Computer Vision - Lecture 18

Camera Calibration & 3D Reconstruction

21.01.2016

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

Course Outline

- Image Processing Basics
- Segmentation & Grouping
- · Object Recognition
- · Local Features & Matching
- · Object Categorization
- 3D Reconstruction
 - Epipolar Geometry and Stereo Basics
 - > Camera calibration & Uncalibrated Reconstruction
 - > Structure-from-Motion
- Motion and Tracking

Recap: What Is Stereo Vision?

• Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

Slide credit: Svetlana Lazebnik. Steve Seitz

B. Leible

Recap: Epipolar Geometry • Geometry of two views allows us to constrain where the corresponding pixel for some image point in the first view must occur in the second view. • Epipolar line • Epipolar constraint: • Correspondence for point p in ∏ must lie on the epipolar line l' in ∏' (and vice versa). • Reduces correspondence problem to 1D search along conjugate epipolar lines. Stide adapted from Steve Seitz • Geometry • Epipolar Geometry • Epipolar line • Epipolar constraint: • Correspondence for point p in ∏ must lie on the epipolar line l' in ∏' (and vice versa).

Camera Calibration: DLT Algorithm

Notes

- P has 11 degrees of freedom (12 parameters, but scale is arbitrary).
- One 2D/3D correspondence gives us two linearly independent equations.
- > Homogeneous least squares (similar to homography est.)
- \Rightarrow 5 ½ correspondences needed for a minimal solution.

Slide adapted from Svetlana Lazebnik

B. Leibe

Camera Calibration: DLT Algorithm $\begin{bmatrix} o^T & \mathbf{v}^T & ... \mathbf{v}^T \end{bmatrix}$

Notes

- For coplanar points that satisfy $\Pi^{7}X=0$, we will get degenerate solutions $(\Pi,0,0)$, $(0,\Pi,0)$, or $(0,0,\Pi)$.
- ⇒ We need calibration points in more than one plane!

Slide credit: Svetlana Lazebnik

B. Leibe

Camera Calibration

- Once we've recovered the numerical form of the camera matrix, we still have to figure out the intrinsic and extrinsic parameters
- This is a matrix decomposition problem, not an estimation problem (see F&P sec. 3.2, 3.3)

B. Le

Camera Calibration: Some Practical Tips

- For numerical reasons, it is important to carry out some data normalization.
 - > Translate the image points x_i to the (image) origin and scale them such that their RMS distance to the origin is $\sqrt{2}$.
 - > Translate the 3D points X_i to the (world) origin and scale them such that their RMS distance to the origin is $\sqrt{3}$.
 - (This is valid for compact point distributions on calibration objects).
- The DLT algorithm presented here is easy to implement, but there are some more accurate algorithms available (see H&Z sec. 7.2).
- For practical applications, it is also often needed to correct for radial distortion. Algorithms for this can be found in H&Z sec. 7.4, or F&P sec. 3.3.

Topics of This Lecture

- Camera Calibration
- > Camera parameters
- Calibration procedure
- Revisiting Epipolar Geometry
 - > Triangulation
 - > Calibrated case: Essential matrix
 - > Uncalibrated case; Fundamental matrix
 - Weak calibration
 - Epipolar Transfer
- Active Stereo
 - Laser scanning
 Kinect sensor

RWTHAACHEN UNIVERSITY

Two-View Geometry

- Scene geometry (structure):
 - Given corresponding points in two or more images, where is the pre-image of these points in 3D?
- · Correspondence (stereo matching):
 - Given a point in just one image, how does it constrain the position of the corresponding point x' in another image?
- Camera geometry (motion):
 - Given a set of corresponding points in two images, what are the cameras for the two views?

Computer V

Slide credit: Svetlana Lazebnik

B. Leibe

Triangulation: 3) Nonlinear Approach • Find X that minimizes $d^2(x_1,P_1X)+d^2(x_2,P_2X)$ • This approach is the most accurate, but unlike the other two methods, it doesn't have a closed-form solution. • Iterative algorithm • Initialize with linear estimate. • Optimize with Gauss-Newton or Levenberg-Marquardt (see F&P sec. 3.1.2 or H&Z Appendix 6).

References and Further Reading

 Background information on camera models and calibration algorithms can be found in Chapters 6 and 7 of

R. Hartley, A. Zisserman Multiple View Geometry in Computer Vision 2nd Ed., Cambridge Univ. Press, 2004 Multiple View Geometry in computer vision

 Also recommended: Chapter 9 of the same book on Epipolar geometry and the Fundamental Matrix and Chapter 11.1-11.6 on automatic computation of F.

B. Leihe