Computer Vision - Lecture 19

Uncalibrated Reconstruction

26.01.2016
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RWTH Aachen
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Course Outline

 Image Processing Basics

e Segmentation & Grouping
e Object Recognition

e Local Features & Matching
e Object Categorization

e 3D Reconstruction
- Epipolar Geometry and Stereo Basics
~ Camera calibration & Uncalibrated Reconstruction
> Active Stereo
> Structure-from-Motion

e Motion and Tracking
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Recap: A General Point

e Equations of the form

AX =0

e How do we solve them? (always!)
- Apply SVD

SVD B r all
l d11 Vii Vi
A=UDV' =U : :

dNN ] _VNl o M

Singular values Singular vectors

-~ Singular values of A = square roots of the eigenvalues of ATA.
» The solution of Ax=0 is the nullspace vector of A.

» This corresponds to the smallest singular vector of A.
B. Leibe
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Recap: Camera Parameters

e Intrinsic parameters
> Principal point coordinates m, f
~ Focal length K { m, ﬂ
» Pixel magnification factors 1
> Skew (non-rectangular pixels)
> Radial distortion

e Extrinsic parameters
> Rotation R

> Translation t
(both relative to world coordinate system)

e Camera projection matrix
= General pinhole camera: 9 DoF
= CCD Camera with square pixels: 10 DoF

= General camera: 11 DoF
B. Leibe

P=K[R|t]



Recap: Calibrating a Camera

Goal

e Compute intrinsic and extrinsic
parameters using observed camera
data.

Main idea

e Place “calibration object” with
known geometry in the scene

e Get correspondences

e Solve for mapping from scene to
image: estimate P=P, P

int" ext
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Slide credit; Kristen Grauman B. Leibe
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Recap: Camera Calibration (DLT Algorithm)

OT

XT

Xy
OT

n

OT

o y1XI
o X1XI

o ynx-rl;
o anz

4 |:>1 A
I:)2

\Ps

=0 Ap=0

e P has 11 degrees of freedom.

e Two linearly independent equations per independent
2D/3D correspondence.

e Solve with SV¥D (similar to homography estimation)
> Solution corresponds to smallest singular vector.

e 5% correspondences needed for a minimal solution.

Slide adapted from Svetlana Lazebnik

B. Leibe



Topics of This Lecture

e Revisiting Epipolar Geometry
> Triangulation
» Calibrated case: Essential matrix
> Uncalibrated case: Fundamental matrix
> Weak calibration
~ Epipolar Transfer

e Active Stereo
> Kinect sensor
> Structured Light sensing
> Laser scanning
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Two-View Geometry

e Scene geometry (structure):

» Given corresponding points in two or more images, where is the
pre-image of these points in 3D?

e Correspondence (stereo matching):

~ Given a point in just one image, how does it constrain the
position of the corresponding point x’ in another image?

e Camera geometry (motion):

~ Given a set of corresponding points in two images, what are the
cameras for the two views?

10

Slide credit: Svetlana Lazebnik B. Leibe



Revisiting Triangulation

e Given projections of a 3D point in two or more images
(with known camera matrices), find the coordinates of
the point

X2
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Slide credit: Svetlana Lazebnik B. Leibe



Revisiting Triangulation

e We want to intersect the two visual rays corresponding
to x, and x,, but because of noise and numerical errors,
they will never meet exactly. How can this be done?

/v R,
XU X?

X2
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Slide credit: Svetlana Lazebnik B. Leibe



RWNTH
Triangulation: 1) Geometric Approach

e Find shortest segment connecting the two viewing rays
and let X be the midpoint of that segment.

X

—i

T

—i

2

X

S X1

i)

>

)

=

3

8 Ol 02

Slide credit: Svetlana Lazebnik B. Leibe
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/11)(1 — Plx
A, X, =P, X

axb=

Slide credit: Svetlana Lazebnik

X, xP,X=0

X, xP,X=0

0
a

JA

—a

-a, a,
0 -—a
y aX 0 |-

B. Leibe

Triangulation: 2 )Linear Algebraic Approach

[X, JP,X=0
[XZX]PZX — O

Cross product as matrix multiplication:

=[a,]o

14



©
—
~~
Yo
—
)
=
c
©
D
>
2
S
Q
S
(@]
@)

RWTH
Triangulation: 2) Linear Algebraic Approach

X, =PX  x,xPX=0 [Xx,]JPX=0
LX,=P,X  x,xPX=0 [X,]P,X=0

L

Two independent equations each in terms of
three unknown entries of X

= Stack them and solve using SVD!
e This approach is often preferable to the geometric

approach, since it nicely generalizes to multiple
cameras.

Slide credit: Svetlana Lazebnik B. Leibe

15
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Triangulation: 3) Nonlinear Approach

e Find X that minimizes

d% (%, PX)+d?(%,, P,X)

B. Leibe

Slide credit: Svetlana Lazebnik

16
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RWTH
Triangulation: 3) Nonlinear Approach

e Find X that minimizes

d% (%, PX)+d?(%,, P,X)

e This approach is the most accurate, but unlike the other
two methods, it doesn’t have a closed-form solution.

e [terative algorithm
> Initialize with linear estimate.

» Optimize with Gauss-Newton or Levenberg-Marquardt
(see F&P sec. 3.1.2 or H&Z Appendix 6).

17
B. Leibe
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Revisiting Epipolar Geometry

P

o \ | o’

e Let’s look again at the epipolar constraint
> For the calibrated case (but in homogenous coordinates)
> For the uncalibrated case

B. Leibe

18
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Epipolar Geometry: Calibrated Case

Camera matrix: [RT | -RT{]
Vector x’ in second coord.

X
[
o \ t ‘
\B/
Camera matrix: [1]|0]
X=(u,v,w, 17
X =(u,v,w)T"

The vectors x, [, and Rx’ are coplanar

Slide credit: Svetlana Lazebnik

B. Leibe

system has coordinates Rx’ in
the first one.

19



—

0 ﬁ\e ,
x-[tx(Rx)]=0 mE) x'Ex'=0 with E=[t]R

8

Essential Matrix
(Longuet-Higgins, 1981)
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Slide credit: Svetlana Lazebnik B. Leibe
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RWTH
Epipolar Geometry: Calibrated Case

X

[ I

e ef
(@) ' o’

x-[tx(Rx)]=0 mE) x'Ex'=0 with E=[t]R

e E x’ is the epipolar line associated with x’ ([ = E x°)
e ETx is the epipolar line associated with x (I’ = E"x)
e Ee’=0 and E’e=0

e E is singular (rank two)

e E has five degrees of freedom (up to scale)

Slide credit: Svetlana Lazebnik B. Leibe

21
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RWTH
Epipolar Geometry: Uncalibrated Case

X

[ I

e ef
O I O.’

e The calibration matrices K and K’ of the two cameras
are unknown

e We can write the epipolar constraint in terms of
unknown normalized coordinates:

L'EX =0 Xx=KX, X =K%

Slide credit: Svetlana Lazebnik B. Leibe

22



Epipolar Geometry: Uncalibrated Case

A

v ooTreor Teo - T /-1
g X' EX'=0 mm) x'Fx'=0 with i_K EK
> X =KX

; , Iy Fundamental Matrix

= X = K (Faugeras and Luong, 1992)

&

S

Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Epipolar Geometry: Uncalibrated Case

X

[ I’

e el
O : 0’

REX =0 mm) XFx'=0 with F=K TEK"*

e F x’ is the epipolar line associated with x’ ({ = F x’)
e FTx is the epipolar line associated with x (I’ = Fx)
e Fe’=0 and F'e=0

e Fis singular (rank two)

 F has seven degrees of freedom
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Slide credit: Svetlana Lazebnik B. Leibe
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RWTH
Estimating the Fundamental Matrix

e The Fundamental matrix defines the epipolar geometry
between two uncalibrated cameras.

e How can we estimate F from an image pair?
> We need correspondences...

/. X;
X; /’\ X,’L-
y = A“\"‘X\\\

P? P'?

B. Leibe

25
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The Eight-Point Algorithm

Solve using... SVD!

B. Leibe

> (K Fx)

Fi
— T 9 — ’ ’ T
x=(uv,", x’=@’v’1) Fio
, Fis3
Fin Fia Fi)\(u Fy
!
(w,v,1)| For Fop Fy || v |=0 ‘ (v w, v'v, u' uv’, vv' v, v, 1] | Foao | =0
F3i F3 Fy )\ 1 Fos
' F3q
i . F3
e Taking 8 correspondences: Fas
_ _[F .
wiup  wjvr u) o wv] vv] v ouwp vy 1 Fll 0
u/u / / / / / 1 12 0
u/u / / ! / / 1 13 0
uhug  uyvg  uly ugvly vavy vy ug vg 1 F21 10
u/u / / / / / 1 22| — 0
u/u / / ! ! / 1 23 0
6 W6 u6'v6 u6 UGUG UGUG 'U6 UG v6 F31
/ / / / / /
UrUy  UnU7 Uy U7Vr  UV7Ur  Ur Uy U7 1 % 0 o « s _ s .
whus ulvs U, wsvh vsvh vh us vs 1 in 0 This minimizes:
Af=0

26

Slide adapted from Svetlana Lazebnik
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Excursion: Properties of SVD

e Frobenius norm
> Generalization of the Euclidean norm to matrices

m min(m,n)

22l % e

e Partial reconstruction property of SVD

Al =

Il
|

- Let g;i=1,...,N be the singular values of A.

> Let A = UprVpT be the reconstruction of A when we set

Op+1,+++» Oy tO Zero.

- Then Ay =U DV T is the best rank-p approximation of A in the

P=p¥p
sense of the Frobenius norm

(i.e. the best least-squares approximation).
B. Leibe

27



The Eight-Point Algorithm

e Problem with noisy data

> The solution will usually not fulfill the constraint that F only has
rank 2.

= There will be no epipoles through which all epipolar lines pass!

e Enforce the rank-2 constraint using SVD

Set d;; to
SYD d,, zero and
reconstruct F
F=UDV'=U

e As we have just seen, this provides the best least-
squares approximation to the rank-2 solution.
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B. Leibe
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UqUr
UsU2
Usus
U Uy
UsUs
UgUp
Uru7
UgUusg

Slide adapted from Svetlana Lazebnik

Uy
UsV2
U3v3
Uy Uy
Us Vs
Ug Ve
U0y
Ug Vg

u)  urvf
uh U
w5 uzvh
Uy Ugvy
U UsUL
ug  UEUg
un,  urvg
ug  UgUg
B. Leibe

(%]
V2V,
V3Vqg
V4Uy
U5y
Ve Vg
U7V,
Vg Vg

e |In practice, this often looks as follows:

ui
U2
usz
Uy
Uus
Ue
ur
us

U1
V2
U3
V4
Us
Ve
g
U8

e e e e e

Problem with the Eight-Point Algorithm

SO OO OO oo

29
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e |In practice, this often looks as follows:

RWNTH
Problem with the Eight-Point Algorithm

250906,36) 133269, 57 9z21.481| £005931.100 146766.13 138,21 272,18 193,481
2692, 28 131633.03 176,27 6136, 73] 302975, 59 405.71 15,27 746,79
416374, 23| 871684, 30 9355.47% 405110.39 554354, 92 916.90 445,10 931.481

1 191133.600 171759.40 410,27 4le435.62[ 374125, 90 G33.65 465,39 413,65
459345.86) 30401.76 57,89 296604, 57 185309, 58 352.87 od6, 22 225,15
1e4756.04) 546559, 67 613,17 1235, 37 BEZE. 15 9. 46 202,85 672,14
116407%.01 272775 155,89 169941, 27 3952, 81 202,77 839, 12 15.64
1353584, 58] 75411.13 193,72 411350.03 229127, 78 B03. 73 Bdl.Zd 379,43

= Poor numerical conditioning
= Can be fixed by rescaling the data

Slide adapted from Svetlana Lazebnik

B. Leibe

e e e e e

S OO OO o oo

30



RWTH
The Normalized Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-Z_constraint L_Jsing SVD._ Set d,, to
syD d,, vV, - V5|~ zeroand
ELUDVT = U .. . reconstruct F

4. Transform fundamental matrix back to original units: if
T and T’ are the normalizing transformations in the two
images, than the fundamental matrix in original
coordinatesis TTF T".
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Slide credit: Svetlana Lazebnik B. Leibe [Hartley, 1995]



The Eight-Point Algorithm

e Meaning of error Z:(X,T Fx')*:
i=1
Sum of Euclidean distances between points x; and
epipolar lines Fx’; (or points x’; and epipolar lines F'x;),
multiplied by a scale factor

 Nonlinear approach: minimize

ZN:[dZ(xi, Fx)+d2(x, F"x)]

> Similar to nonlinear minimization
approach for triangulation.

» Iterative approach (Gauss-Newton,
Levenberg-Marquardt,...)
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Slide credit: Svetlana Lazebnik B. Leibe
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Comparison of Estimation Algorithms

Normalized 8-point

Slide credit: Svetlana Lazebnik

8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel
B. Leibe

33
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RWNTH
3D Reconstruction with Weak Calibration

e Want to estimate world geometry without requiring
calibrated cameras.

e Many applications:
~ Archival videos
> Photos from multiple unrelated users
> Dynamic camera system

e Main idea:

» Estimate epipolar geometry from a (redundant) set of
point correspondences between two uncalibrated
cameras.

34

Slide credit; Kristen Grauman B. Leibe



Stereo Pipeline with Weak Calibration

e So, where to start with uncalibrated cameras?

> Need to find fundamental matrix F and the correspondences
(pairs of points (u’,v’) < (u,v)).

e Procedure
1. Find interest points in both images
2. Compute correspondences

3. Compute epipolar geometry
4. Refine

Slide credit: Kristen Grauman
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Example from Andrew Zisserman

B. Leibe



RO ONNERSITY
Stereo Pipeline with Weak Calibration

1. Find interest points (e.g. Harris corners)
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Example from Andrew Zisserman

Slide credit; Kristen Grauman B. Leibe



RO ONNERSITY
Stereo Pipeline with Weak Calibration

2. Match points using only proximity

,. ‘ |
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Example from Andrew Zisserman

Slide credit; Kristen Grauman B. Leibe



CHEN
UNIVERSITY

Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F
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B. Leibe Example from Andrew Zisserman



RWNTH
RANSAC for Robust Estimation of F

e Select random sample of correspondences

e Compute F using them

~ This determines epipolar constraint

e Evaluate amount of support - number of inliers within
threshold distance of epipolar line

e Choose F with most support (#inliers)
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Slide credit; Kristen Grauman B. Leibe



CHEN
UNIVERSITY

Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F
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B. Leibe Example from Andrew Zisserman



RWTHAACHEN
UNIVERSITY
Pruned Matches

e Correspondences consistent with epipolar geometry
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Example from Andrew Zisserman

B. Leibe
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, , UNIVERSITY
Resulting Epipolar Geometry
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B. Leibe Example from Andrew Zisserman
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Epipolar Transfer

e Assume the epipolar geometry is known

e Given projections of the same point in two images, how
can we compute the projection of that point in a third
image?

Slide credit: Svetlana Lazebnik B. Leibe
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Extension: Epipolar Transfer

e Assume the epipolar geometry is known

e Given projections of the same point in two images, how
can we compute the projection of that point in a third

image?
o o ><
X1 Xy | X3 |
31 32
— T
I3, = Flis X,
— T
I3, = F'ys X%,

When does epipolar transfer fail?

B. Leibe

44
Slide credit: Svetlana Lazebnik
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Topics of This Lecture

e Active Stereo
> Kinect sensor
> Structured Light sensing
> Laser scanning

B. Leibe

4)



Microsoft Kinect - How Does It Work?

KINECT

for &3 »

clVll"’!

e Built-in IR
projector

e |IR camera for
depth

e Regular camera
for color
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Recall: Optical Triangulation

3D Scene pointg™ X?

Image plane

b, Camera center

47
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Recall: Optical Triangulation

3D Scene point( X

Image plane

b, Camera center A

e Principle: 3D point given by intersection of two rays.

> Crucial information: point correspondence
~ Most expensive and error-prone step in the pipeline...

48
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Active Stereo with Structured Light

3D Scene point

Image plane

Camera center

e |ldea: Replace one camera by a projector.
» Project “structured” light patterns onto the object
> Simplifies the correspondence problem

Projector

UNIVERSIT)

l—.
I_'
I
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RWNTH
3D Reconstruction with the Kinect

SIGGRAPH Talks 2011
KinectFusion:

Real-Time Dynamic 3D Surface
Reconstruction and Interaction

Shahram lzadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London
3 Newcastle University 4 Lancaster University
5 University of Toronto

B. Leibe

51
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RWNTH
Active Stereo with Structured Light

e |dea: Project “structured” light patterns onto the object
~ Simplifies the correspondence problem
~ Allows us to use only one camera

camera

[+

projector

e The Kinect uses one such approach (“structured noise®)
- What other approaches are possible?

52

Slide credit: Steve Seitz B. Leibe
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Laser Scanning

Object

Direction of travel

%\ CCD image plane
& Y Cylindrical lens

Laser CCD

Laser sheet

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

e Optical triangulation
» Project a single stripe of laser light
> Scan it across the surface of the object
~ This is a very precise version of structured light scanning

Slide credit: Steve Seitz B. Leibe

53


http://graphics.stanford.edu/projects/mich/

©
—
S~
Yo
—
%2
=
c
£
D
>
2
S
Q
S
@)
@)

Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.
B. Leibe

Slide credit: Steve Seitz

54
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Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz B. Leibe
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Laser Scanned Models

R\WNTH

The Digital Michelangelo Project, Levoy et al.
B. Leibe

Slide credit: Steve Seitz

56
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Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.
B. Leibe

Slide credit: Steve Seitz
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Steve Seitz

Laser Scanned Models

Slide credi
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Multi-Stripe Triangulation

e To go faster, project multiple stripes
e But which stripe is which?
e Answer #1: assume surface continuity

e.g. Eyetronics’ ShapeCam
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Slide credit: Szymon Rusienkiewicz
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Multi-Stripe Triangulation

e To go faster, project multiple stripes
e But which stripe is which?
e Answer #2: colored stripes (or dots)

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured

Light and Multi-pass Dynamic Programming. 3DPVT 2002

Slide credit: Szymon Rusienkiewicz
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Multi-Stripe Triangulation

e To go faster, project multiple stripes
e But which stripe is which?
e Answer #3: time-coded stripes

| :’!””" . 1L | 114 L
e
. \ g1 /.‘ | )
|

"“‘.D ] 1N

(o]
—i
~
Lo
—
=
c
2
L
>
-
@
—
-}
o

O. Hall-Holt, S. Rusienkiewicz, Stripe Boundary Codes for Real-Time Structured-
Light Scanning of Moving Objects, ICCV 2001.

Slide credit: Szymon Rusienkiewicz
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Time-Coded Light Patterns

e Assign each stripe a unique illumination code
over time [Posdamer 82]
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Slide credit: Szymon Rusienkiewicz



Better codes...

e Gray code
Neighbors only differ one bit

number of binary digits

2

bit differences [

binary code

binary Gray code

Wolfram }f Demonstrations Project
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Slide credit: David Gallup



RWNTH
Phase-Shift Structured Light Scanning

A@ = arctan (

W
[7 Cameras Projector

e Faster procedure by projecting continuous patterns
» Project 3 sinusoid grating patterns shifted by 120° in phase.
» For each pixel, compute relative phase from 3 intensities.
» Recover absolute phase by adding a 2"d camera.
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RWTH
A High-Speed 3D Scanner

color wheel

: > _
prOJectgr// . trigger

cameras

at 30 fps (on the GPU )

Project patterns in
all 3 color channels
(color wheel removed)

65
[Weise, Leibe, Van Gool, CVPR’07]
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RWTH
Problems with Dynamically Moving Objects
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e Moving objects lead to artifacts —_—-"70

» Measurements correspond to different 3D points!— 7

e Derived a geometric model for the error \\.:..w”/ “
~ Designed a motion compensation method
= Result: Cleaned-up geometry + motion estimate!
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66
[Weise, Leibe, Van Gool, CVPR’07]



Effect of Motion Compensation

Hand Gestures

67
[Weise, Leibe, Van Gool, CVPR’07]
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Application: Online Model Reconstruction

[Weise, Leibe, Van Gool, CVPR 08; 3DIM 09]



RWTHAACHEN
Poor Man’s Scanner JHVERSITY

Desk

Lamp Stick or P

pencil

Camera '
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69
Bouget and Perona, ICCV’98


../../../Local Settings/ANGEL.WRL
../../../Local Settings/ANGEL.WRL

UN VEF?EI%I
Slightly More Elaborate (But Still Cheapa

Software freely available from Robotics Institute TU Braunschweig

http://www.david-laserscanner.com/
B. Leibe
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http://www.david-laserscanner.com/
http://www.david-laserscanner.com/
http://www.david-laserscanner.com/
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RWTH
References and Further Reading

e Background information on camera models and

calibration algorithms can be found in Chapters 6 and 7
of

R. Hartley, A. Zisserman
Multiple View Geometry in Computer Vision
2nd Ed., Cambridge Univ. Press, 2004

Richard Hactley and Andrew Zisserman

e Also recommended: Chapter 9 of the same book on
Epipolar geometry and the Fundamental Matrix and
Chapter 11.1-11.6 on automatic computation of F.

B. Leibe
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