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Sliding-Window based Object Detection
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Recap: Appearance-Based Recognition

e Basic assumption
» Objects can be represented .

by a set of images \
(“appearances”). 3D object |

‘o
» For recognition, it is 4;'
sufficient to just compare
the 2D appearances.

» No 3D model is needed.

81

= Fundamental paradigm shift in the 90’s

s

B. Leibe

©
=
)
=
1
=
=
i)
2
S
g
5
=
E
15}
o

Recap: Comparison Measures

e Vector space interpretation
» Euclidean distance
» Mahalanobis distance

¢ Statistical motivation
» Chi-square
» Bhattacharyya
¢ Information-theoretic motivation
» Kullback-Leibler divergence, Jeffreys divergence

¢ Histogram motivation
» Histogram intersection

Ground distance
~ Earth Movers Distance (EMD)
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Course Outline

¢ Image Processing Basics

¢ Segmentation
» Segmentation and Grouping
» Segmentation as Energy Minimization
¢ Recognition & Categorization
» Global Representations
» Sliding-Window Object Detection
» Image Classification
¢ Local Features & Matching
¢ 3D Reconstruction

¢ Motion and Tracking
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Recap: Recognition Using Histograms

¢ Histogram comparison

Test image

/|
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Computer Vision WS 15/16

Known objects
4
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Recap: Recognition Using Histograms

e Simple algorithm
1. Build a set of histograms H={h;} for each known object
> More exactly, for each view of each object
2. Build a histogram h for the test image.
3. Compare h, to each h;eH
> Using a suitable comparison measure

4. Select the object with the best matching score
> Orreject the test image if no object is similar enough.

“Nearest-Neighbor” strategy
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Recap: Multidimensional Representations

Application: Brand Identification in Video

¢ Combination of several descriptors

~ Each descriptor is
applied to the whole image. D,

~ Corresponding pixel values
are combined into one D

Y
feature vector.

. Feature vectors are collected L@p
in multidimensional histogram.
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Application: Brand Identification in VlﬁI Application: Brand Identification in Vlc'iI
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You’re Now Ready for First Applications... Topics of This Lecture
Histogram ¢ Object Categorization
— based » Problem Definition

recognition) » Challenges

Sliding-Window based Object Detection
~ Detection via Classification

» Global Representations

» Classifier Construction

Circle
% detection % « Classification with Boosting
@ 14 » AdaBoost
2 z ~ Viola-Jones Face Detection
s sﬁ‘g",:;{,_ = ¢ Classification with SVMs
g tation 2 » Support Vector Machines
£ 3 » HOG Detector
8 Skin color detection Moment descnptors 8

B. Leibe

Image Source; 2806412807/
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Identification vs. Categorization Identification vs. Categorization

¢ Find this particular object ¢ Recognize ANY car

¢ Recognize ANY cow
E‘“ I‘i'nﬁ lEﬁ_I % h‘I\ ﬁ . |

B. Leibe
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Object Categorization - Potential Applications How many object categories are there?

There is a wide range of applications, including.

Autonomous robots Navigation, driver safety =~ Consumer electronics

[ — Yuu
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i A o

Content-based retrieval and analysis for
images and videos

Medical image
analysis 15
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Biederman 1987

ide adapted from Kristen Grauman Source: Fei-Fei Li, Rob Fergus, Antonio Torralba.
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Challenges: Robustness
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Illumination Object pose Clutter

*

R -

Occlusions Intra-class
appearance
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Challenges: Robustness Topics of This Lecture
B
¢ Sliding-Window based Object Detection
» Detection via Classification
» Global Representations
» Classifier Construction
g g
wn wn
3 =
£ S
E * Detection in crowded, real-world scenes -
j% » Learn object variability 35
; - Changes in appearance, scale, and articulation ;
3 » Compensate for clutter, overlap, and occlusion E
19 20
B. Leibe [Leibe, Seemann, Schiele, CVPR’05] B. Leibe

Detection via Classification: Main Idea Detection via Classification: Main Idea

¢ Basic component: a binary classifier

¢ If the object may be in a cluttered scene, slide a window
around looking for it.

N Car/non-car

| PN Car/non-car
j Classifier

Classifier
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éi %i ¢ Essentially, this is a brute-force approach with many
E E local decisions.
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ide credit: Kristen Grauman B. Leibe ide credit: Kristen Grauman, B. Leibe

What is a Sliding Window Approach? Detection via Classification: Main Idea

¢ Search over space and scale Fleshing out this
pipeline a bit more,

we need to:

1. Obtain training data
2. Define features

3. Define classifier

m!DYBATS

V‘ﬁ " iy e

¢ Detection as subwindow classification problem

—| Car/non-car

¢ “In the absence of a more intelligent strategy, any Classifier

global lma?e classification approach can be converted
into a localization approach by using a sliding-window
search

Feature
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Feature extraction:
Global Appearance

Feature
extraction

Simple holistic descriptions of image content
» Grayscale / color histogram
» Vector of pixel intensities

Computer Vision WS 15/16

Slide credit: Kristen Grauman B. Lebe
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Feature Extraction: Global Appearance

¢ Pixel-based representations are sensitive to small shifts

e Color or grayscale-based appearance description can be

g sensitive to illumination and intra-class appearance
7|  variation
E Cartoon example:
.% 1 an albino koala
s h
5]
E
2
E
8
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Slide credit: Kristen Grauman B. Leibe

Gradient-based Representations

¢ |dea

A
o
¥ [k

o8k
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¢ Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations

» Localized histograms offer more spatial information than a single
global histogram (tradeoff invariant vs. discriminative)

» Contrast-normalization: try to correct for variable illumination
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Slide credit: Kricten Grauman B. Leibe
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Eigenfaces: Global Appearance Description

This can also be applied in a sliding-window framework...

oIerale Generate low-
dimensional
representation
of appearance
with a linear

-
Eigenvectors computed
from covariance matrix SUbSpace'

O Project new
] [P images to “face
+ space”.

Identification via distance
IN eigenspace

Detection via distance
TO eigenspace

[Turk & Pentland, 19‘}?

ide credit: Kristen Grauman B. Leibe
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Gradient-based Representations

¢ |dea
» Consider edges, contours, and (oriented) intensity gradients

] 73
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ide credit: Kristen Grauman B. Leibe
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Gradient-based Representations:
Histograms of Oriented Gradients (HoG)

Orientation Voting

=— Overlapping Blocks

Local Normalization

2 k * Map each grid cell in the input
" window to a histogram counting the
gradients per orientation.

¢ Code available:
http://pascal.inrialpes.fr/soft/olt/

ide credit: Kristen Grauman

[Dalal & Triggs, CVPR 2005



http://pascal.inrialpes.fr/soft/olt/
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Classifier Construction

¢ How to compute a decision for each subwindow?

car non-car car non-car car non-car

Image feature

Computer Vision WS 15/16

ide credit: Kristen Grauman B. Lebe
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Classifier Construction: Many Choices...

Neural networks

AR

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Nearest Neighbor

Berg, Berg, Malik 2005,
Chum, Zisserman 2007,
Boiman, Shechtman, Irani 2008, ...

Boosting Randomized Forests

[H
H./\‘E.

Amit, Geman 1997,

Breiman 2001,

Lepetit, Fua 2006,
Gall, Lempitsky 2009,...

Support Vector Machines
°

o
Viola, Jones 2001, | | Vapnik, Schélkopf 1995,
Torralba et al. 2004, | Papageorgiou, Poggio ‘01,
Opelt et al. 2006, Dalal, Triggs 2005,
Benenson 2012, ... Vedaldi, Zisserman 2012
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ide adated from Kristen Grauman B. Leibe
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Linear Classifiers

¢ Find linear function to separate positive and negative
examples

x,, positive: w'x, + b > 0
° x, negative: w'x, +b <0

Which line
is best?
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ide credit: Kristen Grauman LA
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Discriminative Methods

¢ Learn a decision rule (classifier) assigning image features
to different classes

Decision ™
boundary

bra
@ ® Non-zebra

ide adapted from Svetlana | azebnik B. Leibe
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Linear Classifiers
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ide adapted from: Kristen Grauman B. Leibe
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Support Vector Machines (SVMs)

Discriminative classifier
based on optimal
separating hyperplane
(i.e. line for 2D case)

Maximize the margin
between the positive
and negative training
examples

ide credit: Kristen Grauman LA
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Support Vector Machines

¢ Want line that maximizes the margin.

x, positive (¢, =1): w'x, +b>1
x, negative (t, = -1): w'x, +b <-1

For support, vectors, w'x,, + b= —+1

@ Quadratic optimization problem)

Minimize sw’'w

Subject to t, (W x, +b) =1

Support vectors Margin Packages available for that...

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,

37

Data Mining and Knowledge Discoven

Finding the Maximum Margin Line
N

W= E antyXn

n=1

¢ Solution:

¢ Classification function:

If f(x) < 0, classify as neg.,

fx) = sign(wix+0) if f(x) > 0, classify as pos.

N
sign (Z a,,t, b)

n=1

» Notice that this relies on an inner product between the test
point x and the support vectors x,

» (Solving the optimization problem also involves computing the
inner products x,7x,, between all pairs of training points)

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,

39

Data Mining and Knowledge Discover
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Questions

¢ What if the features are not 2d?
» Generalizes to d-dimensions - replace line with “hyperplane”

¢ What if the data is not linearly separable?
¢ What if we have more than just two categories?

41

B. Leibe

Finding the Maximum Margin Line
v

W = Zantnxn
n=
Learned
weight

¢ Solution:

Support
vector

Computer Vision WS 15/16

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
Knowledge Discover

Data Mining and

RWTHAACHE
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Questions

¢ What if the features are not 2d?
¢ What if the data is not linearly separable?
* What if we have more than just two categories?

Questions

¢ What if the features are not 2d?
» Generalizes to d-dimensions - replace line with “hyperplane”

¢ What if the data is not linearly separable?
» Non-linear SVMs with special kernels

¢ What if we have more than just two categories?
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ide credit: Kristen Grauman B. Leibe
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http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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Non-Linear SVMs: Feature Spaces
¢ General idea: The original input space can be mapped to

some higher-dimensional feature space where the
training set is separable:

Computer Vision WS 15/16

More on that in the Machine Learning lecture...

43
Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

RWTHACHE
Some Often-Used Kernel Functions

¢ Linear:

K(xiX))= X; T

¢ Polynomial of power p:
K(xix)= (1+ % TP

¢ Gaussian (Radial-Basis Function): ,
K(x;,X.) =exp(~ Hxi 7XjH
(R | 20_2

Computer Vision WS 15/16
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Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

RWTHAACHER
Multi-Class SVMs

¢ Achieve multi-class classifier by combining a number of
binary classifiers

e Oneyvs. all
» Training: learn an SVM for each class vs. the rest

» Testing: apply each SVM to test example and assign to
it the class of the SVM that returns the highest
decision value

e One vs. one
» Training: learn an SVM for each pair of classes

» Testing: each learned SVM “votes” for a class to
assign to the test example
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Slide credit: Kristen Grauman LA
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Nonlinear SVMs

e The kernel trick: instead of explicitly computing the
lifting transformation ¢(x), define a kernel function K
such that

K(xiij) =0(x;) - (p(x])

¢ This gives a nonlinear decision boundary in the original
feature space:

S ant K (x,. %) +b

Computer Vision WS 15/16

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,
Data Mining and Knowledge Discovery, 1998

44

Questions

¢ What if the features are not 2d?
» Generalizes to d-dimensions - replace line with “hyperplane”

¢ What if the data is not linearly separable?
» Non-linear SVMs with special kernels

¢ What if we have more than just two categories?

Computer Vision WS 15/16
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ide credit: Kristen Grauman B. Leibe

SVMs for Recognition

1.Define your representation for each
example.

2.Select a kernel function.

3.Compute pairwise kernel values
between labeled examples

4.Given this “kernel matrix” to SVM
optimization software to identify
support vectors & weights.

5.To classify a new example: compute
kernel values between new input
and support vectors, apply weights,
check sign of output.
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http://www.autonlab.org/tutorials/svm.html
http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
http://www.autonlab.org/tutorials/svm.html
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Pedestrian Detection

* Detecting upright, walking humans using sliding window’s
appearance/texture; e.g.,

0 AL 5’
SVM with Haar wavelets
[Papageorgiou & Poggio, IJCV
2000]

Space-time rectangle
features [Viola, Jones &
Snow, ICCV 2003]

SVM with HoGs [Dalal &
Triggs, CVPR 2005]

Slide credit: Kristen Grauman B. Lebe
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HOG Descriptor Processing Chain

e Optional: Gamma compression

> Goal: Reduce effect of overly
strong gradients

» Replace each pixel color/intensity
by its square-root

T

= Small performance improvement

RWTHACHEN

Gamma compression

f
Image Window

Slide adapted from Navneet Dalal

HOG Descriptor Processing Chain

¢ Spatial/Orientation binning
» Compute localized histograms of
oriented gradients
» Typical subdivision:
8x8 cells with 8 or 9 orientation bins

RWTHACHEN

Weighted vote in spatial &
orientation cells

t

‘ Compute gradients

T

‘ Gamma compression

Image Window

Slide adapted from Navoeet Dalal

HOG Descriptor Processing Chain

Computer Vision WS 15/16

Image Window

ide adapted from Navneet Dalal

RWTHAACHE

HOG Descriptor Processing Chain

¢ Gradient computation
» Compute gradients on all color
channels and take strongest one
» Simple finite difference filters
work best (no Gaussian smoothing)

-1
[-1 0 1] {0}
1

RWTHACHEN

‘ Compute gradients

1

‘ Gamma compression

f
Image Window

Computer Vision WS 15/16

ide adapted from Navneet Dalal

HOG Cell Computation Details

¢ Gradient orientation voting
» Each pixel contributes to localized
gradient orientation histogram(s)
» Vote is weighted by the pixel’s
gradient magnitude

K § =tan—! (3f/8f)

g 195l = \JGD7 + G)°

B

= ¢ Block-level Gaussian weighting A D

g » An additional Gaussian weight is - "': HEE
S applied to each 2x2 block of cells = N = |
g » Each cell is part of 4 such blocks, i RN I
3 resulting in 4 versions of the \\‘» Ve e 7
3 histogram. N
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HOG Cell Computation Details (2)

¢ Important for robustness: Tri-linear interpolation
» Each pixel contributes to (up to) 4 |
neighboring cell histograms

» Weights are obtained by bilinear
interpolation in image space:

hlryn) & w- (1 o ) (1 y-n ) J
g — Yo — 1

e e (1 22 (2)
T2—o )\ = (r1,2) | (72,2)

(9'1 ) ‘ (‘7'2. )
. .

hlagaan) ¢ we [ —- _¥oh ) ‘
E3 =0
h(wa, y2) +— w- ( — ] (u)
E L Y2 —

» Contribution is further split over

(up to) 2 neighboring orientation bins

via linear interpolation over angles. .

0] T

HOG Descriptor Processing Chain

¢ Feature vector construction
» Collect HOG blocks into vector

Collect HOGs over
detecnon window

overlapping spat1al cells

Weighted vote in spatial &
onentanon cells

Compute gradlents
1
Gamma compression
f
Image Window

‘ Contrast normahze over ‘
\ |
\ |

Slide adapted from Navneet Dalal

RWTHAACHER
Pedestrian Detection with HOG

¢ Train a pedestrian template using a linear SVM
¢ At test time, convolve feature map with template

Template

HOG feature map Detector response map

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005

Slide credit: Svetlana lazebnik

RWTHACHE
HOG Descriptor Processing Chain

¢ 2-Stage contrast normalization
» L2 normalization, clipping, L2 normalization

Contrast normalize over
overlapping spatlal cells

orientation cells
Compute ;radlents
Gamma CD:I'IPTESS'IOFI
Image V;indow

‘ Weighted vote in spatial & ‘
\ |
\ |

Computer Vision WS 15/16

ide adapted from Navneet Dalal
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HOG Descriptor Processing Chain
Object/Non-object

t
Linear SVM
T

¢ SVM Classification
» Typically using a linear SVM

Collect HOGs over
detectmn window

overlapping spatlal cells

\ |
‘ Contrast normallze over ‘
\ |
\ |

©o
o
It Weighted vote in spatial &
%] orlentat1on cells
s
=
2 Compute gradlents
> 1
] Gamma compression
2 f
§ Image Window
58
ide adapted from Navneet Dalal
Non-Maximum Suppression
Clip detection score
After multi-scale dense scan
Map each detection to 3D
[x.y.scale] space
Goal
o =
o S
[ .
S 0.
5 O
) B .
= X
g Apply robust mode detection,
E— e.g. mean shift
g Fusion of multiple detections Non-maximum suppression
60
B. Leibe lmage source: Navpeet Dalal PhD Thes:
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Pedestrian detection with HoGs & SVMs

* Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection,

CVPR 2005

lide credit: Kristen Grauman
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References and Further Reading
¢ Read the HOG paper

» N. Dalal, B. Triggs,

Histograms of Oriented Gradients for Human Detection,
CVPR, 2005.

¢ HOG Detector
» Code available: http://pascal.inrialpes.fr/soft/olt/
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http://lear.inrialpes.fr/people/dalal
http://lear.inrialpes.fr/people/triggs
http://lear.inrialpes.fr/pubs/2005/DT05/
http://pascal.inrialpes.fr/soft/olt/

