

Motion Field and Parallax

Quotient rule: $(f/g)' = (g f' - g'f)/g^2$

$$\mathbf{V} = [V_x, V_y, V_z] \quad \mathbf{p} = f \frac{\mathbf{P}}{Z}$$

$$\mathbf{P}(t)$$
 \mathbf{V}

To find image velocity v, differentiate \mathbf{p} with respect to t (using quotient rule):

$$\mathbf{v} = f \frac{Z\mathbf{V} - V_z \mathbf{P}}{Z^2} = \frac{f \mathbf{V} - V_z \mathbf{p}}{Z}$$

$$\mathbf{p}(t)$$
 $\mathbf{p}(t+\mathrm{d}t)$

$$v_x = \frac{fV_x - V_z x}{Z}$$
 $v_y = \frac{fV_y - V_z y}{Z}$

 Image motion is a function of both the 3D motion (V) and the depth of the 3D point (Z).

Motion Field and Parallax

ullet Pure translation: ${f V}$ is constant everywhere

$$v_x = rac{fV_x - V_z x}{Z}$$
 $\mathbf{v} = rac{1}{Z}(\mathbf{v}_0 - V_z \mathbf{p}),$ $v_y = rac{fV_y - V_z y}{Z}$ $\mathbf{v}_0 = (fV_x, fV_y)$

$$\mathbf{v} = \frac{1}{Z}(\mathbf{v}_0 - V_z \mathbf{p})$$

Motion Field and Parallax

· Pure translation: V is constant everywhere

$$\mathbf{v} = \frac{1}{Z}(\mathbf{v}_0 - V_z \mathbf{p}),$$

$$\mathbf{v}_0 = (fV_x, fV_y)$$

V. is nonzero:

 \mathbf{v}_0 Every motion vector points toward (or away from) \mathbf{v}_0 , the vanishing point of the translation direction.

Motion Field and Parallax

· Pure translation: V is constant everywhere

$$\mathbf{v} = \frac{1}{Z}(\mathbf{v}_0 - V_z \mathbf{p}),$$

$$\mathbf{v}_0 = (fV_x, fV_y)$$

V_z is nonzero:

Every motion vector points toward (or away from) v_0 , the vanishing point of the translation direction.

 V_{z} is zero:

Motion is parallel to the image plane, all the motion vectors are

· The length of the motion vectors is inversely proportional to the depth Z.

Topics of This Lecture

- · Introduction to Motion
 - > Applications, uses
- Motion Field
- Derivation

Optical Flow

- > Brightness constancy constraint
- Aperture problem
- Lucas-Kanade flow
- Iterative refinement
- > Global parametric motion
- > Coarse-to-fine estimation
- Motion segmentation
- **KLT Feature Tracking**

Optical Flow

- · Definition: optical flow is the apparent motion of brightness patterns in the image.
- · Ideally, optical flow would be the same as the motion
- · Have to be careful: apparent motion can be caused by lighting changes without any actual motion.
 - Think of a uniform rotating sphere under fixed lighting vs. a stationary sphere under moving illumination.

4

Eigenvectors of A^TA $A^TA = \left[\begin{array}{c} \sum I_x I_x \\ \sum I_x I_y \end{array} \right] = \sum \left[\begin{array}{c} I_x \\ I_y \end{array} \right] [I_x \ I_y] = \sum \nabla I(\nabla I)^T$ • Haven't we seen an equation like this before? • Recall the Harris corner detector: $M = A^TA$ is the second moment matrix. • The eigenvectors and eigenvalues of M relate to edge direction and magnitude. • The eigenvector associated with the larger eigenvalue points in the direction of fastest intensity change. • The other eigenvector is orthogonal to it.

Iterative Refinement 1. Estimate velocity at each pixel using one iteration of Lucas and Kanade estimation. $\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$ $A^T A \qquad A^T b$ 2. Warp one image toward the other using the estimated flow field. (Easier said than done)

3. Refine estimate by repeating the process.

Slide adapted from Steve Seitz B. Leibe

