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Computer Vision WS 15/16

Computer Vision - Lecture 19

Uncalibrated Reconstruction

26.01.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Recap: A General Point

¢ Equations of the form

Ax=0
* How do we solve them? (always!)
» Apply SVD
SVD
dll vll
A=UDV' =U :
dNN VNl

Singular values Singular vectors

» Singular values of A = square roots of the eigenvalues of ATA.
» The solution of Ax=0 is the nullspace vector of A.

» This corresponds to the smallest singular vector of A.
B. Leibe

Recap: Calibrating a Camera

Goal

¢ Compute intrinsic and extrinsic
parameters using observed camera
data.

Main idea

¢ Place “calibration object” with
known geometry in the scene

¢ Get correspondences

¢ Solve for mapping from scene to
image: estimate P=P; P

?
Slide credit: Kristen Grauman LA P
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Course Outline

Image Processing Basics

Segmentation & Grouping

Object Recognition

e Local Features & Matching

¢ Object Categorization

* 3D Reconstruction

» Epipolar Geometry and Stereo Basics

» Camera calibration & Uncalibrated Reconstruction
» Active Stereo

» Structure-from-Motion

¢ Motion and Tracking

Recap: Camera Parameters

¢ Intrinsic parameters
Principal point coordinates
Focal length

» Pixel magnification factors

» Skew (non-rectangular pixels)
» Radial distortion

v

v

¢ Extrinsic parameters
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» Rotation R
» Translation t
(both relative to world coordinate system)
« Camera projection matrix P=K[R|t]
= General pinhole camera: 9 DoF
= CCD Camera with square pixels: 10 DoF
= General camera: 11 DoF 5
B. Leibe
RWTH ACHET
Recap: Camera Calibration (DLT Algorithm)
T T T
0 Xl - ylxl
T T T
X1 0 - X1X1 Pl
T T T
0 Xn - ynxn P3
T T T
X, 0 —xX,

¢ P has 11 degrees of freedom.

¢ Two linearly independent equations per independent
2D/3D correspondence.

e Solve with S¥D (similar to homography estimation)
» Solution corresponds to smallest singular vector.

¢ 5 % correspondences needed for a minimal solution.

ide adapted from Svetlana | azebnik LA
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Topics of This Lecture

¢ Revisiting Epipolar Geometry
» Triangulation
Calibrated case: Essential matrix
» Uncalibrated case: Fundamental matrix
» Weak calibration
» Epipolar Transfer

v

e Active Stereo
» Kinect sensor
» Structured Light sensing
» Laser scanning

B. Leibe

Revisiting Triangulation

¢ Given projections of a 3D point in two or more images
(with known camera matrices), find the coordinates of

the point
<

(X?

0O, 0,

lide credit: Svetlana | azebnik B. Leibe

RWTHACHEN

Triangulation: 1) Geometric Approach

¢ Find shortest segment connecting the two viewing rays
and let X be the midpoint of that segment.

/

X

(o} 0,

Slide credit: Svetlana | azebnik LA

RWTHACHEN
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Two-View Geometry

¢ Scene geometry (structure):
» Given corresponding points in two or more images, where is the
pre-image of these points in 3D?
¢ Correspondence (stereo matching):
» Given a point in just one image, how does it constrain the
position of the corresponding point x’ in another image?
e Camera geometry (motion):

» Given a set of corresponding points in two images, what are the
cameras for the two views?

Slide credit: Svetlana | azebnik B. Leibe

RWTH CHE
Revisiting Triangulation
¢ We want to intersect the two visual rays corresponding

to x; and x,, but because of noise and numerical errors,
they will never meet exactly. How can this be done?

R
4} '

R,

O, 0,

B. Leibe

ide credit: Svetlana Lazebnik
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RWTH ACHET
Triangulation: 2 )Linear Algebraic Approach
X =PX  X,xPX=0  [x,JRX=0
A, X, =P, X XZXPZXZO [x, JP,X =0
Cross product as matrix multiplication:
0 -a a |b
axb=| a, 0 -a b |=[alo
-a, a, 0 | b,
ibe “
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Triangulation: 2) Linear Algebraic Approach
X =PX
ﬂ'zxz =P,X

X, xPX=0
X, xP,X=0

[x,JPX =0
[x,,JP,X =0

Two independent equations each in terms of
three unknown entries of X

= Stack them and solve using SVD!
¢ This approach is often preferable to the geometric

approach, since it nicely generalizes to multiple
cameras.

Computer Vision WS 15/16

Slide credit: Svetlana | azebnik B. Leibe

RWTH CHE
Triangulation: 3) Nonlinear Approach

¢ Find X that minimizes

d*(x, RX)+d*(x,, P,X)

¢ This approach is the most accurate, but unlike the other
two methods, it doesn’t have a closed-form solution.

¢ [terative algorithm
- Initialize with linear estimate.

» Optimize with Gauss-Newton or Levenberg-Marquardt
(see F&P sec. 3.1.2 or H&Z Appendix 6).

Computer Vision WS 15/16

B. Leibe

RWTH/ACHEN
Epipolar Geometry: Calibrated Case

Camera matrix: [1]0]
X=(u,v,w, 1)T
x = (u, v, w)T

Camera matrix: [RT| -RTt]
Vector x’ in second coord.
system has coordinates Rx’ in
the first one.
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The vectors x, {, and Rx’ are coplanar

Slide credit: Svetlana | azebnik LA
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RWTH/CET
Triangulation: 3) Nonlinear Approach

¢ Find X that minimizes

d* (%, BX)+d*(x,, P,X)

0,

de credit: Svetlana lazebnik B. Leibe

Revisiting Epipolar Geometry

¢ Let’s look again at the epipolar constraint
» For the calibrated case (but in homogenous coordinates)
~ For the uncalibrated case

B. Leibe
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RWTH/ACHEN
Epipolar Geometry: Calibrated Case

o

x[tx(Rx)]=0 =2 Xx'ExX'=0 with E=[t]R

. g

Essential Matrix
(Longuet-Higgins, 1981)

20

ide credit: Svetlana | azebnik. B. Leibe
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Epipolar Geometry: Calibrated Case

X

x[tx(Rx)]=0 =2 Xx'ExX'=0 with E=[t]R

E x’ is the epipolar line associated with x’ ({ = E x’)
ETx is the epipolar line associated with x (I’ = E"x)
Ee’=0 and ETe=0

E is singular (rank two)

E has five degrees of freedom (up to scale)

Computer Vision WS 15/16

Slide credit: Svetlana | azebnik B. Leibe

RWTH/ACHEN
Epipolar Geometry: Uncalibrated Case

X

o - | " : o

LTEX' =0 mm) x'Fx'=0 with F=KTEK'"?

8

Computer Vision WS 15/16

X =KX
' o Fundamental Matrix
X'=K (Faugeras and Luong, 1992)
! 23
lide credit: Svetlana Lazebnik B. Leibe
RWTH/ACHET

Estimating the Fundamental Matrix
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¢ The Fundamental matrix defines the epipolar geometry
between two uncalibrated cameras.
¢ How can we estimate F from an image pair?
> We need correspondences...

B. Leibe
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RWTH/CET
Epipolar Geometry: Uncalibrated Case

X

"
¢ The calibration matrices K and K’ of the two cameras
are unknown

¢ We can write the epipolar constraint in terms of
unknown normalized coordinates:

LKTER =0 x=K& X =K%
22
de credit: Svetlana lazebnik, B. Leibe
RWTH/CHEN
Epipolar Geometry: Uncalibrated Case

X

o | ‘ ' : o

o o T : -T -1
RTER =0 mm) x'FX'=0 with F=KTEK’
e F x’ is the epipolar line associated with x’ (I = F x’)
e FTx is the epipolar line associated with x (I’ = FTx)
e Fe’=0 and Fe=0
e F is singular (rank two)
¢ F has seven degrees of freedom
24
ide credit: Svetlana | azebnik B. Leibe
RWTH ACHET
The Eight-Point Algorithm
Fiy
x=(u,v, )T, x’= (v, )7 Fia
X ., X . Fiz
Fi Fip Fig) (u Fyy
(w,0,1)[ Foy B Fy||d' [=0 ‘ [u'u, u'v, o w00’ v w0, 1) | Faa | =0
Fy Fp Fg)l\l Py
Fyy
. Fsy
¢ Taking 8 correspondences: Fis
’ a ! g ! ’ Fll
wjuy  wivr wy o wpvy vivy vy our vp 1 7 0
ubus  uhvy Uy ugvh wvavh vh up ve 1 12 0
’ ’ 7 / ! ! Flfl
Uzuz  uzvz Uy uzvy vzvy vz uz vy 1 0
’ ! 7 J ! / F21
wyug whvs uh wgvh vev) vy ouws v 1 Pl — 0
ubus ubvs ub o ousvh wsvh vh ous vy 1| |2 0
B R S o Fa
ugu Ugle Ug Uglg Ul Vg Us Vg 1 Far 0
ubur  uhvr uh o ugvp vevr vp our vr 1 0 N P R
ugug  ugus ug ugvy vsvgy Vg ug v 1 ?;i 0 This minimizes:
i N
Af=0 T AYA
| i 1 z (Xi F Xi )
Solve using... SVD! =
= 26
ide adapted from Svetlana | azebnik. B. Leibe
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Excursion: Properties of SVD

¢ Frobenius norm
» Generalization of the Euclidean norm to matrices

14, = > > [ =
=1 j=1

min(m,n)

2
Z G
i=1

¢ Partial reconstruction property of SVD
- Let o; i=1,...,N be the singular values of A.
- Let Ay = UprVpT be the reconstruction of A when we set
Op+1, -+ Oy to zero.
- Then A, = UprVpT is the best rank-p approximation of A in the
sense of the Frobenius norm
(i.e. the best least-squares approximation). 2
B. Leibe
Problem with the Eight-Point Algorithm
¢ In practice, this often looks as follows:
wiuy  whvy uw) owv] ve) o) wp vy 1 i 0
h / / ; - Fip
Uyly UGV Uy Uy VaUh Uy Uz vy 1 Iy 0
whus uhvs uwh uzvh vsvh vh oug vy 1 F“ 0
whug  whvy uly ugvh vgvl vf ouwg vy 1 Fz‘l 0
ubus uhvs uh usvh vsvh vf us vy 1 Ff"% 0
UGG UGV UG ugUG  veUg vh ug vg 1 F“ 0
upur  upvr uh urvp vpvp vp up wvp 1 F“ 0
vius wws vpouseh vl o owsow 1) [P [0
; 29
lide adapted from Svetlana | azebnik B. Leibe

The Normalized Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-2 constraint using SVD. Set dy, to
SVD d, . J zero and
ELubvT =u d reconstruct F
- - 22

4. Transform fundamental matrix back to original units: if
T and T’ are the normalizing transformations in the two
images, than the fundamental matrix in original
coordinatesis TTF T’.

Slide credit: Svetlana | azebnik LA

31
[Hartley, 19901
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The Eight-Point Algorithm

¢ Problem with noisy data

» The solution will usually not fulfill the constraint that F only has
rank 2.

= There will be no epipoles through which all epipolar lines pass!

¢ Enforce the rank-2 constraint using SVD
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ide credit: Svetlana | azebnik. B. Leibe

Set dj; to
zero and
reconstruct F
¢ As we have just seen, this provides the best least-
squares approximation to the rank-2 solution.
28
B. Leibe
Problem with the Eight-Point Algorithm
¢ In practice, this often looks as follows:
1 | 0
250906.36) 183269.57 921.81| 200931.10| 146766.13 738. 21| 272.19, 198.81 F12
2692.28| 131633.03) 176.27) 6196, 73| 302975.59) 405,71 15,27 746.79) 1 F 0
416374.23) 871684. 30| 935.47 408110.83 85438492 916,20 445,10 231,81 1 Fl.i 0
191183.60) 171759. 40 410.27| 416435.62| 374125.90, 893. 65| 465.99 418.65 1 Fi: — 0
459868.86)  3040L.76) 57.89) 298604.57 185308, 55| 352.87 845.22 525.15) 1 1‘;' 0
164786.04 546559.67 813, 17| 1998.37 6628, 15| 9. 86| 202.65) 672,14 1 F}s 0
116407.01 2727.75 138.89| 169941.27, 3982.21 202.77| B838.12, 19.64 1 F:il 0
135384.58  754L1.13] 198,72 4L1350.03 229127.79) 603,79 681.28) 373,48 1 Fji 0
= Poor numerical conditioning
= Can be fixed by rescaling the data
" 30
ide adapted from Svetlana | azebnik B. Leibe

The Eight-Point Algorithm
N

 Meaning of error Z:(X,T Fx)?:
i-1
Sum of Euclidean distances between points x;and
epipolar lines Fx’; (or points x’; and epipolar lines F'x;),
multiplied by a scale factor

Nonlinear approach: minimize

ZN:[dz(xi, Fx)+d’(x, FTx)]

» Similar to nonlinear minimization
approach for triangulation.

» lterative approach (Gauss-Newton,
Levenberg-Marquardt,...)




Comparison of Estimation Algorithms
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§ 8-point Normalized 8-point Nonlinear least squares
=

E‘ Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

8 Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel

33
ide credit: Svetlana | azebnik B Leibe
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IN
Stereo Pipeline with Weak Calibration

¢ So, where to start with uncalibrated cameras?

» Need to find fundamental matrix F and the correspondences
(pairs of points (u’,v’) & (u,v)).

¢ Procedure
1. Find interest points in both images
2. Compute correspondences
3. Compute epipolar geometry
4. Refine

ide credit: Kristen Grauman

B. Leibe

35
Example from Andrew Zisserman|
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ide credit: Kristen Grauman

\
Stereo Pipeline with Weak Calibration

2. Match points using only proximity

B. Leibe

37

Example from Andrew Zisserman|
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3D Reconstruction with Weak Calibration

¢ Want to estimate world geometry without requiring

calibrated cameras.
¢ Many applications:
» Archival videos
» Photos from multiple unrelated users
» Dynamic camera system

¢ Main idea:

» Estimate epipolar geometry from a (redundant) set of
point correspondences between two uncalibrated

cameras.

ide credit: Kristen Grauman

B. Leibe

Stereo Pipeline with Weak Calibration

1. Find interest points (e.g. Harris corners)

ide credit: Kristen Grauman

B. Leibe

Example from Andrew Zisserman)
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* Many wrong matches (10-50%), but enough to compute F

Putative Matches based on Correlation Search

B. Leibe

38

Example from Andrew Zisserman|
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RANSAC for Robust Estimation of F

¢ Select random sample of correspondences
¢ Compute F using them
» This determines epipolar constraint

¢ Evaluate amount of support - number of inliers within
threshold distance of epipolar line

¢ Choose F with most support (#inliers)

ide credit: Kristen Grauman B. Leibe

RWTH//CHEN
UNIVERSITY,

UNIVERSITY]
Pruned Matches

¢ Correspondences consistent with epipolar geometry

X"

. 4
B. Leibe Example from Andrew Zisserman|
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RWTH/CHET
. UNIVERSITY
Epipolar Transfer

¢ Assume the epipolar geometry is known

¢ Given projections of the same point in two images, how
can we compute the projection of that point in a third
image?

X1 X2 :

43

ide credit: Svetlana | azebnik B Lefbe
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UNIVERSITY]
Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F

40

B. Leibe Example from Andrew Zisserman

RWTH/CHET]
. . UNIVERSITY
Resulting Epipolar Geometry

42

Example from Andrew Zisserman)

B. Leibe
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RWTHAACHEN
. ) UNIVERSITY
Extension: Epipolar Transfer

¢ Assume the epipolar geometry is known

¢ Given projections of the same point in two images, how
can we compute the projection of that point in a third

image?
° ° ><
X1 X2 I X3 )
31 32
ls1 = FTisX;
ls2 = FTagX,

When does epipolar transfer fail?

ide credit: Svetlana | azebnik. B. Leibe

44
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Topics of This Lecture

e Active Stereo
» Kinect sensor
» Structured Light sensing
» Laser scanning

45
B. Leibe
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Active Stereo with Structured Light

X

3D Scene point

Image plan

0,

b Camera center

0,

Projector@

¢ |dea: Replace one camera by a projector.
» Project “structured” light patterns onto the object
» Simplifies the correspondence problem

49

RWTHACHEN
Recall: Optical Triangulation
3D Scene points” X?
Image plan
0,
b Camera center

47

RWTHACHEN
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RWTHACIEN
Microsoft Kinect - How Does It Work?

KINECT

for &

¢ Built-in IR
projector

¢ IR camera for
depth

¢ Regular camera
for color

B. Leibe

RWTH CHE
Recall: Optical Triangulation
3D Scene pointe( X
Image plan
0, 0,
b Camera center
¢ Principle: 3D point given by intersection of two rays.
» Crucial information: point correspondence
» Most expensive and error-prone step in the pipeline...
48
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What the Kinect Sees...

B. Leibe




3D Reconstruction with the Kinect

SIGGRAPH Talks 2011
KinectFusion:

Real-Time Dynamic 3D Surface
Reconstruction and Interaction

Shahram Izadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London
3 Newcastle University 4 Lancaster University
S University of Toronto
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B. Leibe
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Laser Scanning

Object

Direction of travel
—_—

Laser sheet
CCD image plane

& ™ Cylindrical lens

Laser CCD .
g Digital Michelangelo Project
] http://gr tanford.
1
; . . .
5| * Optical triangulation
£ » Project a single stripe of laser light
£ » Scan it across the surface of the object
g » This is a very precise version of structured light scanning
- ; 53
lide credit: Steve Seit: B. Leibe
Laser Scanned Models
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8 The Digital Michelangelo Project, Levoy et al. 55
Slide credit: Steve Seit: B. Leibe

RWTH/CET
Active Stereo with Structured Light

¢ |dea: Project “structured” light patterns onto the object
» Simplifies the correspondence problem
» Allows us to use only one camera

camera

I

g projector
2
w
B
5
| » The Kinect uses one such approach (“structured noise“)
8 » What other approaches are possible?
g
8
52
slide credit: Steve Seit: B. Leibe
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Laser Scanned Models
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3 The Digital Michelangelo Project, Levoy et al. sa
ide credit: Steve Seit; B. Leibe
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Laser Scanned Models
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ide credit: Steve Seit: B. Leibe



http://graphics.stanford.edu/projects/mich/

Laser Scanned Models

Computer Vision WS 15/16

The Digital Michelangelo Project, Levoy et al.

lide credit: Steve Seit: B. Leibe

Multi-Stripe Triangulation

* To go faster, project multiple stripes
¢ But which stripe is which?
e Answer #1: assume surface continuity
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lide credit: mon

e.g. Eyefronics’ ShapeCam

Multi-Stripe Triangulation

¢ To go faster, project multiple stripes
e But which stripe is which?
e Answer #3: time-coded stripes

0. Hall-Holt, S. Rusienkiewicz, Stripe Boundary Codes for Real-Time Structured-
Light Scanning of Moving Objects, ICCV 2001.
Slide credit: jenkiewi
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Laser Scanned Models
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Slide credit: Steve Seit: B. Leibe
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Multi-Stripe Triangulation

¢ To go faster, project multiple stripes
¢ But which stripe is which?
e Answer #2: colored stripes (or dots)

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured
Light and Multi-pass Dynamic Programming. 3DPVT 2002

ide credit: Szvmon

RWTH ACHET
Time-Coded Light Patterns

¢ Assign each stripe a unique illumination code
over time [Posdamer 82]

Time
I )
]

|

Space

ide credit. Szvman

10


http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/
http://www.cs.princeton.edu/~smr/papers/realtimerange/
http://www.cs.princeton.edu/~smr/papers/realtimerange/
http://www.cs.princeton.edu/~smr/papers/realtimerange/
http://www.cs.princeton.edu/~smr/papers/realtimerange/
http://www.cs.princeton.edu/~smr/papers/realtimerange/
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Better codes...

¢ Gray code
Neighbors only differ one bit

ot o iy gy |

lide credit: David Gallup
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RWTH/ACHEN
A High-Speed 3D Scanner

color wheel

projector
\

trigger

cameras

Dense 3D reconstructions
at 30 fps (on the GPU )

Project patterns in
all 3 color channels
(color wheel removed)

65
[Weise, Leibe, Van Gool, CVPR’07
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Effect of Motion Compensation

Hand Gestures

RWTHAACHE

ter Vision WS 15/16

\\
X
¥ 3 In)
© A = arcran _‘\ o ’ )
§ (m,J—L.—L,s
g Cameras ﬁ Projector
c
o . . :
g . Faster procedure by projecting continuous patterns
3 » Project 3 sinusoid grating patterns shifted by 120° in phase.
» For each pixel, compute relative phase from 3 intensities.
» Recover absolute phase by adding a 2"d camera. o
RWTH CHE

Problems with Dynamically Moving Objects

¢ Moving objects lead to artifacts o
» Measurements correspond to different 3D points! 7
. - f J
* Derived a geometric model for the error —

~ Designed a motion compensation method
= Result: Cleaned-up geometry + motion estimate!

66
[Weise, Leibe, Van Gool, CVPR’07
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Application: Online Model Reconstruction

11



UNIVERSITY
Slightly More Elaborate (But Still Cheap)

RWTHALCEL
s UNIVERSITY]
Poor Man’s Scanner

>
Desk 5
Lamp Stick or

pencil

Software freely available from Robotics Institute TU Braunschweig

http://www.david-laserscanner.com/
B. Leibe
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References and Further Reading

¢ Background information on camera models and
calibration algorithms can be found in Chapters 6 and 7
of
R. Hartley, A. Zisserman

Multiple View Geometry in Computer Vision
2nd Ed., Cambridge Univ. Press, 2004

¢ Also recommended: Chapter 9 of the same book on
Epipolar geometry and the Fundamental Matrix and
Chapter 11.1-11.6 on automatic computation of F.
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