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Computer Vision - Lecture 18

Camera Calibration & 3D Reconstruction

21.01.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

RWTH CHE
Recap: What Is Stereo Vision?
¢ Generic problem formulation: given several images of

the same object or scene, compute a representation of
its 3D shape c

Slide credit: Svetlana | azebnik, Steve Seit; B. Leibe

RWTH ACHET
Recap: Epipolar Geometry
¢ Geometry of two views allows us to constrain where the

corresponding pixel for some image point in the first
view must occur in the second view.

epipolar line

epipolar line .

¢ Epipolar constraint:

» Correspondence for point P in IT must lie on the epipolar line /’
in IT’ (and vice versa).

» Reduces correspondence problem to 1D search along conjugate
epipolar lines.

slide adapted from Steve Seit: B. Leibe
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Course Outline

¢ Image Processing Basics
¢ Segmentation & Grouping
¢ Object Recognition
e Local Features & Matching
¢ Object Categorization
¢ 3D Reconstruction
» Epipolar Geometry and Stereo Basics

» Camera calibration & Uncalibrated Reconstruction
» Structure-from-Motion

¢ Motion and Tracking

Computer Vision WS 15/16

RWTH/ACHEN
Recap: Depth with Stereo - Basic Idea

e Basic Principle: Triangulation
~ Gives reconstruction as intersection of two rays
» Requires
- Camera pose (calibration)
- Point correspondence

Computer Vision WS 15/16

ide credit: Steve Seit; B. Leibe

RWTH ACHET
Recap: Stereo Geometry With Calibrated Cameras

\X world point

P=|Y -
\f\‘ p

P ~x x \\\‘ o

7z, ) Z; N x!

O, . T (o}
' X ~ v v!!
Y. -t
R

« Camera-centered coordinate systems are related by
known rotation R and translation T:

X =RX+T

ide credit: Kristen Grauman LA
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RWTH//CHEN RWTH//CHEN
Recap: Essential Matrix Recap: Essential Matrix and Epipolar Lines
X world point
X (TxRX)=0 Epipolar constraint: if we observe
( ) point p in one image, then its
r. — position p’ in second image must
X ( x RX) 0 0 I e satisfy this equation.
Z Z
_ o1 T o I'= Ep is the coordinate vector represen-
Let E=TiR . . - - . ing the epipolar line for point p
XTEX =0 ’

¢ This holds for the rays p and p’ that

are parallel to the camera-centered
position vectors X and X’, so we have:
* E is called the essential matrix, which relates

corresponding image points [Longuet-Higgins 1981]

Slide credit: Kristen Grauman B. Leibe
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l= ET p' is the coordinate vector representing
the epipolar line for point p’
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Slide credit: Kristen Grauman B. Leibe
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Essential Matrix Example: Parallel Cameras Essential Matrix Example: Parallel Cameras
R= R=1
= T=[-d,0,0]"
000
E—[TJR= E-[TR :[8 0‘5
—d
T 17 21
=0 00 0ffa
% % P Ep [y fllo 0 dijy|=0
2 2 0—-d0j|f]
s 5 0
g @ P _
; For the parallel cameras, ; For the parallel cameras, = l';' ¥ f- d’: =0
=] image of any point must = image of any point must —ay
£ lie on same horizontal E lie on same horizontal
*F line in each image plane. 1 *} line in each image plane.
i it Kristen G

More General Case Stereo Image Rectification

In practice, it is
convenient if image
scanlines are the
epipolar lines.

Image I(z,y) Disparity map D(z,y) Image I'(z",y")

»

¢ Algorithm
» Reproject image planes onto a common
plane parallel to the line between optical
centers
» Pixel motion is horizontal after this transformation
» Two homographies (3 x 3 transforms), one for each
input image reprojection

(«.y) = (z+Diz,y),y)

What about when cameras’ optical axes are not parallel?
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Slide credit: Kristen Grauman B. Leibe ide adapted from 1j Zhang C.Loop &2, Zhane, Computing Rectifving jes for Stereo Vision, CVPR'99]



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

RWTH/ACHER
e . UNIVERSITY] . UNIVERSITY]
Stereo Image Rectification: Example Recap: Stereo Reconstruction
¢ Main Steps
» Calibrate cameras
» Rectify images
» Compute disparity
» Estimate depth
o o
= B
£ £
© 15 S . 17
Source: Alyosha Efros] ide credit: Kristen Grauman B. Leibe
RWTH/CHEN RWTH/CHEN
UNIVERSITY] UNIVERSITY]

Correspondence Problem Dense Correspondence Search

THON. ADRAIIAM Ci President of United sxﬁ?

Multiple match
hypotheses satisfy
the epipolar

® Hypothesis 1

o Hypothesis 2
. X - wypomesss  constraint, but
s which is the correct
one? | | 4
- = - 5 oy g 3
. L :’hT:"'S "’Tbig:’ity is « For each pixel in the first image
. :st?mz‘iza: sd:f;z';t’ » Find corresponding epipolar line in the right image
0¥ Right image o/ :

» Examine all pixels on the epipolar line and pick the best match
(e.g. SSD, correlation)

» Triangulate the matches to get depth information

Computer Vision WS 15/16
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¢ This is easiest when epipolar lines are scanlines
= Rectify images first

adaoted from Svetlana Lazebnik, 1i Zhang

18

ide credit: Kristen Grauman B. Leibe Eigure from Gee & Cipolla 1999

RWTH/ACHET
. UNIVERSITY] . UNIVERSITY]
Example: Window Search Example: Window Search
¢ Data from University of Tsukuba ¢ Data from University of Tsukuba
[ g
\ I
g - 1 g
s Scene Ground truth S
:g g Window-based matching Ground truth
B 5 (best window size)
(8] 20 © 21
ide credit: Kristen Grauman B Lefbe ide credit: Kristen Grauman B. Leibe




Effect of Window Size

Dense vs. Sparse

e Sparse
» Efficiency
» Can have more reliable feature matches, less
sensitive to illumination than raw pixels
» But...
- Have to know enough to pick good features
- Sparse information

- Breaks down in textureless regions anyway
- Raw pixel distances can be brittle
- Not good with very different viewpoints

Slide credit: Kristen Grauman

=] « Dense

g . Simple process
E » More depth estimates, can be useful for surface
o reconstruction
> » But...

g
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©
5
o W=3 W =20
12
s . o .
5 Want window large enough to have sufficient intensity
g variation, yet small enough to contain only pixels with
5 about the same disparity.
=3
aQ
£
I=3
o
Slide credit: Kristen Grauman B. Leibe Fiquwes from 1i Zhang

Possible Sources of Error?

¢ Low-contrast / textureless image regions
¢ Occlusions
¢ Camera calibration errors

* Violations of brightness constancy (e.g., specular
reflections)

¢ Large motions
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Slide credit: Kristen Grauman LA

RWTH/CET
Alternative: Sparse Correspondence Search

President of United States. ‘v?-

T HON. ABRATIAM LINC

¢ |dea:
» Restrict search to sparse set of detected features

» Rather than pixel values (or lists of pixel values) use feature
descriptor and an associated feature distance

» Still narrow search further by epipolar geometry

Computer Vision WS 15/16

What would make good features?

ide credit: Kristen Grauman B. Leibe

TWTHACHE
Difficulties in Similarity Constraint

T HON, ABRATIAM LING
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ide credit: Kristen Grauman B. Leibe

Summary: Stereo Reconstruction

¢ Main Steps
» Calibrate cameras
» Rectify images
» Compute disparity
» Estimate depth

=) oy g
¢ So far, we have only considered &
calibrated cameras... .

Len Right

¢ Today
» Uncalibrated cameras
» Camera parameters
» Revisiting epipolar geometry
» Robust fitting
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Recap: A General Point

¢ Equations of the form

Ax=0

¢ How do we solve them? (always!)
» Apply SVD

SVD
dyy Vi

A=UDV' =U

d NN VNl
Singular values Singular vectors

» Singular values of A = square roots of the eigenvalues of ATA.
» The solution of Ax=0 is the nullspace vector of A.
» This corresponds to the smallest singular vector of A.

B. Leibe
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lide credit: Svetlana | azebnik B. Leibe

RWTH/ACHEN
Recall: Pinhole Camera Model
. \‘ .
s i .x ’j
¢ . Yevez
C \ “ > z C-l —<I‘1 -
e [T .
E (XY, Z)=>(fX1Z,1Y12)
2 X «
E SNGARE ok
N2 I x = PX
5} Z 7
z Z 10
£ 1 1
o

Images from Hartlev & Zisserman|

Camera Coordinate System

cere - image plane

¢ Principal axis:

» Line from the camera center perpendicular to the image plane
e Normalized (camera) coordinate system:

~ Camera center is at the origin and the principal axis is the z-axis
¢ Principal point (p):

» Point where principal axis intersects the image plane (origin of
normalized coordinate system)
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B. Leibe \mage from Hartlev & Zisserman|

Slide credit: Svetlana lazebnik
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Topics of This Lecture

¢ Camera Calibration
» Camera parameters
» Calibration procedure

¢ Revisiting Epipolar Geometry

» Triangulation
Calibrated case: Essential matrix
Uncalibrated case: Fundamental matrix
» Weak calibration
» Epipolar Transfer

v

v

e Active Stereo
» Laser scanning
» Kinect sensor

B. Leibe

Pinhole Camera Model

Ry
ST
A Y T F
A AT
X
f X f 1 0
Y
fy |= f 1 0
Z
z 1 10
1

x =PX P=diag(f, f,1)[1]0]

ide credit: Svetlana | azebnik B. Leibe

Images from Hartley & Zisserman

31

Principal Point Offset

principal point:( Py py)

¢ Camera coordinate system: origin at the principal point
¢ Image coordinate system: origin is in the corner

ide credit: Svetlana | azebnik. B. Leibe

lmage from Hartley & Zisserma
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Principal Point Offset

principal point:( Py py)

(X,Y,Z) > (FX1Z+p,, fYIZ+p,)

g

]

1%

2 X X
= fX+Zp f p

8 Y x x Y
[

> | fY+Zp, |= fop

& z z
2 Z 1

: ! !

Slide credit: Svetlana | azebnik B. Leibe Jmage from Hartlev & 7i enn]:n

RWTH CHE
Pixel Coordinates: Non-Square Pixels

. . 1 1
Pixel size;: —x—
m, m,

m, pixels per meter in horizontal direction,
m, pixels per meter in vertical direction

g
=
1
§ mx f px ax XO
5
2 K= m, fop|= a4 Yo
5 1 1 1
2
§ [pixels/m] [m] [pixels]
Slide credit: Svetlana | azebnik B. Leibe 36
RWTH/ACHET

Camera Rotation and Translation

z In non-homogeneous
0 coordinates:

% -R(%-)

o TR T

x =K[10]X,, =K[R[-RC]X

P=K[R[t], t=-RC
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Note: C is the null space of the camera projection matrix (PC=0)|
38

Image from Hartley & Zisserman)

Slide credit: Svetlana | azebnik LA
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Principal Point Offset

principal point:( Py py)

o X
f X +2Zp, f p (1 0 ¥
fY+Zp, |= fop 1 0 .
z 1 10
1
f P
K= f p,| calibration matrix P = K[l | O]
1
35
ide credit: Svetlana | azebnik B. Leibe Jmage from Hartley & Zisserma

RWTHACHE
Camera Rotation and Translation

¢ In general, the camera
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z coordinate frame will be
e related to the world
. \\R:_‘ coordinate frame by a
° rotation and a translation
Y
X
X =R(X-C
coords. of point coords. of camera center
in camera frame in world frame
coords. of a point
in world frame (nonhomogeneous)
) 37
ide credit: Svetlana Lazebnik B. Leibe Image from Hartlev & Zi:

Summary: Camera Parameters

¢ Intrinsic parameters
» Principal point coordinates
» Focal length
» Pixel magnification factors
» Skew (non-rectangular pixels)
» Radial distortion

cadial distoetion linear image

) _—
{ )|
o/

ide credit: Svetlana | azebnik. B. Leibe




Summary: Camera Parameters

¢ Intrinsic parameters
Principal point coordinates m, s p,
-]

1

v

v

Focal length

» Pixel magnification factors

» Skew (non-rectangular pixels)
» Radial distortion

e Extrinsic parameters

Calibrating a Camera

¢ Compute intrinsic and extrinsic
parameters using observed camera
data.

Main idea

¢ Place “calibration object” with
known geometry in the scene

¢ Get correspondences

¢ Solve for mapping from scene to
image: estimate P=P; P

Computer Vision WS 15/16
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Slide credit: Kristen Grauman B. Leibe

©
g
9 » Rotation R
12
2 » Translation t
H (both relative to world coordinate system) rp p  p p
g 1 12 13 14
| + Camera projection matrix P=K[R|t]=|P; P, Py P,
=3
E‘ P31 Paz Psa P34
I=3
S How many degrees of freedom does P have? 7
Slide adapted from Svetlana | azebnik B. teitle
RWTH CHE

RWTH/ACHEN
Camera Calibration: Obtaining the Points

¢ For best results, it is important that the calibration
points are measured with subpixel accuracy.

¢ How this can be done depends on the exact pattern.

¢ Algorithm for checkerboard pattern
1. Perform Canny edge detection.
2. Fit straight lines to detected linked edges.
3. Intersect lines to obtain corners.

» I sufficient care is taken, the points can
then be obtained with localization accuracy < 1/10 pixel.

¢ Rule of thumb

> Number of constraints should exceed number of unknowns by a
factor of five.

= For 11 parameters of P, at least 28 points should be used.
B. Leibe
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RWTH//CHEN
Camera Parameters: Degrees of Freedom
¢ Intrinsic parameters DoF
~ Principal point coordinates 2 & s p
» Focal length 1 K =[ iz, p;ﬂ
» Pixel magnification factors 1 11
» Skew (non-rectangular pixels) 1
» Radial distortion
% ° Extrinsic parameters
E » Rotation R 3
g > Translatioq t ) 3
< (both relative to world coordinate system)
% « Camera projection matrix P=K[R|t]
= = General pinhole camera: 9 DoF
g = CCD Camera with square pixels: 10 DoF
o = General camera: o Lebe 11 DoF M
RWTH/ACHEN

Camera Calibration

¢ Given n points with known 3D coordinates X; and known
image projections x;, estimate the camera parameters

Computer Vision WS 15/16
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ide credit: Svetlana | azebnik B. Leibe

RWTH ACHET
Camera Calibration: DLT Algorithm
(DLT = “Direct Linear Transform”
><I
(R R R R [R
AX; =PX; A Yi|=|Pu Pp Ps Py XI‘Z = P; X;
LR N L
X; xPX; =0
= T T
5} 0 _Xi yixi Pl
- X7 0 —xX|P,|=0
S
2 T T
; - yixi Xi>(i O PS X
5
E’ Only two linearly independent equations
o ’ p? 45
ide adapted from Svetlana | azebnik. B. Leibe
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RWTHAACHE

Camera Calibration: DLT Algorithm b
T T T
0 Xl - ylxl
T T T p?
X1 0 - X1X1 Pl
T T T
0" Xi -y X (P Solve using... SVD!
T T T
X, 0 —=xX,
¢ Notes
» P has 11 degrees of freedom (12 parameters, but scale is
arbitrary).
» One 2D/3D correspondence gives us two linearly independent
equations.

» Homogeneous least squares (similar to homography est.)

= 5 % correspondences needed for a minimal solution.
46

Slide adapted from Svetlana | azebnik B. Leibe

RWTHACHE
Camera Calibration

¢ Once we’ve recovered the numerical form of the camera
matrix, we still have to figure out the intrinsic and
extrinsic parameters

¢ This is a matrix decomposition problem, not an
estimation problem (see F&P sec. 3.2, 3.3)

48

lide credit: Svetlana | azebnik B. Leibe

Topics of This Lecture

¢ Revisiting Epipolar Geometry

» Triangulation
Calibrated case: Essential matrix
Uncalibrated case: Fundamental matrix
Weak calibration
Epipolar Transfer

v

v

v

v

B. Leibe
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RWTH//CHET]

Camera Calibration: DLT Algorithm -X:

0" X[ -yX]

X[ 0T —xX] [P "

P, |=0 Ap=0

0" X, =Y Xp |[\Ps

X0 —x X!
¢ Notes

» For coplanar points that satisfy IT"X=0,
we will get degenerate solutions (I1,0,0), (0,I1,0), or (0,0,IT).
= We need calibration points in more than one plane!

Slide credit: Svetlana | azebnik B. Leibe

RWTH CHE
Camera Calibration: Some Practical Tips

¢ For numerical reasons, it is important to carry out some
data normalization.
» Translate the image points x; to the (image) origin and scale
them such that their RMS distance to the origin is \/2.

» Translate the 3D points X; to the (world) origin and scale them
such that their RMS distance to the origin is v/3.

» (This is valid for compact point distributions on calibration
objects).

e The DLT algorithm presented here is easy to implement,
but there are some more accurate algorithms available
(see H&Z sec. 7.2).

¢ For practical applications, it is also often needed to
correct for radial distortion. Algorithms for this can be
found in H&Z sec. 7.4, or LF:c'tP sec. 3.3. 49

Two-View Geometry

e Scene geometry (structure):
» Given corresponding points in two or more images, where is the
pre-image of these points in 3D?
¢ Correspondence (stereo matching):
~ Given a point in just one image, how does it constrain the
position of the corresponding point x’ in another image?
¢ Camera geometry (motion):

» Given a set of corresponding points in two images, what are the
cameras for the two views?

ide credit: Svetlana | azebnik. B. Leibe
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RWTHAACHE
Revisiting Triangulation
¢ Given projections of a 3D point in two or more images

(with known camera matrices), find the coordinates of
the point

o

X?

b

0,

Slide credit: Svetlana | azebnik B. Leibe

RWTH CHE
Triangulation: 1) Geometric Approach

* Find shortest segment connecting the two viewing rays
and let X be the midpoint of that segment.

0O, 0,
RWTH ACHET
Triangulation: 2) Linear Algebraic Approach
A% =PX  xxPX=0  [x,]JPX=0
A%, =P, X X, xP,X=0 [x, JP,X=0

Two independent equations each in terms of
three unknown entries of X

= Stack them and solve using SVD!
¢ This approach is often preferable to the geometric

approach, since it nicely generalizes to multiple
cameras.

Slide credit: Svetlana | azebnik LA
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RWTH/CET
Revisiting Triangulation

¢ We want to intersect the two visual rays corresponding
to x, and x,, but because of noise and numerical errors,
they will never meet exactly. How can this be done?

R, }k,,4R1

O, 0,
RWTH CHE
Triangulation: 2 )Linear Algebraic Approach
A% =PX  x,xPX=0 [x,JPX=0
X, =P,X X, xP,X=0 [X,]P,X=0

Cross product as matrix multiplication:
0 -a a |b
axb=| a, 0 -a/|b,|=[alb

y
-a, a 0 |b

y X z

ide credit: Svetlana | azebnik B. Leibe

RWTH ACHET
Triangulation: 3) Nonlinear Approach

¢ Find X that minimizes

d* (%, BX)+d*(x,, P,X)

O,

ide credit: Svetlana | azebnik. B. Leibe
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Triangulation: 3) Nonlinear Approach Revisiting Epipolar Geometry

¢ Find X that minimizes

d* (%, BX)+d*(x,, P,X)

« This approach is the most accurate, but unlike the other
two methods, it doesn’t have a closed-form solution.

e |terative algorithm
» Initialize with linear estimate.

» Optimize with Gauss-Newton or Levenberg-Marquardt
(see F&P sec. 3.1.2 or H&Z Appendix 6).

e Let’s look again at the epipolar constraint
» For the calibrated case (but in homogenous coordinates)
» For the uncalibrated case

Computer Vision WS 15/16
Computer Vision WS 15/16

B. Leibe B. Leibe

RWTH/ACHEN
Epipolar Geometry: Calibrated Case

RWTH/ACHEN
Epipolar Geometry: Calibrated Case

o | - o'
x-[tx(Rx)]=0 Bm) X'EX'=0 with E=[t]R
&£

Essential Matrix
(Longuet-Higgins, 1981)

Camera matrix: [1]0] Camera matrix: [RT| -RTt]

X=(uv,w, 1)T Vector x’ in second coord.

x=(u, v, w)T system has coordinates Rx’ in
the first one.

Computer Vision WS 15/16
Computer Vision WS 15/16

The vectors x, {, and Rx’are coplanar

lide credit: Svetlana | azebnik B. Leibe

. 61
ide credit: Svetlana | azebnik B. Leibe

RWTH/ACHEN
Epipolar Geometry: Calibrated Case

RWTH/ACHEN
Epipolar Geometry: Uncalibrated Case

x[tx(Rx)]=0 =2 Xx'Ex'=0 with E=[t]R
E x’ is the epipolar line associated with x’ ({ = E x’)

ETx is the epipolar line associated with x (I’ = E"x)

Ee’=0 and E’e=0

E is singular (rank two)

E has five degrees of freedom (up to scale)

Slide credit: Svetlana | azebnik LA

"
¢ The calibration matrices K and K’ of the two cameras
are unknown

¢ We can write the epipolar constraint in terms of
unknown normalized coordinates:

R'ER' =0 x=Kg&, X =K%
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ide credit: Svetlana | azebnik. B. Leibe




RWTH/CET
Epipolar Geometry: Uncalibrated Case

X

o ‘ v o
LTER' =0 mm) xX'Fx'=0 with F=KTEK'™

8

K
’ " Fundamental Matrix
K (Faugeras and Luong, 1992)

Computer Vision WS 15/16

Slide credit: Svetlana | azebnik B. Leibe

RWTH CHE
Estimating the Fundamental Matrix

¢ The Fundamental matrix defines the epipolar geometry
between two uncalibrated cameras.
¢ How can we estimate F from an image pair?
» We need correspondences...

Computer Vision WS 15/16

B. Leibe

Excursion: Properties of SVD

¢ Frobenius norm
» Generalization of the Euclidean norm to matrices

1A = >y =
=1 j=1

min(m,n)

2
Z G
i=1

¢ Partial reconstruction property of SVD
- Let o; i=1,...,N be the singular values of A.

- Let A, = U,D,V," be the reconstruction of A when we set
Op+1:-+-» Oy to zero.

- Then A; = UprVpT is the best rank-p approximation of A in the
sense of the Frobenius norm
(i.e. the best least-squares approximation).
B. Leibe
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RWTH/CET
Epipolar Geometry: Uncalibrated Case

X

a '| = o

R'EX'=0 mm) X Fx'=0 with F=KTEK'™*
e Fx’ is the epipolar line associated with x’ ([ = F x’)
e FTx is the epipolar line associated with x (I’ = FTx)

e Fe’=0 and F'e=0

e Fis singular (rank two)

¢ F has seven degrees of freedom

de credit: Svetlana lazebnik B. Leibe

The Eight-Point Algorithm
Fu
x=(u v, )T, 2=, v, )T Fis
, , , , Fig
Fiy Fio Fy)(u Fy
(w,0,1)| Fox Foo Fn || ¢ |=0 q [u'u, u'v, ! u’ o0’ v uy v, 1) | Fag | =0
P Fp Fg)\1 Py
Fy
. . Fyp
¢ Taking 8 correspondences: Fas
, , , PR iy
wyuyp  wivr wy o upvy vivy vy oup v 1 F 0
dots e W wsth  wovh o ws v 1] |F12 0
uhuy  uhvy  uh UV vavh vy Uy Uy ,
7 7 b A A Fiy
uzuz  uzvz Uz uzvy vzvy vz uz vz 1 7 0
whuy whvy  wy o ugv) vgvl V) ug vy 1 2 0
’ ' ’ ’ T Fp| =
Usus  UsUs Uy UsUs UsUs U5 Us Us 1 Iy 0
ufus uus uf ugvy vevh vg ug v 1 Fzs 0
whuy  whvr uh o ougvh wevh vh owp wvr 1 3} 0 . T .
wus whvs ul usvh vsvh vf us vs 1 ?z o | This minimizes:
33
N
Af=0 (XT = X!)Z
Sol i SvD! i i
olve using... 1 n
i=1 67
ide adapted from Svetlana L azebnik B Leibe

The Eight-Point Algorithm

¢ Problem with noisy data

» The solution will usually not fulfill the constraint that F only has
rank 2.

= There will be no epipoles through which all epipolar lines pass!

¢ Enforce the rank-2 constraint using SVD

Set dj; to
SVD zero and
ELUuDV™ =U reconstruct F

¢ As we have just seen, this provides the best least-
squares approximation to the rank-2 solution.

B. Leibe
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Problem with the Eight-Point Algorithm Problem with the Eight-Point Algorithm
¢ In practice, this often looks as follows: ¢ In practice, this often looks as follows:
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> = = Poor numerical conditioning

o 0 . .

= = = Can be fixed by rescaling the data

€ =

3 8

70 ul
Slide adapted from Svetlana | azebnik B. Leibe Slide adapted from Svetlana | azebnik B. Leibe

The Normalized Eight-Point Algorithm The Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

N
¢ Meaning of error Z‘(X,T Fx)?:
i=1
Sum of Euclidean distances between points x; and
epipolar lines Fx’; (or points x’; and epipolar lines F'x;),
multiplied by a scale factor

3. Enforce the rank-2 constraint using SVD. Set d; to
SVD dy, - zero and ¢ Nonlinear approach: minimize
FLuDV™=U reconstruct F

N
3107 (%, Fx)+d%(x, FTx)]
i-1
4. Transform fundamental matrix back to original units: if
T and T’ are the normalizing transformations in the two
images, than the fundamental matrix in original
coordinatesis TTF T’.

. 72,
lide credit: Svetlana L azebnik B. Leibe [Hartley, 1995

» Similar to nonlinear minimization
approach for triangulation.

» Iterative approach (Gauss-Newton,
Levenberg-Marquardt,...)

Computer Vision WS 15/16
Computer Vision WS 15/16

ide credit: Svetlana | azebnik B. Leibe

RWTH/ACHEN
Comparison of Estimation Algorithms

RWTHAACHER
3D Reconstruction with Weak Calibration

¢ Want to estimate world geometry without requiring
calibrated cameras.
¢ Many applications:
» Archival videos
» Photos from multiple unrelated users
» Dynamic camera system

¢ Main idea:

© ©o

R R

o o » Estimate epipolar geometry from a (redundant) set of

K 2 point correspondences between two uncalibrated

z 3 cameras.

s o

s S

E 8-point Normalized 8-point Nonlinear least squares §

=3 =3

= |AvDist1 2.33 pixels 0.92 pixel 0.86 pixel 3

3 Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel 3 7
slide credit: Svetlana | azebnik B. Leibe N ide credit: Kristen Grauman B. Leibe
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Computer Vision WS 15/16

UNIVERSITY]

Stereo Pipeline with Weak Calibration

¢ So, where to start with uncalibrated cameras?

~ Need to find fundamental matrix F and the correspondences
(pairs of points (u’,v’) & (u,v)).

.

o

rocedure

Find interest points in both images
Compute correspondences
Compute epipolar geometry

Refine

3 AW

B. Leibe

Stereo Pipeline with Weak Calibration

2. Match points using only proximity
T

B. Leibe
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RANSAC for Robust Estimation of F

¢ Select random sample of correspondences
¢ Compute F using them

» This determines epipolar constraint

Evaluate amount of support - number of inliers within
threshold distance of epipolar line

Choose F with most support (#inliers)

ide credit: Kristen Grauman B Lefbe

RWTH//CHEN
UNIVERSITY}

RWTH/ACHER
UNIVERSITY

UNIVERSITY
Stereo Pipeline with Weak Calibration

1. Find interest points (e.g. Harris corners)
- yypoy—— .

&
o
1%}
B
=
S
%
2
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=
o
=
8

; 77

ide credit: Kristen Grauman B. Leibe Example from Andrew Zisserman)

UNIVERSITY]

Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F

Computer Vision WS 15/16

79

B. Leibe Example from Andrew Zisserman|

UNIVERSITY]
Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F
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B. Leibe

Example from Andrew Zisserman|
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Computer Vision WS 15/16

Computer Vision WS 15/16

Pruned Matches

¢ Correspondences consistent with epipolar geometry
[ ] i -

B. Leibe Example from Andrew Zisserman

RWTH//CHEN
UNIVERSITY,

Epipolar Transfer

¢ Assume the epipolar geometry is known

* Given projections of the same point in two images, how
can we compute the projection of that point in a third
image?

RWTH//CHEN
UNIVERSITY}
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° o ? X3
X1 Xz
. 84
ide credit: Svetlana Lazebnik B. Leibe
RWTH/ACHER
UNIVERSITY]

Topics of This Lecture

¢ Active Stereo
» Laser scanning
> Kinect sensor

B. Leibe

Computer Vision WS 15/16

Computer Vision WS 15/16

Resulting Epipolar Geometry

B. Leibe

Example from Andrew Zisserman|

RWTH//CHEN
UNIVERSITY,

RWTH/CHET]
. . UNIVERSITY}
Extension: Epipolar Transfer

¢ Assume the epipolar geometry is known

« Given projections of the same point in two images, how
can we compute the projection of that point in a third
image?

X1 X2

—FT

lsy = FTigX;
—FT

I3, = FTysX,

When does epipolar transfer fail?

ide credit: Svetlana | azebnik B. Leibe

©
S
I}
-
%
=
=
.2
2
>
g
S
=%
£
S
O

RWTHAACHER
. . UNIVERSITY
Microsoft Kinect - How Does It Work?

KINECT
for &N *B0K 360

¢ Built-in IR
projector

¢ IR camera for
depth

e Regular camera
for color :

14
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Recall: Optical Triangulation
3D Scene point o™ X?
Image plan

0,

b, Camera center

RWTH/ACHEN
Active Stereo with Structured Light

X

3D Scene point

Image plan

0,

b Camera center

0,

Projector@

¢ |dea: Replace one camera by a projector.
» Project “structured” light patterns onto the object
» Simplifies the correspondence problem

©
=
Iro)
-
1
=
=
i)
3
S
g
5
a
E
15}
o

RWTHAACHER
3D Reconstruction with the Kinect

SIGGRAPH Talks 2011
KinectFusion:

Real-Time Dynamic 3D Surface
Reconstruction and Interaction

Shahram lIzadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London
3 Newcastle University 4 Lancaster University

S University of Toronto

B. Leibe

Recall: Optical Triangulation

3D Scene pointe( X

Image plan

0,

o
b, Camera center A

¢ Principle: 3D point given by intersection of two rays.
» Crucial information: point correspondence
» Most expensive and error-prone step in the pipeline...

Computer Vision WS 15/16

What the Kinect Sees...

Computer Vision WS 15/16

B. Leibe

Laser Scanning

Object

Direction of travel
—_

Laser sheet
CCD image plane

& Y Cylindrical lens

5 )
Laser ccp LA

Digital Michelangelo Project

http://g tanford.edu/proj i

e Optical triangulation
» Project a single stripe of laser light
» Scan it across the surface of the object
» This is a very precise version of structured light scanning
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ide credit: Steve Seit LA
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http://graphics.stanford.edu/projects/mich/

Laser Scanned Models Laser Scanned Models
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38 The Digital Michelangelo Project, Levoy et al. 95 38 The Digital Michelangelo Project, Levoy et al. %
Slide credit: Steve Seit: B. Leibe Slide credit: Steve Seit: B. Leibe
Laser Scanned Models Laser Scanned Models
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8 The Digital Michelangelo Project, Levoy et al. 97 8 The Digital Michelangelo Project, Levoy et al. 9%
lide credit: Steve Seit, B. Leibe ide credit: Steve Seit; B. Leibe

Laser Scanned Models Poor Man’s Scanner

Desk N
Lamp Stick or

pencil
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Computer Vision WS 15/16

The Digital Michelangelo Project, Levoy et al.
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Slide credit: Steve Seit: B. Leibe
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Slightly More Elaborate (But Still Cheap)

-

Software freely available from Robotics Institute TU Braunschweig

http://www.david-laserscanner.com/
B. Leibe
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References and Further Reading

¢ Background information on camera models and

calibration algorithms can be found in Chapters 6 and 7

of

R. Hartley, A. Zisserman
Multiple View Geometry in Computer Vision
2nd Ed., Cambridge Univ. Press, 2004

¢ Also recommended: Chapter 9 of the same book on
Epipolar geometry and the Fundamental Matrix and
Chapter 11.1-11.6 on automatic computation of F.

B. Leibe
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