)L, (o

(' 7
= §

ide adapted from Krystian Mikolaiczyi LA

= List of (x, y, o)

12



UNIVERSITY
Recap: LoG Detector Responses
h
s
%
= 73
ide credit: Svetlana Lazebnik B. Leibe
TOWTHAACHET]
UNIVERSITY}

Recap: Harris-Laplace imikolajczyk ‘011

1. Initialization: Multiscale Harris corner detection

2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris points

Computer Vision WS 15/16

Harris-Laplace points
75

ide adapted from Krystian Mikolaiczvk B. Leibe

RWTH/ACHER
. . UNIVERSITY
Recap: Affine Adaptation

e Problem:
» Determine the characteristic shape of the region.
» Assumption: shape can be described by “local affine frame”.

¢ Solution: iterative approach
» Use a circular window to compute second moment matrix.
» Compute eigenvectors to adapt the circle to an ellipse.
» Recompute second moment matrix using new window and

iterate... I \

e
\§

ide adapted from Svetlana | azehnik B Lefbe
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Recap: Key point localization with DoG

¢ Efficient implementation

~ Approximate LoG with a
difference of Gaussians (DoG)

¢ Approach DoG Detector

» Detect maxima of difference-
of-Gaussian in scale space

Reject points with low
contrast (threshold) =

v

Eliminate edge responses

v

Gounten Gausian 100G
Candidate keypoints:
list of (x,y,0)

Computer Vision WS 15/16

RWTH//CHEN
UNIVERSITY,

Image source: David Lowe)

RWTH/CHET]
. ] L UNIVERSITY
Recap: Orientation Normalization

e Compute orientation histogram
¢ Select dominant orientation
* Normalize: rotate to fixed orientation

[Lowe, SIFT, 1999
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& o t 27
o 76
ide adapted from David Lowe et
UNIVERSITY

Recap: Iterative Affine Adaptation

FLICILICR

(.4 \ /| Q! B AR
\ \ %/ -

1. Detect keypoints, e.g. multi-scale Harris

2. Automatically select the scales

3. Adapt affine shape based on second order moment matrix
4. Refine point location

Computer Vision WS 15/16

K. Mikolajczyk and C. Schmid, Scale and affine invariant interest point detectors, 78
1JCV 60(1):63-86, 2004. Slide credit: Tinne Tuytelaal
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http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf

Recap: Affine-Inv. Feature Extraction o Recap: SIFT Feature Descriptor

¢ Scale Invariant Feature Transform

Eliminate rotational Compare

Extract affine regions Normalize regions descriptors ° DeSCﬁptOr computation.
- Yk 1 » Divide patch into 4x4 sub-patches: 16 cells
* K> » Compute histogram of gradient orientations (8 reference angles)
3 L2 for all pixels inside each sub-patch
I » Resulting descriptor: 4x4x8 = 128 dimensions
© - Ly © - k k 1
S =
n N wn 3.
% AR = f K
= LRE SEELN = % e
S RN 5
g g i
] g
é- é- David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
S S MV 60 (2), pp. 91-110, 2004.
79 80
ide credit: Svetlana | azebnik B. Leibe ide credit: Svetlana | azebnik B. Leibe
Ly sa . _ i !
Repetition Recap: Recognition with Local Features

« Image Processing Basics ¢ Image content is transformed into local features that
are invariant to translation, rotation, and scale

¢ Segmentation & Groupin
2 ping ¢ Goal: Verify if they belong to a consistent configuration

¢ Object Recognition

¢ Local Features & Matching

~ Local Features -
Detection and Description Fitting affine transformations

S > Recognition with Local Features & homographies g

5 3

- s . . -

o Object Categorization 2

i + 3D Reconstruction s

= X . s

% * Motion and Tracking 5

2 2 Local Features,

£ E e.g. SIFT

S 81 S 82
B. Leibe Gen. Hough Transform ide credit: David Lowe B. Leibe

Recap: Indexing features Recap: Fast Indexing with Vocabulary'Treés "

- 3 < Index ea;_h one into
YL i 1 pool of descriptors
deme 4

from previously seen
images

¢ Recognition

Geometric
verification

Detect or sample Describe

) [Nister & Stewenius, CVPR’06]|
84
ide credit: David Nister, B. Leibe

© ©
pt R
& features features or i}
%) | E— 12
i List of Associated list | . . E
2 positions, of d- Match to quantized 2
> scales, dimensional descriptors (visual >
E orientations descriptors words) E
o o
5 £
15 o
o o

= Shortlist of possibly matching images + feature correspondences
83

ide credit: Kristen Grauman LA



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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the transformation?

MR MY

o

B. Leibe

=
=<

Recap: Fitting an Affine Transformation

¢ Assuming we know the correspondences, how do we get

RWTHAACHE

* Estimating the transformation

My Xg, + DY+ =X, Moy Xg, =Xy PizYg =X, =0
Mo Xg, + oY +1os =Y Moy Xg, = YpMeaYg, =¥ =0

Recap: Fitting a Homography

Recap: RANSAC

RANSAC loop:

1. Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of

matches)

2. Compute transformation from seed group
3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-
compute least-squares estimate of transformation on

all of the inliers

¢ Keep the transformation with the largest number of

inliers

Slide credit: Kristen Grauman LA

X, % X Ys 1 0 0 0 —X,X5 —X,V5 X, ||[hs| [0
0 0 0 X Y L1 —VuXy —YaVs —Va||hu| [O
Xp, € Xg, o . | hy |=
X, > Xg, Mg
. h,
h,
Ah=0 1
) 87
lide credit: Krystian Mikolaiczvk 8. Leibe

See
erCiSe 6.2

Computer Vision WS 15/16
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Recap: Fitting a Homography

¢ Estimating the transformation

Homogenous coordinates Image coordinates

Xp € Xg, Mx'] _h1 h, h 1T x N X Matrix notation
L 1
Xy X v ' =
BT7Te Y= Ry by Y= Y x'=Hx
Xp, € Xg, 72-7 7h31 h, 1 ) 1 X":%X'
. " z
Dty oy, X +higYy +hyg
hey Xg, + Moy +1 Ney Xg, +hayp, +1 86

de credit: Krystian Mikolajczyk B. Leibe

Recap: Fitting a Homography

¢ Estimating the transformation

¢ Solution:
» Null-space vector of A
» Corresponds to smallest

eigenvector
VD Ah=0
Z((A’ H))((B‘ l dll d19 Vll
n X, A=UDV' =U :
X, > X
~ . * dQl d99 V91

h= [va"'vvea]
Vog

Minimizes least square error

ide credit: Krystian Mi B. Leibe

88

Recap: RANSAC Line Fitting Example

¢ Task: Estimate the best line

ide credit: Jinxiano Chai B. Leibe

RWTHACHEN

15



RWTH/ACHEN
. . UNIVERSITY] . . UNIVERSITY]
Recap: RANSAC Line Fitting Example Recap: RANSAC Line Fitting Example
¢ Task: Estimate the best line ¢ Task: Estimate the best line
°
°
°
. )
o ° o
e $ E
S L4 5 L4
2 . N Sample two points 2 . N Fit a line to them
‘3 ° ;'i b
5 g
. ide credit: Jinxiang Chai B. Leibe ’ . ide credit: Jinxiang Chai B. Leibe i

RWTH/CHET]
. cees UNIVERSITY}
Recap: RANSAC Line Fitting Example

RWTH/CHET
. L UNIVERSITY
Recap: RANSAC Line Fitting Example

¢ Task: Estimate the best line ¢ Task: Estimate the best line

4 3
3 3 d
& o
) %]
= E
$ . 5
S . . Total number of points $ Repeat, until we get a
g . within a threshold of g good result.
z line. £
38 8
; 93 ’ ! 94
ide credit: Jinxiane Chai B. Leibe ide credit: Jinxiane Chai B. Leibe

RWTH/ACHEN
. UNIVERSITY
Recap: Generalized Hough Transform

RWTH/ACHET
. UNIVERSITY
Recap: Feature Matching Example

¢ Find best stereo match within a square search window
(here 300 pixels?)

¢ Global transformation model: epipolar geometry

¢ Suppose our features are scale- and rotation-invariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).

before RANSAC after RANSAC
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Images from Hartley & Zisserman

95
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ide credit: David | owe B. Leibe ide credit: Syetlana | azebnik B. Leibe




Recap: Generalized Hough Transform

¢ Suppose our features are scale- and rotation-invariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).

Of course, a hypothesis from a single match is unreliable.

Solution: let each match vote for its hypothesis in a Hough space
with very coarse bins.

v

v

Computer Vision WS 15/16

97

ide credit: Svetlana | azebnik B. Leibe

Repetition

¢ Image Processing Basics

¢ Segmentation & Grouping
¢ Object Recognition

¢ Local Features & Matching

¢ Object Categorization
» Sliding Window based Object Detection
» Bag-of-Words Approaches

¢ 3D Reconstruction

* Motion and Tracking %

HOG detector
B. Leibe

Computer Vision WS 15/16

Recap: Gradient-based Representations

¢ Consider edges, contours, and (oriented) intensity
gradients

e Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations
» Contrast-normalization: try to correct for variable illumination
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101

ide credit: Kristen Grauman B. Leibe

Computer Vision WS 15/16

Computer Vision WS 15/16

Application: Panorama Stitching

Pap, See
or, amg
Moy

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch. html

. 98
B. Leibe [Brown & Lowe, ICCV'03]

Recap: Sliding-Window Object Detection

¢ If object may be in a cluttered scene, slide a window
around looking for it.

Car/non-car
Class

¢ Essentially, this is a brute-force approach with many
local decisions.

100

ide credit: Kristen Grauman B. Leibe
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Recap: Classifier Construction: Many Ch['o es...

Nearest Neighbor Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Berg, Berg, Malik 2005,
Chum, Zisserman 2007,
Boiman, Shechtman, Irani 2008, ...

Randomized Forests
i
u./'\.t.

o s »
o
° e ; I E
Viola, Jones 2001, | | Vapnik, Schdlkopf 1995, Amit, Geman 1997,
Torralba et al. 2004, | Papageorgiou, Poggio ‘01,| | Breiman 2001,
Opelt et al. 2006, Dalal, Triggs 2005, Lepetit, Fua 2006,

Benenson 2012, ... Vedaldi, Zisserman 2012 Gall, Lempitsky 2009,...

Boosting Support Vector Machines
0 ®

102

ide adapted from Kristen Grauman B. Leibe
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http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

RWTHACHE RWTHACHE
Recap: Support Vector Machines (SVMs) Recap: Non-Linear SVMs

¢ General idea: The original input space can be mapped to
some higher-dimensional feature space where the

« Discriminative classifier training set is separable:
based on optimal

separating hyperplane
(i.e. line for 2D case) . e
o« L .
g « Maximize the margin g < L0l .
° between the positive % e .
& and negative training = D o e °
(=} (=]
z examples g R .
g g .
2 2
g £
S 103 g 104
slide credit: Kristen Grauman B. Leibe i ’ al: http://www.autonlab.org i X
RWTH CHE RWTH CHE
Recap: HOG Descriptor Processing Chain Recap: HOG Cell Computation Details
» SVM Classification ObJeCt/N","'ObJeCt « Gradient orientation voting
» Typically using a linear SVM ‘ Linear SVM ‘ » Each pixel contributes to localized %k‘ *
T gradient orientation histogram(s)
‘ Collect HOGs over ‘ . Vote is weighted by the pixel’s
detecnon window gradient magnitude ,%ié %’(
Contrast normahze over /' § =tan—1 (()y/ )
overlapping spat1al cells - )
o o k IVl = /(357 + (:7{,)
[ ‘ Weighted \éol:e in spl?twl& ‘ It e 4_\\
orientation cells : . : bl
4 4 « Block-level Gaussian weighting VAR LR
é [ compute grad]ents | § » An additional Gaussian weight is Nt HEE
S T S applied to each 2x 2 block of cells e e
g | Gamma C°Tp’ess'°” | £ » Each cell is part of 4 such blocks, HEEA S e
g Image Window E Lgs:lting in 4 versions of the \\‘» 3= 7
3 . 3 istogram. S el 106
Slide adapted from Navneet Dalal
RWTH ACHET RWTH ACHET

Recap: HOG Cell Computation Details (2) Recap: Non-Maximum Suppression

/J

Clip detection score

¢ Important for robustness: Tri-linear interpolation

» Each pixel contributes to (up to) 4
neighboring cell histograms

Weights are obtained by bilinear
interpolation in image space:

hlryn) & w- (1 o ) (1 y-n ) J
T2 =) Y2 —

i) o w- (1 - *_) (L)
T2—o )\ = (r1,2) | (72,2)

(9'1..7,‘1) (‘7'2.?.‘1)

v

After multi-scale dense scan

Map each detection to 3D
[x.y.scale] space

Goal

© © —d1 -

= ¥ Vo (-f*u](l y*m) = ST -

(%) s ) — we | —— - » g

= =) T3 = ¥ = ES D '

s r—x - = . s

e iz, ye) + w- (;) ( y=n ) S -

S T2 — Iy Y2 — S .

E » Contribution is further split over E Apply robust mode detection,

g (up to) 2 neighboring orientation bins = eg. mean shift

38 via linear interpolation over angles. 07 3 Fusion of multiple detections Non-maximum suppression -
0 T LA lmage sgurce: Navpeet Dalal PhD Thesi



http://www.autonlab.org/tutorials/svm.html

Computer Vision WS 15/16
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Recap: AdaBoost

e © Weights _.,__.
Weak [} ) Increased ® .:
Classinier1 ~&__._---=~ \0'\.
) Weak '®
0 Classifier 2 _—-——\—."q
Weak
classifier 3

Final classifier is
combination of the
weak classifiers

109

ide credit: Kristen Grauman B. Leibe

RWTH CHE
Recap: AdaBoost Feature+Classifier Selection
¢ Want to select the single rectangle feature and threshold

that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

Resulting weak classifier:

S i)l
B {-1 otherwise

For next round, reweight the
examples according to errors,
choose another filter/threshold
combo.

 — L(x)—
Outputs of a
possible rectangle
feature on faces
and non-faces.

m
[Viola & Jones, CVPR 2001

ide credit: Kristen Grauman B. Leibe
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RWTH ACHET
Repetition

O @

¢ Image Processing Basics
¢ Segmentation & Grouping
¢ Object Recognition

. i o ied
* Local Features & Matching Bag-of-words representation

¢ Object Categorization
» Sliding Window based Object Detection
» Part-based Approaches

LW
» Deep Learning Approaches

Activation histogram
¢ 3D Reconstruction

¢ Motion and Tracking

Implicit Shape Model 13

B. Leibe

Computer Vision WS 15/16

Computer Vision WS 15/16

Recap: Viola-Jones Face Detection

“Rectangular” filters

Feature output is difference
between adjacent regions

Value at (x,y) is
sum of pixels
'| above and to the
left of (x,y)

{ ;;DL;

Efficiently computable
with integral image: any |
sum can be computed
in constant time

Avoid scaling images 2>
scale features directly
for same cost

Integral image Daled=i2ed)
(o A+BHC+ D) =(A+C+ A+ B

=D

ide credit: Kristen Grauman B. Leibe

RWTH/ACHEN
Application: Viola-Jones Face Detector

Train cascade of
classifiers with
AdaBoost

New image

=] ulelm=
P! [l
=y L] =

Selected features,
thresholds, and weights

Non-faces

* Train with 5K positives, 350M negatives

* Real-time detector using 38 layer cascade
* 6061 features in final layer

¢ [Implementation available in OpenCV:

http://sourceforge.net/projects/opencvlibrary/]
12

RWTHAACHE

110
[Viola & Jones, CVPR 2001]

ide credit: Kristen Grauman B. Leibe
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Recap: Identification vs. Categorization

o Find this particular object ¢ Recognize ANY car
7o e

ze ANY cow

m ¢ Recogni

i,
e

114

B. Leibe

19


http://sourceforge.net/projects/opencvlibrary/

Recap: Visual Wqrds Recap: Bag-of-Word Representations (BoW) ‘

e Quantize the
feature space into
“visual words”

Object I—'| Bag of “words” |

¢ Perform matching
only to those visual
words.

Computer Vision WS 15/16
Computer Vision WS 15/16

Exact feature matching — Match to same visual word

116
ide adapted from Kristen Grauman Figure from Sivic & Zisserman, ICCV 2003

B. Leibe ource: ICCV 2005 short course, Li Fei-Feil

Recap: Categorization with Bags-of-Words

,g, ¢ Compute the word
W .3 activation histogram for
O each image.

s Let each such Bow
histogram be a feature

Recap: Advantage of BoW Histograms ‘

¢ Bag of words representations make it possible to
describe the unordered point set with a single vector
(of fixed dimension across image examples).

vector. I
> L - 3 . -
. - ‘ - « Use images from each . E
3 E @ - rwf * class to train a classifier 3 = g]
o 5
4 _ (e.g., an SVM). g =
s \ -
Z Y 2|  Provides easy way to use distribution of feature types
B u B with various learning algorithms requiring vector input.
2 m . 2
E Violins E
= " "7 S . 118
ide adapted from Kristen Grauman B. Leibe ide credit: Kristen Grauman B. Leibe

Recap: Part-Based Models

The bag of words
removes spatial

¢ Fischler & Elschlager 1973
layout.

¢ Model has two components
» parts
(2D image fragments)
» structure
(configuration of parts)

This is both a strength
and a weakness.

e Why a strength?

MOUTH

* Why a weakness?

© ©
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Bill Ereeman B. Leibe B. Leibe




RWTH/ T
Recap: Implicit Shape Model - Representatlon

FIRILAETEERNRAEAEEXE..
MATIITIANANANIN.
-l"'\l'lf’”'ll'l'l.l

FRRXRAREXRAR
—nnnnnnn

fﬂﬂﬂﬁﬂﬂ

ran

F

Appearance codebook

y s vy ~

%
.

"

Training images
(+reference segmentation)

| #az ??’J Ildd

¢ Learn appearance codebook

» Clustering = appearance codebook

» Extract local features at interest points xﬁ ’ kﬁ
JE
E1

b
¢ Learn spatial distributions v

~ Match codebook to training images ‘
» Record matching positions on object

@

s

S
Spatial occurrence distributions
+ local figure-ground labels 121

Computer Vision WS 15/16

B. Leibe

Recap: Scale Invariant Voting

¢ Scale-invariant feature selection
» Scale-invariant interest points
» Rescale extracted patches
> Match to constant-size codebook

* Generate scale votes % %

» Scale as 3" dimension in voting space
ZTyote = Limg — Zoce(Simg/S0cc)

Yoote = Yimg — Yocel Simg/Soce)

Suote = (Simg/Boce).

» Search for maxima in 3D voting space

Computer Vision WS 15/16

123

B. Leibe

RWTH ACHET
Recap: Convolutional Neural Networks

C3:1. maps 16@10x10
o Ci: feature maps. S4:1. maps 16@5x5 “LeNet”
S2:1.m;

@184 lr l"r
r
r

Ny
o 6@28x28

Cs:tayer s N
@ e ST architecture

—— I
| | Fulcondection | Gaussian comections
Convolutions Subsampling Convolutions  Subsampling Full connection

¢ Neural network with specialized connectivity structure
» Stack multiple stages of feature extractors

» Higher stages compute more global, more invariant features
» Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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125

ide credit: Svetlana | azebnik LA

RWTH/CET
Recap: Implicit Shape Model - Recognition

Interest Points  Matched Codebook Probabilistic

Entries Voting

“Generalized Hough Transform ‘? *
with backprojection”
a 3D Votmg Space
2 (continuous)
2
g
S
g
2 Backprojected Backprojection
§ Hypotheses of Maxima

122
[Leibe, Leonardis, Schiele, SLCV’04; 1JCV’08

Repetition

Image Processing Basics

Segmentatlon & Groupmg Canvolutional Neural Networks

Object Recognition

Local Features & Matching

Object Categorization
» Sliding Window based Object Detection
» Part-based Approaches
» Deep Learning Approaches

¢ 3D Reconstruction

¢ Motion and Tracking m”“ﬂm“m
HM M

Computer Vision WS 15/16

AlexNet, VGGNet, GoogLeNet 174
B. Leibe

|

Recap: CNN Structure

¢ Feed-forward feature extraction
1. Convolve input with learned filters

Feature maps

3 Spatial por i%
: . Normalization
3. Spatial pooling

4. (Normalization) ﬁ

¢ Supervised training of convolutional M
filters by back-propagating f
classification error Non_,,naa,,,y

Input Image
126
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ide credit: Svetlana L azebnik. B. Leibe
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RWTH/CIET] RWTH/ T
.. UNIVERSITY ] UNIVERSITY
Recap: Intuition of CNNs Recap: Convolution Layers
¢ Convolutional net . .
Nam1ng convention:
» Share the same parameters 32

across different locations

» Convolutions with learned
kernels

=~50000]

/ wIDTH

Learn multiple filters

Q » E.g. 1000x 1000 image Q 3 DEPTH
o 100 filters o
%) 10x 10 filter size 1) 3
2 2
= = only 10k parameters = 3 . . . )
z 7 ¢ All Neural Net activations arranged in 3 dimensions
; * Result: Response map ; > Multiple neurons all looking at the same input region,
3 » size: 1000x1000x 100 E stacked in depth
§ » Only memory, not params! § » Form asingle [1x1xdepth] depth column in output volume.
ide adapted from Marc’Aurelio Ranzato B. Leibe I e Yann ng ide credit: FeiFei i, Andrej Karpathy B. Leibe ”
RWTH/CHET RWTH/CHET]
. . UNIVERSITY} . UNIVERSITY}
Recap: Activation Maps Recap: Pooling Layers
Activations:
BINEEEDNCIIANAN RSOSSN RS Single depth slice
one filter = one depth slice (or activation map) 5x5 filters
111|124
X max pool with 2x2 filters -
5|6 |78 and stride 2 6|8
3,2|1]|0 3|4
= 1/2(3]4
g g
2 3
g : Y
c . " : =
E Eﬁch :r::twat;]o;‘ mapt1s z: de::th :% o Effect:
; Activati slice throug € output volume. ; » Make the representation smaller without losing too much
£ ctivation maps E information
§ E » Achieve robustness to translations
29 30
ide adapted from FeiFei Li. Andrei Karpathy 8- Leibe ! ide adapted from FeiFei Li, Andrei Karpathy 8- Leibe !
RWTH/ACHET]
UNIVERSITY] UNIVERSITY]

Recap: Effect of Multiple Convolution Layers Recap: AlexNet (2012)

Low-Level| |Mid-Level| |High-Level Trainable
- - -
Feature Feature Feature Classifier
5\

trid
t4 pooling pooling
3 ®

o Similar framework as LeNet, but
~ Bigger model (7 hidden layers, 650k units, 60M parameters)
» More data (106 images instead of 103)
» GPU implementation
» Better regularization and up-to-date tricks for training (Dropout)

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
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A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012. 132

Image source: A Krizhevsky, |, Sutskever and G.F, Hinton, NIPS 2012)
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ide credit: Yann leCun B. Leibe



http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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RWTHCHET]
Recap: VGGNet (2014/15)

— Cow et Couffawation

¢ Main ideas

;
TT weight 19 weight

~ Deeper network | tagers ¥
» Stacked convolutional | cwiei | miar
layers with smaller I o
filters (+ nonlinearity) |
» Detailed evaluation
of all components

g
convi-6d

o313 | con 3128 | oo

3256

¢ Results

> Improved ILSVRC top-5 |
error rate to 6.7%.

convi-512 | comvi-5i2

conv3i-S12

Mainty used

FC-1000

133

B. Leibe

Image source: Simonvan & Zissermar

RWTH CHE
Recap: Transfer Learning with CNNs

~m% 1, Train on —m% 3 |f you have a medium
e ImageNet S sized dataset,

S e “finetune” instead: use
e : e the old weights as

wnvizs | 2+ If sma!l dataset: fix .1 initialization, train the
maxpool all weights (treat maxpool full network or only
<onv.2s6 CNN as fixed fea!:ure conv-256 some of the higher
256 extractor), retrain peme2i layers.

maxpoot only the classifier o=

conv-512 conv-512

conv-512 conv-512

maxpool l.e., replace the maxpaol Retrain bigger

conv-512 Softmax layer at conv-512 part of the network
<onv-512 the end conv-512

‘maxpool ‘maxpool

FC-2096 FC-3096

#C.a0s6 rC.a0ss

FC-1000 FC-1000

softmax softmax

. 135
ide credit: Andrei Karpath, B. Leibe

RWTH ACHET
Recap: What Is Stereo Vision?
¢ Generic problem formulation: given several images of

the same object or scene, compute a representation of
its 3D shape

137

ide credit: Svetlana | azebnik, Steve Seit: B. Leibe
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RWTH/ACHEN
Recap: GoogleNet (2014)
¢ Ideas:
» Learn features at multiple scales
» Modular structure gl A
g8 gma i
il Hii
safaafqdigie
[ EARE
. Convolution
Ir:s:sltjllzn + copies Pooling
- Other
e e = Auxiliary classification
o — outputs for training the
= ) lower layers (deprecated)
0 oo e i s Lo
Repetition p "o

¢ Image Processing Basics . T
Epipolar'geometry

u i ey

¢ Segmentation & Grouping
¢ Object Recognition
¢ Local Features & Matching

¢ Object Categorization

¢ 3D Reconstruction
» Epipolar Geometry and
Stereo Basics
» Camera Calibration &
Uncalibrated Reconstruction
» Structure-from-Motion

¢ Motion and Tracking YN ;
B. Leibe Dense stereo matching 136

RWTH/ACHEN
Recap: Depth with Stereo - Basic Idea

¢ Basic Principle: Triangulation
» Gives reconstruction as intersection of two rays
» Requires
- Camera pose (calibration)
- Point correspondence

138
ide credit: Steve Seit LA
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RWTH/ACHEN
Recap: Epipolar Geometry
¢ Geometry of two views allows us to constrain where the

corresponding pixel for some image point in the first
view must occur in the second view.

epipolar line .

¢ Epipolar constraint:

e A ‘ epipolar line

» Correspondence for point p in [T must lie on the epipolar line /’
in [T’ (and vice versa).

» Reduces correspondence problem to 1D search along conjugate

RWTH/ACHEN
Recap: Stereo Geometry With Calibrated Cameras

X world point

x|

epipolar lines.

Slide adapted from Steve Seit:

B. Leibe

139

p=|¥ e
\f v N
’.
p X S
“ = .
s . i Ze N X!
% o, A T o/
2 N * - T !
c c o
S R
@ .
= * Camera-centered coordinate systems are related by
2 known rotation R and translation T:
o
E| ’
5 X =RX+T
140
ide credit: Kristen Grauman B. Leibe

Computer Vision WS 15/16

TONTH AT
Recap: Essential Matrix
X'-(TxRX)=0 R
X'-(Tx RX)=0 P 1
tet E=T:R 5 N— :
XTEX=0 .

¢ This holds for the rays p and p’ that
are parallel to the camera-centered

position vectors X and X’, so we have:

* E is called the essential matrix, which relates
corresponding image points [Longuet-Higgins 1981]

] 141
Slide credit: Kristen Grauman B. Leibe
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Slide adapted from i Zhang

RWTH ACHET
Recap: Stereo Image Rectification

¢ In practice, it is
convenient if image
scanlines are the
epipolar lines.

¢ Algorithm
» Reproject image planes onto a common
plane parallel to the line between optical
centers
» Pixel motion is horizontal after this transformation
» Two homographies (3x3 transforms), one for each
input image reprojection

143

S.Loop &2, Zhang, Comouting Rectifving jies for Stereo Vision, CVPR’99]

RWTH CHE
Recap: Essential Matrix and Epipolar Lines
T Epipolar constraint: if we observe
point p in one image, then its
position p’ in second image must
satisfy this equation.

_l '= Ep is the coordinate vector represen-
ting the epipolar line for point p

(i.e., the line is given
by: I''x=0)

the epipolar line for point p’

Computer Vision WS 15/16

142

ide credit: Kristen Grauman B. Leibe

RWTH ACHET
Recap: Dense Correspondence Search

T HON. ABRATIAM LINC

¢ For each pixel in the first image
» Find corresponding epipolar line in the right image

» Examine all pixels on the epipolar line and pick the best match
(e.g. SSD, correlation)

» Triangulate the matches to get depth information

¢ This is easiest when epipolar lines are scanlines
= Rectify images first

adaoted from Svetlana lazebnik, 1iZhags
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http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

Recap: Effect of Window Size

Recap: A General Point

¢ Equations of the form

Ax=0
* How do we solve them? (always!)
» Apply SVD
SVD
dll vll
A=UDV' =U :
dNN VNl

Singular values Singular vectors

» Singular values of A = square roots of the eigenvalues of ATA.
» The solution of Ax=0 is the nullspace vector of A.

» This corresponds to the smallest singular vector of A.
B. Leibe

Computer Vision WS 15/16

©
a
B w=3 W =20
12
s . o .
5 Want window large enough to have sufficient intensity
g variation, yet small enough to contain only pixels with
5 about the same disparity.
5
=3
£
8
145
Slide credit: Kristen Grauman B. Leibe Eiquwes from 1i Zhang

147

Recap: Calibrating a Camera

Goal

¢ Compute intrinsic and extrinsic
parameters using observed camera
data.

Main idea

¢ Place “calibration object” with
known geometry in the scene

¢ Get correspondences

¢ Solve for mapping from scene to
image: estimate P=P; P
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il ?
Slide credit: Kristen Grauman LA P
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e

ces a, Y
RePEtltlon ’ 1 | Camera models
¢ Image Processing Basics
Camera
* Segmentation & Grouping calibration
¢ Object Recognition R
e Local Features & Matching Triangulation
¢ Object Categorization . .
3 T r_
e 3D Rgconstructlon Essential matrix, X Ex'=0
~ Epipolar Geometry and Fundamental matrix XEx =0
Stereo Basics -
. Camera Calibration & b v
Uncalibrated Reconstruction ey , Eight-point
» Structure-from-Motion . M algorithm
¢ Motion and Tracking “' "
B. Leibe 146
RWTH/CHEN

Recap: Camera Parameters

¢ Intrinsic parameters
» Principal point coordinates
» Focal length
» Pixel magnification factors
» Skew (non-rectangular pixels)
» Radial distortion

¢ Extrinsic parameters
» Rotation R

» Translation t
(both relative to world coordinate system)
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« Camera projection matrix P=K[R|t]
= General pinhole camera: 9 DoF
= CCD Camera with square pixels: 10 DoF
= General camera: o Lot 11 DoF 148
RWTH/ACHEN
Recap: Camera Calibration (DLT Algorithm)
T T T
0 x1 - ylxl
T T T
X1 0 - X1X1 P1
T T T
0 Xn - ynxn P3
T T T
X 0T —x X!

¢ P has 11 degrees of freedom.

¢ Two linearly independent equations per independent
2D/3D correspondence.

¢ Solve with SVD (similar to homography estimation)
» Solution corresponds to smallest singular vector.

¢ 5 % correspondences needed for a minimal solution.
150

ide adapted from Svetlana | azebnik LA
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RWTH/ACHE
Recap: Triangulation - Lin. Alg. Approach E'Yer;SE:G
.3/

R)

R
<

AX, =PX X, xPX=0 [x,IPX=0
A, X, =P, X XZXPZXZO [x, JP,X =0

+ Two independent equations each in terms of
three unknown entries of X.

¢ Stack equations and solve with SVD.
¢ This approach nicely generalizes to multiple cameras.

Computer Vision WS 15/16

151
Slide credit: Svetlana | azebnik B. Leibe

RWTH/ACHEN
Recap: Epipolar Geometry - Calibrated Case

o - | " o

x-[tx(Rx)]=0 ﬂ xTEx’:O.With E=[t]R
&£

Essential Matrix
(Longuet-Higgins, 1981)

Computer Vision WS 15/16

153

lide credit: Svetlana | azebnik B. Leibe

RWTH/ T
Recap: Epipolar Geometry - Uncalibrated Case

o

©

=

f ¢ The calibration matrices K and K’ of the two cameras

2 are unknown

§ ¢ We can write the epipolar constraint in terms of

=| unknown normalized coordinates:

Q

= AT = ar S ’ (%%

2 X'EX'=0 x=KX, x' =KX

o

© 155
slide credit: Svetlana | azebnik B. Leibe
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Recap: Epipolar Geometry - Calibrated Case

RWTHAACHE

Camera matrix: [1]0]
X=(u,v,w, 1)T
x=(u, v, w)"

Camera matrix: [RT| -RTt]
Vector x’ in second coord.
system has coordinates Rx’ in

the first one.

The vectors x, {, and Rx’ are coplanar 152

de credit: Svetlana lazebnik B. Leibe

RWTH CHE
Recap: Epipolar Geometry - Calibrated Case

o - | ‘ - o
x[tx(Rx)]=0 B2 Xx"ExX'=0 with E=[t]R

e E x’ is the epipolar line associated with x’ ({ = E x’)

e ETx is the epipolar line associated with x (I’ = ETx)

e Ee’=0 and E"e=0

e E is singular (rank two)

¢ E has five degrees of freedom (up to scale)

) 154
ide credit: Svetlana | azebnik B. Leibe
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RWTH/ T
Recap: Epipolar Geometry - Uncalibrated Case

o

0 o

LTER' =0 mm) xX'Fx'=0 with F=KTEK'™*

8

K
' o Fundamental Matrix
K (Faugeras and Luong, 1992)

156

ide credit: Svetlana | azebnik. B. Leibe
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RWTH/CEN RWTH/CEN
Recap: Epipolar Geometry - Uncalibrated Case Recap: The Eight-Point Algorithm %3::6
Pyl
X X=(uv, )T, x’= @’ v, 1T Fia

Fy F Fy
(u,0,1) | For P Fy
Fo Fp Fy

'u’ Fa

v |=0 ‘ (e un u v’ v o, 0 1) | Fo | =0

1 Fy
' Py

. [F.] Fa

’ ' ' ' ' Fll
A A A A Fyy
o [ WU, UV, U, Vup vvpov, upovy 1
g o ] L= o N o v v v ow v 1l Fs 1.) Solve with SVD.
5 T T T 1 S I A 1 This minimizes
AT = o , . _ ,o
W X EX'=0 mm) x'Fx'=0 with F=KTEK 2 I TR AR A AR A ¥ Al N
= : : . . N = NV TRV TR ATARAVAR VAT A TFx')?
= « Fx’ isthe epipolar line associated with x’ (I = F x’) = NIt A SR (1~ 2 Fx)
2 o i . . . . ’ T S U U U Vel e Ve upov 1) ° i=1
2 o FTx is the epipolar line associated with x (I’ = FTx) = | P Y 2.) Enfore rank-2
5 ’ _ To = = .
e F e’'= 0 and Fle=0 = TRV AT ATUVAVAR AR TR ¥ | constraint using SVD|
5| e Fissingular (rank two) g LFss ]
51| o F hasseven degrees of freedom 157 5l| ¢ Problem: poor numerical conditioning 158
Slide credit: Svetlana | azebnik B. Leibe Slide credit: Svetlana | azebnik B. Leibe

RWTH CHE
Recap: Normalized Eight-Point Alg. %5::6
.71

TWTHACHE
Recap: Comparison of Estimation Algorithms

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-2 constraint using SVD. Set d, to
SVD d, . zero and
S T reconstruct F S
3 F=UDV' =U 3
12 12
= =
s : - e 5
7 4. Transform fundamental matrix back to original units: if @
< TandT areth lizing transformations in the t 3
3 an are the normalizing transformations in the two 3 8-point Normalized 8-point Nonlinear least squares
é images, than the fundamental matrix in original E{
5 COOrdinateS iS TT F T’. S Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
= 159 SN [ av. pist. 2 218 pixels 0.85 pixel 0.80 pixel 50
lide credit: Svetlana Lazebnik B. Leibe [Hartley, 1995 ide credit: Svetlana Lazebnik o oe
RWTH/ACHET RWTH/ACHET

Recap: Epipolar Transfer Applications: 3D Reconstruction

¢ Assume the epipolar geometry is known

¢ Given projections of the same point in two images, how
can we compute the projection of that point in a third
image?

5 o . >< e
; X1 Xy | X3 | ;;
2 31 32 2
s 5
S g o
2 Iy = FTysX; 2
5} —FT 3
E I3, = FTysX, 5
=3 Q
£ £
o Q
8 3

161

Slide credit: Svetlana | azebnik LA
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Repetition

¢ Image Processing Basics

* Segmentation & Grouping
¢ Object Recognition

e Local Features & Matching
¢ Object Categorization

¢ 3D Reconstruction

v

Epipolar Geometry and
Stereo Basics

Camera Calibration &
Uncalibrated Reconstruction
Structure-from-Motion

¢ Motion and Tracking

B. Leibe

Structure-
from-Motion

Projective

ambiguity | 7

Affine factorization

Projective
factorization

Cameras

a;-a,=0
lay|? = la,|*=1
Euclidean

-8 upgrade 163

remain exactly the same.

lide credit: Svetlana | azebnik B. Leibe

Recap: Structure from Motion Ambiguity

* If we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of
1/k, the projections of the scene points in the image

¢ More generally: if we transform the scene using a
transformation Q and apply the inverse transformation
to the camera matrices, then the images do not change

x =PX = (PQ1)QX

RWTHACHEN

Recap: Affine Structure from Motion

e Let’s create a 2m x n data (measurement) matrix:

&

Xll XlZ Xln
X, X X

D — 21 22 2n —
Xml XmZ an

* The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography:
A factorization method. IJCV, 9(2):137-154, November 1992.

Slide credit.

&

etlana lazebnik

&

B. Leibe

RWTHACHEN

Al

A
2 [xl X, - X
’ Points (3 x n)

A

Cameras
(2m x 3)

m

167
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Recap: Structure from Motion

¢ Given: m images of n fixed 3D points

X = PiXj,

i=1,..,m j=1,..,n

¢ Problem: estimate m projection matrices P; and
n 3D points X; from the mn correspondences x;

Slide credit: Svetlana | azebnik

B. Leibe

Recap: Hierarchy of 3D Transformations

Projective
15dof

Affine
12dof

Similarity
7dof

Euclidean
6dof

¢ With no constraints on the camera calibration matrix or on the
scene, we get a projective reconstruction.

* Need additional information to upgrade the reconstruction to
affine, similarity, or Euclidean. 166
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ide credit: Svetlana Lazebnik

RWTHACHEN

Preserves intersection
and tangency

]
!

Preserves parallellism,
volume ratios

Preserves angles, ratios
of length

Preserves angles,
lengths

WORD

|

B. Leibe

Recap: Affine Factorization

e Obtaining a factorization from SVD:

)

2m D

3 n
4_;- 4—»"
[ i<

Possible decomposition:
M=UW" §=W"V]

This decomposition minimizes

ide credit. Martial Hebert

|D-MS|2

58
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http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf

RWTHACHE
Recap: Projective Factorization

21X 23Xt Xy Pl
ZyXor  ZppXpp  tt ZppXyy Pz
D= . =, [x1 X, - xn]
Points (4 x n)
Zmlxml Zmzxmz o Zmnan l:>m
Cameras
(3mx 4)

D = MS has rank 4
* If we knew the depths z, we could factorize D to
estimate M and S.
* If we knew M and S, we could solve for z.

Solution: iterative approach (alternate between
above two steps).

Computer Vision WS 15/16
.
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Slide credit: Svetlana | azebnik B. Leibe

RWTH CHE
Recap: Estimating the Euclidean Upgrade

M — MC, S -C'S

¢ Goal: Estimate ambiguity matrix C
» Orthographic assumption:

1) Image axes are perpendicular
a,-a,=0

e 2) Scale is 1

lay|? = ayl?= 1

e This can be converted into a system of 3m equations:

a,-4,=0 aLCCTaiz =0 with L=CC"

Computer Vision WS 15/16

=1 < aﬁCCTa“ =1, i=1..m this translates to
A T T T
a,|=1 a,CC a, =1 ALA =1
17
lide adapted from S. Lazebnik, M. Hebert B. Leibe
RWTH/ACHEN
cps ~
Repet]tlon - \ Motion field
v
¢ Image Processing Basics
{21,1_7 zm,/} [ u] __[s&n ]
« Segmentation & Grouping E’*"ai”’y v Z\(ﬁl"

Lucas-Kanade optical flow

s i

¢ Object Recognition

e Local Features & Matching

¢ Object Categorization
¢ 3D Reconstruction

¢ Motion and Tracking Gaussian pyramid Gaussian pyramid
» Motion and Optical Flow Coarse-to-fine estimation
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B. Leibe

RWTHACHE
Recap: Sequential Projective SfM

¢ Initialize motion from two images
using fundamental matrix Points

¢ Initialize structure
¢ For each additional view:

» Determine projection matrix

of new camera using all the
known 3D points that are

visible in its image -

calibration

Refine and extend structure:
compute new 3D points,
re-optimize existing points

that are also seen by this camera -
triangulation

« Refine structure and motion: bundle adjustment

Cameras

v

Computer Vision WS 15/16
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Slide credit: Svetlana | azebnik B. Leibe

RWTH/ACHEN
Recap: Bundle Adjustment

¢ Non-linear method for refining structure and motion
¢ Minimizing mean-square reprojection error
m n
EP,X)=> > D(x,,PX,)
i=1 j=1
X

ll

©

=

B

=

1)

B

=

=

)

s>

g P2X| Xy

2

£ P

8 “ ’

Pa n

ide credit: Svetlana | azebnik B. Leibe

RWTH ACHET
Recap: Estimating Optical Flow
RN T
= ° .
1(x,y,t-1) 1(xy.t)

¢ Given two subsequent frames, estimate the apparent
motion field u(x,y) and v(x,y) between them.

¢ Key assumptions

» Brightness constancy: projection of the same point looks the
same in every frame.

» Small motion: points do not move very far.
» Spatial coherence: points move like their neighbors.
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ide credit: Svetlana | azebnik. B. Leibe
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. LRERSITY
Recap: Lucas-Kanade Optical Flow &

Cise 6.4/
¢ Use all pixels in a KxK window to get more equations.
¢ Least squares problem:

L(p1)  Ty(p1) Ii(p1)
I(p2) Iy(p2) || uw|_ _| Llp2) A d=b
i i v i 25x2 2x1 25x1

fr(l;zs) f-y(Fl’zs) ff(F;zs)

§ ¢ Minimum least squares solution given by solution of
» T — AT
S (ﬂ;ng) 2‘517 );1)(1 b Recall the
s Harris detector!
s Shle Sl | [u]_ [Tk
E Slhily S hly || v Syl
§ AT A AT
175
ide adapted from Svetlana | azebnik. B. Leibe
RWTH//CHEN
UNIVERSITY}

Recap: Coarse-to-fine Estimation

u=1.25 pixels

u=2.5 pixels

u=5 pixels

u=10 pixels

Computer Vision WS 15/16

Gaussian pyramid of image 1 Gaussian pyramid of image 2

" 177
ide credit: Steve Seit B. Leibe

UNIVERSITY
Any Questions?

So what can you do with all of this?
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Recap: Iterative Refinement

« Estimate velocity at each
pixel using one iteration of
LK estimation.

¢ Warp one image toward the .
other using the estimated
flow field.

¢ Refine estimate by repeating
the process. t

e |terative procedure
» Results in subpixel accurate localization.
» Converges for small displacements.

ide adapted from Steve Seit: B. Leibe
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Recap: Coarse-to-fine Estimation

Gaussian pyramid of image 1

ide credit: Steve Seit; B. Leibe

Gaussian pyramid of image 2

UHHERSITY]

See
E‘\'el'cise G
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Mining the World’s Images...

185

Articulated Multi-Person Tracking

s 15

e Multi-Person tracking
» Recover trajectories and solve data association

e Articulated Tracking
» Estimate detailed body pose for each tracked person

Computer Vision WS 15/16
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[G Ess. Jaeggli, Schindler, Leibe, Van Gool, ECCV’08]

RWTH/ACHEN
Integrated 3D Point Cloud Labels

Computer Vision WS 15/16
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B. Leibe G. Floros, B. Leibe, CVPR’12

RWTH ACHET
Automatic Landmark Building Discovery

I 1
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Any More Questions?

Good luck for the exam!
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