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Practical Considerations

L. >

Small Baseline Large Baseline

1. Role of the baseline

» Small baseline: large depth error

» Large baseline: difficult search problem
¢ Solution

» Track features between frames until baseline is sufficient.

15

ide adapted from Steve Seit; B. Leibe
Video

¢ A video is a sequence of frames captured over time

+ Now our image data is a function of space
(X, y) and time (t)
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ide credit: Svetlana Lazebnik B. Leibe

Motion and Perceptual Organization

¢ Sometimes, motion is foremost cue

ide credit: Kristen Grauman LA
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Topics of This Lecture

¢ Introduction to Motion
» Applications, uses

¢ Motion Field
» Derivation

¢ Optical Flow
» Brightness constancy constraint
» Aperture problem
» Lucas-Kanade flow
Iterative refinement
Global parametric motion
Coarse-to-fine estimation
Motion segmentation
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Motion and Perceptual Organization

¢ Sometimes, motion is the only cue...
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Continuity

Commeon Region
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RWTHARCHER
Motion and Perceptual Organization

¢ Even “impoverished” motion data can evoke a strong
percept
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RWTH/CET
Motion and Perceptual Organization

¢ Even “impoverished” motion data can evoke a strong
percept

Slide credit: Svetlana | azebnik B. Leibe

Motion Estimation Techniques

¢ Direct methods

» Directly recover image motion at each pixel from spatio-
temporal image brightness variations

» Dense motion fields, but sensitive to appearance variations

» Suitable for video and when image motion is small

¢ Feature-based methods

» Extract visual features (corners, textured areas) and track them
over multiple frames

» Sparse motion fields, but more robust tracking
» Suitable when image motion is large (10s of pixels)

Slide credit: Steve Seit; B. Leibe
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Motion Field

¢ The motion field is the projection of the 3D scene
motion into the image

B. Leibe

Slide credit: Svetlana lazebnik
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Uses of Motion

¢ Estimating 3D structure
» Directly from optic flow
» Indirectly to create correspondences for SfM

* Segmenting objects based on motion cues

¢ Learning dynamical models

¢ Recognizing events and activities

« Improving video quality (motion stabilization)

ide adapted from Svetlana | azebnik B. Leibe
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TWTH ACHEN
Topics of This Lecture
¢ Motion Field
~ Derivation
B. Leibe 2
RWTH ACHEN
Motion Field and Parallax
P(t+dt)

* P(t) is a moving 3D point
¢ Velocity of 3D scene point:
V =dP/dt

p(t) = (2(t),y(t)) is the
projection of P in the
image.

PW

Apparent velocity v in the
image: given by components
v, = dz/dt and v, = dy/dt
¢ These components are

known as the motion field of
the image.

B. Leibe




Quotient rule:

Motion Field and Parallax (e =(9f" -gD/s

P(t+dt)
PW
To find image velocity v, differentiaie
p With respect to ¢ (using quotient rule):

. P
V=[Vi.V,V.] p= fE

ZV-V.P _[V-Vp

veI—p z

fVe— Ve vy —Vey \
= —Z vy = —Z
¢ Image motion is a function of both the 3D motion (V)
and the depth of the 3D point (2).

Uy
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Slide credit: Svetlana | azebnik B. Leibe
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Motion Field and Parallax
e Pure translation: V is constant everywhere

1 .
v = E(VU - V.p),

vo = (fVe, fV,)

¢ V, is nonzero:

» Every motion vector points toward (or away from) v,

§ the vanishing point of the translation direction.
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Topics of This Lecture

¢ Optical Flow
~ Brightness constancy constraint
» Aperture problem
» Lucas-Kanade flow
Iterative refinement
Global parametric motion
Coarse-to-fine estimation
Motion segmentation

v

v

v

v

©
=
)
=
1
=
=
i)
2
S
g
5
=
=
S
o

B. Leibe
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Motion Field and Parallax

¢ Pure translation: V is constant everywhere

RWTHAACHE

-V 1
vy = fl/'% v = Z(Vn - V.p),
v, -~ Vi
U'u:f JZ Y VU:(fVHfV;;)
28
de credit: Svetlana | azebnik B. Leibe

Motion Field and Parallax
¢ Pure translation: V is constant everywhere

1 .
v = E(VU - V.p),

vo = (fVe, fV,)

* V. is nonzero:

» Every motion vector points toward (or away from) v,
the vanishing point of the translation direction.

* V. is zero:

» Motion is parallel to the image plane, all the motion vectors are

parallel.
¢ The length of the motion vectors is inversely
proportional to the depth Z.

ide credit: Svetlana | azebnik B. Leibe
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Optical Flow

¢ Definition: optical flow is the apparent motion of
brightness patterns in the image.

¢ |deally, optical flow would be the same as the motion
field.

¢ Have to be careful: apparent motion can be caused by
lighting changes without any actual motion.

» Think of a uniform rotating sphere under fixed lighting vs. a
stationary sphere under moving illumination.

ide credit: Svetlana | azebnik. B. Leibe
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Apparent Motion # Motion Field

Vi

_‘Ov_

- ~
~

b
Figure 12-2. The optical

flow is not alwa
a sm 2 s equal to the m
dm"”:‘“ :x:’;rr s rotating under constant illumination u:":‘;'; mm{
moving ey the motion field is nonsero. In (b) a fixed spher et
moving source—the shadi phere s illuminated|

ding in the image changes, yet the motion field s
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33
Figure from Horn book

The Brightness Constancy Constraint

(zy)
'\dlsmacement = (u,v)
°
(z+u,y+v)

1(x,y,1)

1(x,y,t-1)

¢ Brightness Constancy Equation:

L(X, y,t=1) = I(X+Uu(x,y), Y +V(x, ), t)

2 ¢ Linearizing the right hand side using Taylor expansion:
E 1Oy t=D) = 1, y,t) + 1, -ulx, y) + 1, -v(x,y)
= « Hence, (I }u -V ~0

£

3 Spatial derivatives Temporal derivative

Slide credit: Svetlana | azebnik B. Leibe
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The Aperture Problem

Perceived motion
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Slide credit: Svetlana | azebnik LA
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RWTHACHE
Estimating Optical Flow
RN T
o ° .
I(zv%t_l) I(z,y,t)

« Given two subsequent frames, estimate the apparent
motion field u(z,y) and v(z,y) between them.

* Key assumptions

» Brightness constancy: projection of the same point looks the
same in every frame.

> Small motion: points do not move very far.
» Spatial coherence: points move like their neighbors.

ide credit: Svetlana Lazebnik B. Leibe
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The Brightness Constancy Constraint
l-u+l,-v+1, =0

+ How many equations and unknowns per pixel?
» One equation, two unknowns

¢ Intuitively, what does this constraint mean?
VI-(u,v)+1,=0

¢ The component of the flow perpendicular to the
gradient (i.e., parallel to the edge) is unknown

gradient

If (u,V) satisfies the equation,
so does (U+u’, v+v’) if VI-(u',v')=0

edge 36
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The Aperture Problem

Actual motion

ide credit: Svetlana | azebnik. B. Leibe
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The Barber Pole lllusion The Barber Pole lllusion
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http://en.wikipedia.org/wiki/Barberpole_illusion

ide credit: Svetlana | azebnik B. Leibe

http://en.wikipedia.org/wiki/Barberpole_illusion

ide credit: Svetlana Lazebnik B. Leibe
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The Barber Pole Illusion Solving the Aperture Problem
¢ How to get more equations for a pixel?

¢ Spatial coherence constraint: pretend the pixel’s
neighbors have the same (u,v)

» If we use a 5x5 window, that gives us 25 equations per pixel
0 =1Ii(pi) + VI(p3) - [u v]

In(p1)  Iy(p1) Ii(p1)
Li(p2) Iy(p2) || w|_ _| Li(p2)
X ; " X

f:c(l;zs) Iy(l;zs.) 13(1;25)

B. Lucas and T. Kanade. An iterative image registration technique with an application to
stereo vision. In Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 674-679, 1981.

ide credit: Svetlana | azebnik B. Leibe
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http://en.wikipedia.org/wiki/Barberpole_illusion

ide credit: Svetlana Lazebnik B. Leibe
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Solving the Aperture Problem Conditions for Solvability
o Least squares problem: « Optimal (u, v) satisfies Lucas-Kanade equation
I-E(pl) Iy(Pl) It(pl) EITII ZI.T.Iy u — _ EI;I;
L(p2)  ILy(p2) u | _ _ | lilp2) A d=b N lely Y yly v Y Iyly
. . v .

25x2 2x1 25x1 AT A ATy

L’c([-)%) Iy(ﬁzs) II(P;ZS)

¢ Minimum least squares solution given by solution of

(ATA) d=ATo

2x2 2x1 2x1

EFaEE

e When is this solvable?
» ATA should be invertible.
» ATA entries should not be too small (noise).
» ATA should be well-conditioned.

T LIy Sl || v S Iyl

ATA ATy
(The summations are over all pixels in the K x K window)
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Eigenvectors of ATA Interpreting the Eigenvalues

¢ Classification of image points using eigenvalues of the

AT A = [Zb,-fw Y Idy, } =¥ [ f’£ ] e L] = ZVI(VI)T
v second moment matrix:

Shly Sy

¢ Haven’t we seen an equation like this before?

« Recall the Harris corner detector: M = ATA is the second
moment matrix.

¢ The eigenvectors and eigenvalues of M relate to edge

Q direction and magnitude. 9
= ~ The eigenvector associated with the larger eigenvalue points in =
2 the direction of fastest intensity change. 2
15 » The other eigenvector is orthogonal to it. s
g g
g & A, and A, are small
5 5
aQ o
£ £
I=3 o
© 45 S . A 46
ide credit: Svetlana | azebnik B. Leibe ide credit: Kristen Grauman B. Leibe 1
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Edge Low-Texture Region

S viwn”
- Gradients very large or very small
- Large ), small ),

S viwn”

- Gradients have small magnitude
- Small )\, small ),
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High-Texture Region Per-Pixel Estimation Procedure

e Let M=Y(VI)(VI) and b=[:§::j

¢ Algorithm: At each pixel compute U by solving MU =b

* M is singular if all gradient vectors point in the same
direction
» E.g., along an edge
» Trivially singular if the summation is over a single pixel
or if there is no texture
» l.e., only normal flow is available (aperture problem)

Svivn®

- Gradients are different, large magnitude
- Large A, large ),

e Corners and textured areas are OK
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Iterative Refinement

1. Estimate velocity at each pixel using one iteration of
Lucas and Kanade estimation.

[Ern.f.r zrmeHu}_f[zr,:n]
Shly Shily || v |~ | Siyh

AT A ATy

2. Warp one image toward the other using the estimated
flow field.

» (Easier said than done)

3. Refine estimate by repeating the process.

Computer Vision WS 15/16

Slide adapted from Steve Seit: B. Leibe

RWTH CHE
Optical Flow: Iterative Refinement

fi(z —d1) folz)

estimate Initial guess: d;
update . 7
7 Estimate: d, = d; +d

<y

0

(using d for displacement here instead of u)

Computer Vision WS 15/16

lide credit: Steve Seit: B. Leibe
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Optical Flow: Iterative Refinement

A fi(x —d3) = fa(z)

»
>

(using d for displacement here instead of u)
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Slide credit: Steve Seit: B. Leibe
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Optical Flow: Iterative Refinement

f1(z) fa(z)

estimate

Initial guess:dg = 0
update g 0

Estimate: d; = do +d

<y

Xo

(using d for displacement here instead of u)

de credit: Steve Seit; B. Leibe
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Optical Flow: Iterative Refinement

4 Ne=d2) ()

estimate Initial guess: do
update : i
) Estimate: d3 = dp +d

xy

0

(using d for displacement here instead of u)

ide credit: Steve Seit; B. Leibe
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RWTH ACHET
Optic Flow: Iterative Refinement

¢ Some Implementation Issues:

» Warping is not easy (ensure that errors in warping are smaller
than the estimate refinement).

» Warp one image, take derivatives of the other so you don’t need
to re-compute the gradient after each iteration.

» Often useful to low-pass filter the images before motion
estimation (for better derivative estimation, and linear
approximations to image intensity).

ide credit: Steve Seit. B. Leibe




Extension: Global Parametric Motion Models
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ide credit: Steve Seit: B. Leibe

Example: Affine Motion

u(x,y)=a, +a,x+agy
V(X,y) =a, +a;Xx+agy

¢ Substituting into the brightness
constancy equation:

|Ix(a1 +a2x+a3y)+Iy(a4+a5x+a6y)+lt z0|

¢ Each pixel provides 1 linear constraint in 6 unknowns.
¢ Least squares minimization:

|Err(é)=Z[lx(a1+a2x+a3y)+ I, (8, +aX+agy)+ It] 2|

Computer Vision WS 15/16

ide credit: Svetlana Lazebnik B. Leibe

Dealing with Large Motions
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ide credit: Svetlana | azehnik. LA

Example: Affine Motion '
U(X,y) =& +a,X+a;y
V(X,y)=a, +a;x+agy
¢ Substituting into the brightness
constancy equation:
lo-u+l, v+l =0
B
:-%’
£
® 58
ide credit: Svetlana | azebnik B. Leibe

Problem Cases in Lucas-Kanade

¢ The motion is large (larger than a pixel)
» lterative refinement, coarse-to-fine estimation

+ A point does not move like its neighbors
» Motion segmentation

¢ Brightness constancy does not hold
» Do exhaustive neighborhood search with normalized correlation.

Computer Vision WS 15/16

ide credit: Svetlana | azebnik B. Leibe

Temporal Aliasing

¢ Temporal aliasing causes ambiguities in optical flow
because images can have many pixels with the same
intensity.
¢ |.e., how do we know which ‘correspondence’ is
correct?
) f1(z), falz) 4 fi(z)  Jale)

actual shift

estimated shift

Nearest match is
correct (no aliasing)

Nearest match is
incorrect (aliasing)

¢ To overcome aliasing: coarse-to-fine estimation.
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Idea: Reduce the Resolution! Coarse-to-fine Optical Flow Estimation

=5
Ll

u=1.25 pixels

u=2.5 pixels

u=10 pixels

Computer Vision WS 15/16
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Gaussian pyramid of image 1 Gaussian pyramid of image 2

64
Slide credit: Svetlana | azebnik B. Leibe

ide credit: Steve Seit; B. Leibe
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Coarse-to-fine Optical Flow Estimation Dense Optical Flow

* Dense measurements can be obtained by
adding smoothness constraints. Color map

T

-_. Run iterative L-K | -

4 2

o I

1 [

= 2

13 c

2 S

£ 2 (¢) Thomas Brox 2009

g ]

E / E- T. Brox, C. Bregler, J. Malik, Large displacement

8 Gaussian pyramid of image 1 Gaussian pyramid of image 2 " S optical flow, CVPR‘09, Miami, USA, June 2009. o
Slide credit: Steve Seit; B. Leibe

B. Leibe
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Summary References and Further Reading

¢ Motion field: 3D motions projected to 2D images;
dependency on depth.

¢ Solving for motion with

» Sparse feature matches

¢ Here is the original paper by Lucas & Kanade

» B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In Proc. IJCAI,
pp. 674-679, 1981.

- Dense optical flow ¢ And the original paper by Shi & Tomasi

¢ Optical flow » J. Shi and C. Tomasi. Good Features to Track. CVPR 1994.
» Brightness constancy assumption
» Aperture problem

» Solution with spatial coherence assumption
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