Computer Vision - Lecture 20

Motion and Optical Flow
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Many slides adapted from K. Grauman, S. Seitz, R. Szeliski, M. Pollefeys, S. Lazebnik



Course Outline

 Image Processing Basics

e Segmentation & Grouping
e Object Recognition

e Local Features & Matching
e Object Categorization

e 3D Reconstruction
~ Epipolar Geometry and Stereo Basics
~ Camera calibration & Uncalibrated Reconstruction
> Active Stereo

e Motion
> Motion and Optical Flow

e 3D Reconstruction (Reprise)
> Structure-from-Motion
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Recap: Epipolar Geometry - Calibrated Case

—

0 ﬁ\e ,
x-[tx(Rx)]=0 mE) x'Ex'=0 with E=[t]R

8

Essential Matrix
(Longuet-Higgins, 1981)

©
—
S~
Yo
—
%2
=
c
©
D
>
2
S
Q
S
@)
@)

3

Slide credit: Svetlana Lazebnik B. Leibe



RWTHA/
Recap: Epipolar Geometry - Uncalibrated Case

X

v ooTreor Teo - T /-1
g X' EX'=0 mm) x'Fx'=0 with i_K EK
> X =KX

; , Iy Fundamental Matrix

= X = K (Faugeras and Luong, 1992)
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Slide credit: Svetlana Lazebnik B. Leibe



Recap: The Eight-Point Algorithm
x=(uv, DT, x’=(@’v’,1)7
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B. Leibe

Slide adapted from Svetlana Lazebnik



RWTH
Recap: Normalized Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-2 constraint using SVD. Set d.. to
_ ) . 33
SYD d, Vi, '+ Vi3 | —~ zeroand
F-UDV™ =U S reconstruct F

4. Transform fundamental matrix back to original units: if
T and T are the normalizing transformations in the two

images, than the fundamental matrix in original
coordinates is T/ F'T".
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Slide credit: Svetlana Lazebnik B. Leibe [Hartley, 1995]
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Practical Considerations

- 7. X

Small Baseline Large Baseline

1. Role of the baseline
> Small baseline: large depth error
> Large baseline: difficult search problem

e Solution
> Track features between frames until baseline is sufficient.

Slide adapted from Steve Seitz B. Leibe
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Topics of This Lecture

e |Introduction to Motion
~ Applications, uses

e Motion Field

> Derivation

e Optical Flow
~ Brightness constancy constraint
~ Aperture problem
> Lucas-Kanade flow
> lterative refinement
> Global parametric motion
> Coarse-to-fine estimation
> Motion segmentation

e KLT Feature Tracking

B. Leibe
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Video

e A video is a sequence of frames captured over time

e Now our image data is a function of space
(X, y) and time (t)

— I(xayat)

Slide credit: Svetlana Lazebnik B. Leibe
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e Sometimes, motion is the only cue...

e DT > -

Slide credit: Svetlana Lazebnik

Not grouped

Proximity

Similarity

Common Fate

Common Region

B. Leibe

R\N11-I ACHEN
Motion and Perceptual Organization

UNIVERSITY

Parallelism
Symimetry

Continuity

Closure

18
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Motion and Perceptual Organization

e Sometimes, motion is foremost cue
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B. Leibe

Slide credit: Kristen Grauman
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Motion and Perceptual Organization

e Even “impoverished” motion data can evoke a strong
percept

Slide credit: Svetlana Lazebnik B. Leibe
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Motion and Perceptual Organization

e Even “impoverished” motion data can evoke a strong
percept

Slide credit: Svetlana Lazebnik B. Leibe
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Uses of Motion

e Estimating 3D structure
~ Directly from optic flow
> Indirectly to create correspondences for SfM

e Segmenting objects based on motion cues

e Learning dynamical models

e Recognizing events and activities

e Improving video quality (motion stabilization)
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Slide adapted from Svetlana Lazebnik B. Leibe
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Motion Estimation Techniques

e Direct methods

~ Directly recover image motion at each pixel from spatio-
temporal image brightness variations

- Dense motion fields, but sensitive to appearance variations
~ Suitable for video and when image motion is small

e Feature-based methods

> Extract visual features (corners, textured areas) and track them
over multiple frames

> Sparse motion fields, but more robust tracking
> Suitable when image motion is large (10s of pixels)

23

Slide credit: Steve Seitz B. Leibe
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Topics of This Lecture

e Motion Field

> Derivation
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Motion Field

e The motion field is the projection of the 3D scene
motion into the image

nnnnnnnnnnnn

rrrrrr

vvvvvvvvvvvvv

A U mom oA =k ra e o4

---------------

Ar m 4 Aoy paT AT

A4 a4 Y vuopm === ] ma [
4 4 A e E W AToT—= 14 " oToa

- A r bR WA ——t—— " omowrd

L} .
- - - AN
‘hé:::"‘-\."\-u"\- ey |
e e e e e A e

~— S el
T
H\-M:::w-\-‘ A A A
T darE e b At -
i S - —_—
— —_—

(o)
A
Yo
—
%2
=
c
=
0
>
[z
S
o
S
@)
O

25

Slide credit: Svetlana Lazebnik B. Leibe
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Motion Field and Parallax

Slide credit: Svetlana Lazebnik

P (t) is a moving 3D point

Velocity of 3D scene point:
V =dP/dt

p(t) = (z(t),y(?)) is the
projection of P in the
image.

Apparent velocity v in the
image: given by components
v, = dz/dt and v, = dy/dt

These components are
known as the motion field of
the image.

B. Leibe
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Quotient rule:

Motion Field and Parallax (fl9) =9 =9/

P (t-+dt)

V=LV, V] p=fy POV

To find image velocity v, differentiatﬁx"‘g
p with respect to ¢ (using quotient rulé_‘__“_):

ZV-V.P _ fV - v;p

and the depth of the 3D point (2).

. V=it

5 p(t+dt
(é) ./v.

= fV:B o Vzm fV sz p t

o Ve = T Yy

>

g  Image motion is a function of both the 3D motlon (V)
3

S

27

Slide credit: Svetlana Lazebnik B. Leibe
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Motion Field and Parallax

e Pure translation: V is constant everywhere

V.:r;_vz 1
:f 7 - V:Z(VO_VZ )7

y — fvy ; vy Vo = (qu;,ny)

Uy

(¥

Slide credit: Svetlana Lazebnik B. Leibe
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Motion Field and Parallax

e Pure translation: V is constant everywhere

1
VvV = Z(VO_VZ ),

Vo = (fV(L‘J fvy)
* V. is nonzero:

- Every motion vector points toward (or away from) v,
the vanishing point of the translation direction.

B. Leibe

Slide credit: Svetlana Lazebnik
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Motion Field and Parallax

e Pure translation: V is constant everywhere
1

VvV = Z(VO_VZ ),

Vo = (fV.’BJ ny)
* V. is nonzero:

- Every motion vector points toward (or away from) v,
the vanishing point of the translation direction.

* V. is zero:

~ Motion is parallel to the image plane, all the motion vectors are
parallel.

e The length of the motion vectors is inversely
proportional to the depth ~.

30

Slide credit: Svetlana Lazebnik B. Leibe
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Topics of This Lecture

e Optical Flow
~ Brightness constancy constraint
~ Aperture problem
> Lucas-Kanade flow
> lterative refinement
> Global parametric motion
> Coarse-to-fine estimation
> Motion segmentation

B. Leibe

31
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Optical Flow

e Definition: optical flow is the apparent motion of
brightness patterns in the image.

e |deally, optical flow would be the same as the motion
field.

e Have to be careful: apparent motion can be caused by
lighting changes without any actual motion.

> Think of a uniform rotating sphere under fixed lighting vs. a
stationary sphere under moving illumination.

Slide credit: Svetlana Lazebnik B. Leibe
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Apparent Motion # Motion Field
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Figure from Horn book

B. Leibe

Slide credit: Kristen Grauman



Estimating Optical Flow

./ Q *

W ®
o— i (0] .
I(xayat_l) I(CB,y,t)

e Given two subsequent frames, estimate the apparent
motion field u(z,y) and v(x,y) between them.

e Key assumptions

» Brightness constancy: projection of the same point looks the
same in every frame.

> Small motion: points do not move very far.
» Spatial coherence: points move like their neighbors.

©
—
~~
Yo
—
)
=
c
©
D
>
2
S
Q
S
(@]
@)

Slide credit: Svetlana Lazebnik B. Leibe



RWTH
The Brightness Constancy Constraint

(z.y)
\dlsplacement = (u,v)

(@)
(z +u,y+v)

[(X,y,t-1) [(X,y,1)

e Brightness Constancy Equation:

| (X, y,t=1) =1 (X+Uu(x,y), y+V(xy)t)
e Linearizing the right hand side using Taylor expansion:

1(X, Y, t=D) = I(X, y,t)+ 1 -u(x, y)+1,-v(X,y)

e Hence, QD\U @ V 4@(0

Spatial derivatives Temporal derivative
B. Leibe
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Slide credit: Svetlana Lazebnik
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RWTH
The Brightness Constancy Constraint

l,-u+l, -v+1, =0
e How many equations and unknowns per pixel?
~ One equation, two unknowns

e [ntuitively, what does this constraint mean?

VI-(u,v)+1,=0

e The component of the flow perpendicular to the
gradient (i.e., parallel to the edge) is unknown

gradient

If (U,V) satisfies the equation,
so does (U+u’, v+Vv')if VI-(u',v')=0

Slide credit: Svetlana Lazebnik B. Leibe
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The Aperture Problem

Slide credit: Svetlana Lazebnik B. Leibe

Perceived motion

37



The Aperture Problem
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\ Actual motion
38

Slide credit: Svetlana Lazebnik B. Leibe
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The Barber Pole lllusion
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§ http://en.wikipedia.org/wiki/Barberpole illusion N

Slide credit: Svetlana Lazebnik B. Leibe


http://en.wikipedia.org/wiki/Barberpole_illusion

UNI\IEF?EEIQI
The Barber Pole lllusion
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http://en.wikipedia.org/wiki/Barberpole illusion
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Slide credit: Svetlana Lazebnik B. Leibe


http://en.wikipedia.org/wiki/Barberpole_illusion

VRS
The Barber Pole lllusion
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http://en.wikipedia.org/wiki/Barberpole illusion

41

Slide credit: Svetlana Lazebnik B. Leibe


http://en.wikipedia.org/wiki/Barberpole_illusion

Solving the Aperture Problem

e How to get more equations for a pixel?

e Spatial coherence constraint: pretend the pixel’s
neighbors have the same (u,v)

~ If we use a 5x5 window, that gives us 25 equations per pixel
0 = I;(p;j) + VI(p;) - [u v]

- Ix(p1)  Iy(p1) - Ii(p1) |
I:(p2)  Iy(p2) [ U } = _ | Li(p2)
i I:c(I.)25) fy(I.)25) ] i It(I;ZE)) ]

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 674-679, 1981.

Slide credit: Svetlana Lazebnik
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B. Leibe


http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf
http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf
http://www.ri.cmu.edu/pub_files/pub3/lucas_bruce_d_1981_1/lucas_bruce_d_1981_1.pdf
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Solving the Aperture Problem

e Least squares problem:

- I:(p1) Iy(p1) | - Ii(p1) |
ICB(pZ) Iy(Pz) |: U ] — _ [t(pZ) A d=0b
: : v 5 25x2 2x1 25x1
| I:(p25) Iy(p2s) 11 (p2s) |

e Minimum least squares solution given by solution of
(ATA) d= Alp

2X2 2x1 2x1

E:_iji Ej.Lx]y U — _ Ez_Lzli
E:-LBIQ E:_Ly]y vV E:_Ly]i
Al A Alp
(The summations are over all pixels in the K x K window)

Slide adapted from Svetlana Lazebnik B. Leibe
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Conditions for Solvability

e Optimal (u, v) satisfies Lucas-Kanade equation

Sl SLIy | [u] _ [ LI
SLly Sy || o |~ | Sk

AT A Alp

e When is this solvable?
» ATA should be invertible.
» ATA entries should not be too small (noise).
> ATA should be well-conditioned.

Slide credit: Svetlana Lazebnik B. Leibe

|
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Eigenvectors of ATA

AT A = [Z[ﬂw lely] = [ o

— T
Y Il Y I 7, | )= > VI(VD)

e Haven’t we seen an equation like this before?

e Recall the Harris corner detector: M = ATA is the second
moment matrix.

e The eigenvectors and eigenvalues of M relate to edge
direction and magnitude.

» The eigenvector associated with the larger eigenvalue points in
the direction of fastest intensity change.

~ The other eigenvector is orthogonal to it.

Slide credit: Svetlana Lazebnik B. Leibe
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Interpreting the Eigenvalues

e Classification of image points using eigenvalues of the
second moment matrix:

A

A, and A, are small }I:>

Slide credit: Kristen Grauman
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Edge
5
7))
=
S
pS T
5 » VI(VI)
é - Gradients very large or very small
S - Large )\, small )\,
47

B. Leibe

Slide credit: Svetlana Lazebnik
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Low-Texture Region

S vi(vin?t

- Gradients have small magnitude
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Slide credit: Svetlana Lazebnik B. Leibe
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High-Texture Region

S vi(vin?t

- Gradients are different, large magnitude
- Large )\, large )\,
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Slide credit: Svetlana Lazebnik B. Leibe
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Per-Pixel Estimation Procedure

e Let M=>(VI)(VI) and { %:H

e Algorithm: At each pixel compute U by solving MU =b

M is singular if all gradient vectors point in the same
direction
- E.g., along an edge
> Trivially singular if the summation is over a single pixel
or if there is no texture
> l.e., only normal flow is available (aperture problem)

e (Corners and textured areas are OK

Slide credit: Steve Seitz B. Leibe
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Iterative Refinement

1.

Slide adapted from Steve Seitz

Estimate velocity at each pixel using one iteration of
Lucas and Kanade estimation.

Sl SELIy |[u] _ [ LI
SLly, SLIy || o]~ | S

AT A Alp

. Warp one image toward the other using the estimated

flow field.

~ (Easier said than done)

. Refine estimate by repeating the process.

B. Leibe
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Optical Flow: Iterative Refinement

A () ()

estimate

Initial guess:dn = 0O
update ® 0

Estimate:d; = dg +d

>
Xo X

(using d for displacement here instead of u)
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Slide credit: Steve Seitz B. Leibe



Optical Flow: Iterative Refinement

A filz —d1) . #5(x)

estimate

Initial guess: d
update ® 1

Estimate: d, = dy +d

>
Xg X

(using d for displacement here instead of u)
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Slide credit: Steve Seitz B. Leibe
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Optical Flow: Iterative Refinement

A

filz —d2) | #5(x)

estimate

Initial guess: d-
update

(using d for displacement here instead of u)

Slide credit: Steve Seitz

>
Xo X

B. Leibe

Estimate:ds; = dr + d

54
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Optical Flow: Iterative Refinement

A f1(z — ds) ~ fa(x)

—

(using d for displacement here instead of u)

Slide credit: Steve Seitz B. Leibe

55



©
—
~~
Yo
—
)
=
c
©
D
>
2
S
Q
S
(@]
@)

RWTH
Optic Flow: Iterative Refinement

e Some Implementation Issues:

> Warping is not easy (ensure that errors in warping are smaller
than the estimate refinement).

- Warp one image, take derivatives of the other so you don’t need
to re-compute the gradient after each iteration.

» Often useful to low-pass filter the images before motion
estimation (for better derivative estimation, and linear
approximations to image intensity).

56

Slide credit: Steve Seitz B. Leibe
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Extension: Global Parametric Motion Models

Jll / -:-1.1:I.11|.-‘§Ii m projective
trausl D
Euu:hdea.ﬂ aﬂ"me

e X
(o)
o
L Translation Affine Perspective 3D rotation
%)
=
c
o
(%
S
@
>
o
s
O 2 unknowns 6 unknowns 8 unknowns 3 unknowns
B. Leibe

Slide credit: Steve Seitz
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Example: Affine Motion

u(x,y)=a, +a,x+a,y
v(X,y)=a, +a;x+a.y

e Substituting into the brightness
constancy equation:

l,-u+l, -v+1, =0
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Slide credit: Svetlana Lazebnik B. Leibe
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Example: Affine Motion

u(x,y)=a, +a,x+a,y
v(X,y)=a, +a;x+a.y

e Substituting into the brightness
constancy equation:

| (&, +a,x+azy)+ 1 (a, +ax+agy)+1, =0

e Each pixel provides 1 linear constraint in 6 unknowns.

e Least squares minimization:

Err(a) :Z[lx(a1+azx+a3)’)+ I, (8, +a;X+agy)+ It] 2

59

Slide credit: Svetlana Lazebnik B. Leibe
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Problem Cases in Lucas-Kanade

e The motion is large (larger than a pixel)
> Iterative refinement, coarse-to-fine estimation

e A point does not move like its neighbors
> Motion segmentation

e Brightness constancy does not hold
» Do exhaustive neighborhood search with normalized correlation.

60

Slide credit: Svetlana Lazebnik B. Leibe
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Temporal Aliasing

e Temporal aliasing causes ambiguities in optical flow
because images can have many pixels with the same

intensity.
e |l.e., how do we know which ‘correspondence’ is
correct?
A fi(z) fo(x) &  fi(z) fo(z)
/\/ actual shift
o NS
estimated shift
> >
Nearest match is Nearest match is
correct (no aliasing) incorrect (aliasing)

e To overcome aliasing: coarse-to-fine estimation.

Slide credit: Steve Seitz B. Leibe
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ldea: Reduce the Resolution!
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Slide credit: Svetlana Lazebnik B. Leibe
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Coarse-to-fine Optical Flow Estimation
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Dense Optical Flow

e Dense measurements can be obtained by
adding smoothness constraints.

Color map

(c) Thomas Brox 2009

T. Brox, C. Bregler, J. Malik, Large displacement
optical flow, CYPR‘09, Miami, USA, June 20009.
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http://www.cs.berkeley.edu/~brox/pub/brox_cvpr09.pdf
http://www.cs.berkeley.edu/~brox/pub/brox_cvpr09.pdf
http://www.cs.berkeley.edu/~brox/pub/brox_cvpr09.pdf
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Summary

e Motion field: 3D motions projected to 2D images;
dependency on depth.

e Solving for motion with
~ Sparse feature matches

- Dense optical flow
e Optical flow
~ Brightness constancy assumption

~ Aperture problem

> Solution with spatial coherence assumption

Slide credit; Kristen Grauman B. Leibe
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References and Further Reading

e Here is the original paper by Lucas & Kanade

> B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In Proc. IJCAI,
pp. 674-679, 1981.

e And the original paper by Shi & Tomasi
> J. Shi and C. Tomasi. Good Features to Track. CYPR 1994,

B. Leibe
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