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Recognition with Local Features
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Recap: Local Feature Matching Outline

. Find a set of
distinctive key-
points

-

N

. Define a region
around each
keypoint

w

. Extract and
normalize the
region content
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messure 4. Compute a local
il <= Dbl descriptor from the
o5 coler e cober normalized region
T d(f,, f5)<T
5. Match local
descriptors
B. Leibe
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Recap: SIFT Feature Descriptor

¢ Scale Invariant Feature Transform
¢ Descriptor computation:
~ Divide patch into 4x4 sub-patches: 16 cells

» Compute histogram of gradient orientations (8 reference angles)
for all pixels inside each sub-patch

» Resulting descriptor: 4x4x8 = 128 dimensions

TEE
# K>
* e
I

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
1JCV 60 (2), pp. 91-110, 2004.

ide credit: Svetlana | azehnik. LA

Course Outline

Image Processing Basics
Segmentation & Grouping
Object Recognition
Object Categorization |
» Sliding Window based Object Detection
e Local Features & Matching
» Local Features - Detection and Description

» Recognition with Local Features
» Indexing & Visual Vocabularies

¢ Object Categorization I
¢ 3D Reconstruction

Computer Vision WS 15/16

¢ Motion and Tracking

Recap: Harris-Laplace pmikolajczyk ‘01]

1. Initialization: Multiscale Harris corner detection
2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

Harris points
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ide adapted from Krystian Mikolai B. Leibe
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Topics of This Lecture

¢ Recognition with Local Features
» Matching local features

Finding consistent configurations

Alignment: linear transformations

Affine estimation

Homography estimation

v

v

v

v

¢ Dealing with Outliers
» RANSAC
» Generalized Hough Transform

¢ Indexing with Local Features
» Inverted file index
» Visual Words
» Visual Vocabulary construction
» tf-idf weighting
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http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Recognition with Local Features

¢ Image content is transformed into local features that
are invariant to translation, rotation, and scale

¢ Goal: Verify if they belong to a consistent configuration
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a Local Features,
g e.g. SIFT
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slide credit: David L owe B. Leibe
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Parametric (Global) Warping

-

p=(xy) P=Ky)
o Transformation 7'is a coordinate-changing machine:

p = 1T(p)
* What does it mean that 7'is global?
» It’s the same for any point p
» It can be described by just a few numbers (parameters)

¢ Let’s represent T as a matrix: X X
p‘ = MP, = M

y y
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Slide credit: Alexei Efra B. Leibe
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What Can be Represented by a 2x2 Matrix?

e 2D Mirror about y axis?
X'=-X x| [-1 0]x
y'=y vy Lo 1]y
e 2D Mirror over (0,0)?

S G

g
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G

0
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5 * 2D Translation?

S X'=X+t,

g . NO!

2 y'=y+t,

S

o 14
i Efro B. Leibe

Computer Vision WS 15/16

Computer Vision WS 15/16

RWTHACHE
Concepts: Warping vs. Alignment

Warping: Given a source

0 T ° image and a transformation,
o _ s what does the transformed
output look like?
[ [
o °
L] . .
Alignment: Given two
o T ° images with corresponding
o > © 5 features, what is the
transformation between
[ [
them?
L] °
"
ide credit: Kristen Grauman B. Leibe
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What Can be Represented by a 2x2 Matrix?

¢ 2D Scaling?
X'=8,*X [x'7 [s, 0]x
y'=s,*y Ly Lo s Ly

¢ 2D Rotation around (0,0)?

X'=c0s@*x—sin@*y [x'] [cos® —sin@]x
y'=sin@*x+cosf*y Ly' “|sind  cosé ||y

¢ 2D Shearing?

X'=X+sh *y Mx' 1 sh[x
y'=sh *x+y Ly shy, 1|y
" 13
ide credit: Alexei Efro: B. Leibe
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2D Linear Transforms

X' a b x
y' c djLy
¢ Only linear 2D transformations can be represented with
a 2x2 matrix.
¢ Linear transformations are combinations of ...
» Scale,
» Rotation,

» Shear, and
» Mirror

ei Ffra: B. Leibe
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Homogeneous Coordinates

¢ Q: How can we represent translation as a 3x3 matrix
using homogeneous coordinates?

X'= X+t

y'=y+t,
N A: Using the rightmost column:
2 10t
£
< Translation=|0 1 t,
©
S
5 0 0 1
2
€
I=3
< 16

Slide credit: Alexej Ffro B. Leibe

Basic 2D Transformations

¢ Basic 2D transformations as 3x3 matrices

2D Affine Transformations

e

* Affine transformations are combinations of ...
> Linear transformations, and
» Translations

e Parallel lines remain parallel

Computer Vision WS 15/16

Slide credit: Alexei Efra B. Leibe
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Alignment Problem

¢ We have previously considered how to fit a model to
image evidence
» E.g., a line to edge points

¢ In alignment, we will fit the parameters of some
transformation according to a set of matching feature
pairs (“correspondences”).
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Slide credit: Kristen Grauman LA

xT 1 0 tTx [xT [s, 0 0Ofx
y'|=|0 1 t |y y'|=]0 s, Ofy
1] [0 0 11 1] [0 0 1]1
Translation Scaling
B - o
1} x'| [cos@ -sing 0] x X 1 sh, 0Of[x
2 y'|=|sing cos® O}y y'|=|sh, 1 0fy
S 1 0 0 1|1 1 0 0 1J[1
£ L L]
> Rotation Shearing
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ide credit: Alexej Ffro: B. Leibe
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Projective Transformations

el

¢ Projective transformations:
» Affine transformations, and
» Projective warps
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Let’s Start with Affine Transformations

¢ Simple fitting procedure (linear least squares)

« Approximates viewpoint changes for roughly planar
objects and roughly orthographic cameras

¢ Can be used to initialize fitting for more complex models
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Fitting an Affine Transformation Fitting an Affine Transformation

¢ Assuming we know the correspondences, how do we get
the transformation?

+ Affine model approximates perspective projection of
planar objects

Computer Vision WS 15/16
Computer Vision WS 15/16

Slide credit: Kristen Grauman B. Leibe Jmage source: David Lowel

B. Leibe
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Recall: Least Squares Estimation Fitting an Affine Transformation

« Set of data points: (X,, X;),(X,, X,), (X5, X3)

* Goal: a linear function to predict X’s from Xs:
Xa+b=X'

* We want to find a and b.

o How many (X, X') pairs do we need?

¢ Assuming we know the correspondences, how do we get
the transformation?

. Xa+b=X, [Xl 1}[?_{&1 Ax—B .
g X,a+b=X, X, 1|b| |X, 3 06 %) o) m
2 [ i Ji
: N What if the data is noisy? = m,
o X, 1 ' Overconstrained ion: 9o ’
S Xl 1a ;(? problem SO[TJZZB < % - M M X + L m; =
= XZ 1 L}} =2 min || Az — BJ|? = £ Vi m, m, |y t, m,
3 3 Xs = Least-squares Matlab: g t,
3 minimization z=A\B 3
i it i B. Leibe 2 B. Leibe tZ 5
Slide credit: Alexei Efro:
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Fitting an Affine Transformation Homography
m ¢ A projective transform is a mapping between any two
m, perspective projections with the same center of

projection.
» l.e. two planes in 3D along the same sight ray
¢ Properties
» Rectangle should map to arbitrary quadrilateral
» Parallel lines aren’t pP2

X ¥y 0 0 1 0fm, x!
0 0 % y 0 1|m| |y

§ § » but must preserve straight lines

g ¢ How many matches (correspondence pairs) do we need g» ¢ This is called a homography

5 to solve for the transformation parameters? B W « x *y

| « Once we have solved for the parameters, how do we < . * % % PP1
g compute the coordinates of the corresponding point for g Wv?/l - L * *} :)Ll

Koo Vo) ? g ,

o o

Slide credit: Kristen Grauman LA

i Efro B. Leibe
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Homography

¢ A projective transform is a mapping between any two
perspective projections with the same center of
projection.
» l.e. two planes in 3D along the same sight ray
¢ Properties
» Rectangle should map to arbitrary quadrilateral
» Parallel lines aren’t

» but must preserve straight lines
¢ This is called a homography
wx' hy h, Ry X
| = |h h h Set scale factor to 1
WY | = |y Ny Ny = 8 parameters left.
W ha1 hsz 1
P H p

Slide adapted from Alexej Ffro: B. Leibe

Fitting a Homography

* Estimating the transformation

Matrix notation

X'=HXx

n_ 1y
X"=1x

Slide credit: Krystian Mikolaiczvk B. Leibe

Fitting a Homography

¢ Estimating the transformation

Homogenous coordinates

Xp € Xg, %] _h1 h, h 11X Matrix notation
1 2 3 '
X X5, [Ty =, N, h,]]y X'=Hx
>(AJ (—)XB3 72-7 7h31 h32 17 h X":%XI
Dty oy, ey X + Ny +hi

hy, Xg + h32yEn +1

. h31 Xa‘ + hazysA +1 32
Slide credit: Krystian Mikolaiczyk. LA
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Fitting a Homography

¢ Estimating the transformation

Homogenous coordinates

Fitting a Homography

¢ Estimating the transformation

Xp € Xg, N h, h, h][x N . X' M)a(t:\x nt;:.;;on
Xy X ' ' =
BT7TR Y=y Ry by Y|=5Y
Xp, € Xg, 7' h, h, 1 1 1 7' X":%XI
29
ide credit: Krystian Mikolajczyk B. Leibe
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ide credit: Krystian Mikolaiczyk.

Matrix notation
X'=Hx
/ X " — % X ll
Ny Xg +Ng,Yg +1 ! 3
ide credit: Krvstian Mikolaj B. Leibe

Fitting a Homography

¢ Estimating the transformation

Homogenous coordinates

Image coordinates

Xa Xy Xy thethy e thave th

—u’7s " 12Vs T 13 PR 4 )

Xp, € Xg, Ny Xg + N,y +1 hy; Xg, + gy +1
X, X =

A Bs XAh31 XB)+XA,hSZyBJ+XA_hll Xa,JrhlzyB]Jrhm

B. Leibe
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Fitting a Homography

« Estimating the transformation

Homogenous coordinates
_ D Xg +hoYs +hy

Image coordinates
_ oy Xg +h55Y +hyg

hy, Xg, +h32y51 +1 B hy, Xg, +h32y3l +1

><A1h31 Xg -¢—x,xhgzyBl X, = h, Xg +huyBl +hy,
hu XB. +hlzya, +hl3_XA,hIi1 XBl _)(A,I']?.zyal _XA, =0
h,, Xg, +h22yBl +h23—y,§’h31 Xg, — yA‘hszyBl ~Ya =0

- Krystian Mikolajczyk Eleibe

Xp € Xg, X

A
Xp, €>Xg,

Xp, <> Xg,

Fitting a Homography

¢ Estimating the transformation

¢ Solution:
» Null-space vector of A

SV
Xp, > Xg, l
Xp, € Xg, Al
Xp, € Xg,
' 36
ide credit: Krystian Mikolaiczvk B. Leibe
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Image plane in front

Black area
where no pixel
maps to

ide credit: Steve Seit B Lefbe
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Fitting a Homography

¢ Estimating the transformation

P X, MY Py =X Py Xg, =X, NepYg =X, =0
Py Xg, #1505, + s =Y Ny Xg =Y lepYg =Y, =0

Xp € X, Yo Y 10000 XXy =XyYs =Xy | (Rl [0
0 0 0 X VY5 1 =YuXg ~VaVs ~VYa||hu 0
Xp, > X, o . o, |=
Xp €>Xg, o . ) g
: Ny
N
Ah=0 1
35
ide credit: Krystian Mikolajczyk B. Leibe

Fitting a Homography

¢ Estimating the transformation

¢ Solution:
> Null-space vector of A

» Corresponds to smallest
singular vector

VD Ah=0

Xp € Xg, l

dy, - 0 [y, -
Xy X P . P
e B A—UDVT—U{: LoE s
Xp X
~ . & 0 o dgg [[ Vg oot
Vigs =+ Ve P
h= M Minimizes least square error
Voo
. 37
ide credit: Krvstian Mikolaj B. Leibe
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Uses: Analyzing Patterns and Shapes

» What is the shape of the b/w floor pattern?

The floor (enlarged)

ide credit: Antonio Criminisi B. Leibe




Automatic rectification

From Martin Kemp The Science of Art
(manual reconstruction)

Computer Vision WS 15/16

ide credit: Antonio Criminisi B. Leibe
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Problem: Outliers

¢ Outliers can hurt the quality of our parameter
estimates, e.g.,
» An erroneous pair of matching points from two images

» A feature point that is noise or doesn’t belong to the
transformation we are fitting.

RWTHACHEN
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ide credit: Kristen Grauman B. Leibe
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Outliers Affect Least-Squares Fit
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© . 44
B. Leibe 39 ree; Eg.ﬁ m ﬁ Egﬂiﬁ
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Topics of This Lecture
¢ Dealing with Outliers
» RANSAC
» Generalized Hough Transform
B. Leibe “
RWTH CHE

Example: Least-Squares Line Fitting

¢ Assuming all the points that belong to a particular line
are known

B. Leibe

43
Source: Forsyth & Ponce]
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Outliers Affect Least-Squares Fit

45
5 Leie Source: Forsvth & Poncel




Strategy 1: RANSAC [rischlers1]

¢ RANdom SAmple Consensus

¢ Approach: we want to avoid the impact of outliers, so
let’s look for “inliers”, and use only those.

¢ Intuition: if an outlier is chosen to compute the current
fit, then the resulting line won’t have much support
from rest of the points.

Computer Vision WS 15/16
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Slide credit: Kristen Grauman B. Leibe

RANSAC Line Fitting Example

¢ Task: Estimate the best line
» How many points do we need to estimate the line?

Computer Vision WS 15/16
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lide credit: Jinxiang Chai B. Leibe

RANSAC Line Fitting Example

¢ Task: Estimate the best line

Fit a line to them
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Slide credit: Jinxiane Chai B. Leibe

RANSAC

RANSAC loop:

1. Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of
matches)

2. Compute transformation from seed group
3. Find inliers to this transformation

©
o . . . . s
= 4. If the number of inliers is sufficiently large, re-
2 compute least-squares estimate of transformation on
5 all of the inliers
(2]
S
5| o Keep the transformation with the largest number of
3 . .
z inliers
8
47
Slide credit: Kristen Grauman B. Leibe
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RANSAC Line Fitting Example
e Task: Estimate the best line
[ )
[ )
[ )
° ®
© [ ]
3 ° * .
2 H
5 °
< . . Sample two points
e
=
g 49
ide credit: Jinxiang Chai B. Leibe

RANSAC Line Fitting Example

¢ Task: Estimate the best line

within a threshold of
line.

K

2

0

=

5 o

S . N Total number of points
H

=

o

o

ide credit: Jinxiano Chai B. Leibe




RANSAC Line Fitting Example RANSAC Line Fitting Example

e Task: Estimate the best line ¢ Task: Estimate the best line

7“7 inlier points’

Total number of points Repeat, until we get a

Computer Vision WS 15/16
Computer Vision WS 15/16

° ° rs
. within a threshold of good result.
line.
52 - 53
Slide credit: Jinxiang Chai B. Leibe slide credit: Jinxiane Chai B. Leibe

RANSAC Line Fitting Example RANSAC: How many samples?

e Task: Estimate the best line * How many samples are needed?
» Suppose W is fraction of inliers (points from line).
> N points needed to define hypothesis (2 for lines)

» k samples chosen.

€1 inlier points”
o Prob. that a single sample of n points is correct: w"

¢ Prob. that all k samples fail is: @-w)*

= Choose k high enough to keep this below desired failure
rate.
Repeat, until we get a

good result.

Computer Vision WS 15/16
Computer Vision WS 15/16

lide credit: Jinxiano Chai B. Leibe ide credit: David Lowe B. Leibe
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RANSAC: Computed k (p=0.99) After RANSAC
Sample Proportion of outliers ¢ RANSAC divides data into inliers and outliers and yields
size estimate computed from minimal set of inliers.
n 5% 10%  20%  25%  30%  40%  50% s . . s
¢ Improve this initial estimate with estimation over all
2 2 3 5 6 7 117 inliers (e.g. with standard least-squares minimization).
3 3 4 7 9 1 19 35 « But this may change inliers, so alternate fitting with re-
4 3 5 9 13 17 34 72 classification as inlier/outlier.
g 5 4 6 12 17 26 57 146 Q
a 6 4 7 16 24 37 97 293 o
z 7 4 8 20 33 54 163 588 E et _)___!,;»-—--—"'
% 8 5 9 26 44 78 272 1177 %’ B ) i e Con
o 56 o ' 57
Slide credit: David | owe LA ide credit: David | gwe LA
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Example: Finding Feature Matches

¢ Find best stereo match within a square search window
(here 300 pixels?)

¢ Global transformation model: epipolar geometry

Images from Hartley & Zisserman

58
ide credit: David Lowe B. Leibe
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UNIVERSITY,
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Problem with RANSAC

¢ In many practical situations, the percentage of outliers
(incorrect putative matches) is often very high (90% or
above).

* Alternative strategy: Generalized Hough Transform

" 60
ide credit: Svetlana Lazebnik B. Leibe
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Strategy 2: Generalized Hough Transform

¢ Suppose our features are scale- and rotation-invariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).

Of course, a hypothesis from a single match is unreliable.

Solution: let each match vote for its hypothesis in a Hough space
with very coarse bins.

v

v

62

ide credit: Svetlana | azebnik B Lefbe
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UNIVERSITY
Example: Finding Feature Matches

¢ Find best stereo match within a square search window
(here 300 pixels2)

¢ Global transformation model: epipolar geometry

before RANSAC

after RANSAC

Images from Hartley & Zisserman

59

ide credit: David Lowe. B. Leibe

NIVERSITY
Strategy 2: Generalized Hough Transf%rm

¢ Suppose our features are scale- and rotation-invariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).

ide credit: Svetlana | azebnik B. Leibe
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Pose Clustering and Verification with SIFT

¢ To detect instances of objects from a model base:

1. Index descriptors

* Distinctive features narrow down
possible matches

ide credit: Kristen Grauman LA

lmage source: David Lowe)




Indexing Local Features

New image

Computer Vision WS 15/16

Model base

ide credit: Kristen Grauman

Image source: David Lowe)

Object Recognition Results

Computer Vision WS 15/16

Background subtract for Objects recognized Recognition in spite
model boundaries of occlusion
; 66
ide credit: Kristen Grauman B. Leibe Image source: David Lowel

Recall: Difficulties of Voting

Noise/clutter can lead to as many votes as true target.

Bin size for the accumulator array must be chosen
carefully.

(Recall Hough Transform)

¢ In practice, good idea to make broad bins and spread
votes to nearby bins, since verification stage can prune
bad vote peaks.
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Pose Clustering and Verification with SIFT

¢ To detect instances of objects from a model base:

1. Index descriptors
* Distinctive features narrow down
possible matches
2. Generalized Hough transform
to vote for poses

* Keypoints have record of parameters
relative to model coordinate system

3. Affine fit to check for agreement
between model and image
features

* Fit and verify using features from
Hough bins with 3+ votes

Computer Vision WS 15/16

5
ide credit: Kristen Grauman B. Leibe Jmage source: David Lowe

Location Recognition

Training
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B. Leibe Slide credit: David Lowe
Summary

¢ Recognition by alignment: looking for object and pose
that fits well with image
» Use good correspondences to designate hypotheses.
» Invariant local features offer more reliable matches.
» Find consistent “inlier” configurations in clutter
- Generalized Hough Transform

- RANSAC
©o
il * Alignment approach to recognition can be effective
2 if we find reliable features within clutter.
5 » Application: large-scale image retrieval
< » Application: recognition of specific (mostly planar) objects
,g - Movie posters
g - Books
38 - CD covers

B. Leibe
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References and Further Reading

¢ A detailed description of local feature extraction and
recognition can be found in Chapters 3-5 of Grauman &
Leibe (available on the L2P).

_ » K. Grauman, B. Leibe

Visual Object Visual Object Recognition
Recognition Morgan & Claypool publishers, 2011

» R. Hartley, A. Zisserman
Multiple View Geometry in
Computer Vision
2nd Ed., Cambridge Univ. Press, 2004

¢ More details on RANSAC can also be found in Chapter 4.7
of Hartley & Zisserman.
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