Computer Vision - Lecture 6

Segmentation

12.11.2015

Bastian Leibe
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Course Outline

e Image Processing Basics
> Structure Extraction

e Segmentation
> Segmentation as Clustering
» Graph-theoretic Segmentation

e Recognition

~ Global Representations

~ Subspace representations
e Local Features & Matching
e Object Categorization

e 3D Reconstruction
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e Motion and Tracking
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Recap: Chamfer Matching

e Chamfer Distance
~ Average distance to nearest feature

1
Dr:h..m,-mfH'(T: I) = m Z df(ﬂ
teT

» This can be computed efficiently by correlating the edge
template with the distance-transformed image

Edge image Distance transform image ;
B. Leibe [D. Gavrila, DAGM’99]



Recap: Hough Transform Exergo
5 3.1)
y1l b
=] X.,
e (X1, Y1) b= —agm + yo-
(Xo» Yo) — = —
— =
D 3 -—Xim+Yy,
X m

Image space Hough (parameter) space

e How can we use this to find the most likely parameters

(m,b) for the most prominent line in the image space?

» Let each edge point in image space vote for a set of possible
parameters in Hough space

> Accumulate votes in discrete set of bins; parameters with the
most votes indicate line in image space.
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Slide credit: Steve Seitz



RWTH
Recap: Hough Transf. Polar Parametrization

e Usual (m,b) parameter space problematic: can take on
infinite values, undefined for vertical lines.

[0,0] X / .

7 > d : perpendicular distance
g from line to origin

@ : angle the perpendicular
makes with the x-axis

Xcos@+ysind=d

v

e Point in image space
= sinusoid segment in
Hough space
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Slide credit: Steve Seitz



RWNTH
Recap: Hough Transform for Circles Ex@r;f:3
-1/

e Circle: center (a,b) and radius r
(x,—a)” +(y, ~b)? =’

e For an unknown radius I, unknown gradient direction

A T
¥l
“"O"~,. /

O "“ N
—i .
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2 ‘ \ X
E "'...O.a"‘ \ \/ - b
w . (x,y}
E 0 XF a
o
= Image space ? Hough space
5
O

Slide credit: Kristen Grauman



RWTH
Hough Transform: Pros and Cons

Pros

e All points are processed independently, so can cope with
occlusion

e Some robustness to noise: noise points unlikely to
contribute consistently to any single bin

e Can detect multiple instances of a model in a single pass

Cons

e Complexity of search time increases exponentially with
the number of model parameters

 Non-target shapes can produce spurious peaks in
parameter space

e Quantization: hard to pick a good grid size
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Slide credit: Kristen Grauman B. Leibe



RO INVERSITY
Generalized Hough Transform

e What if we want to detect arbitrary shapes defined by
boundary points and a reference point?

At each boundary point,
compute displacement

vector: I =a — ;.

For a given model shape:
store these vectors in a
table indexed by gradient

orientation 6.

Image space

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]
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Slide credit: Kristen Grauman B. Leibe



Generalized Hough Transform

To detect the model shape in a hew image:
e For each edge point
- Index into table with its gradient orientation &
» Use retrieved I vectors to vote for position of reference point

e Peak in this Hough space is reference point with most
supporting edges

Assuming translation is the only transformation here,
i.e., orientation and scale are fixed.
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Slide credit: Kristen Grauman B. Leibe



©
—
S~
Yo
—
%2
=
c
©
D
>
2
S
Q
S
(@]
@)

Example: Generalized Hough Transform

/< v

Slide credit: Svetlana Lazebnik

—>

f

+ Say we’ve already
stored a table of

< displacement vectors

as a function of edge

orientation for this

>\model shape.

AN

.‘_

¢t

Model shape

10



RWNTH
Example: Generalized Hough Transform

/< + + Now we want to look
at some edge points

< detected in a new

image, and vote on

the position of that

R L
N ~

—p> <

t ¢ 4

Slide credit: Svetlana LEj\zelelesplacement vectors for model points
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Example: Generalized Hough Transform

e v

Slide credit: Svetlana Lazebni

<

—p> <

t t

E{ange of voting locations for test point

12
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Example: Generalized Hough Transform

e v

<

Slide credit: Svetlana Lazebni

—> ’ ' 7

E{ange of voting locations for test point

13



: TY
Example: Generalized Hough Transform
A .
N >\
< [N X >\ """""
=
Ig
g —p> <
S
Votes for points with 6 =1 14

Slide credit: Svetlana Lazebnik



Example: Generalized Hough Transform

e v
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Displacement vectors for model points 15

Slide credit: Svetlana Lazebnik
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RWTHAACHEN

INIVERS
Example: Generalized Hough Transfon'n

e v

<

N
N
S
RS
\
' \

t _t 4

E{ange of voting locations for test point

Slide credit: Svetlana Lazebni
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Example: Generalized Hough Transform

e v

<

Slide credit: Svetlana Lazebnik
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t _t 4

Votes for points with 9 =/
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Application in Recognition

e Instead of indexing displacements by gradient
orientation, index by “visual codeword”.

-

Visual codeword with
displacement vectors
Training image

B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved
Categorization and Segmentation, International Journal of Computer Vision, Vol. 77(1-
3), 2008.
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B. Leibe


http://www.vision.ee.ethz.ch/bleibe/papers/leibe-interleaved-ijcv07final.pdf
http://www.vision.ee.ethz.ch/bleibe/papers/leibe-interleaved-ijcv07final.pdf

il r s E 3
Application in Recognition S

e Instead of indexing displacements by gradient

Test image

e We’ll hear more about this in later lectures...
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Topics of This Lecture

e Segmentation and grouping
» Gestalt principles
> Image Segmentation

e Segmentation as clustering
> k-Means
> Feature spaces

e Probabilistic clustering
> Mixture of Gaussians, EM

e Model-free clustering
> Mean-Shift clustering

B. Leibe

20
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What things should
be grouped?

Figure-ground

What cues
indicate groups?

Object-level grouping
B. Leibe
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Slide credit: Kristen Grauman
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The Gestalt School

e Grouping is key to visual perception

 Elements in a collection can have properties that result
from relationships

“The whole is greater than the sum of its parts”

A ” B
Illusory/subjective '

Occlusion
contours ‘ ‘ '
C D

v

N, 7

it o

P \ Familiar configuration
|4

http://en.wikipedia.org/wiki/Gestalt_psychology 2%

Slide credit: Svetlana Lazebnik Image source: Steve Lehar


http://en.wikipedia.org/wiki/Gestalt_psychology
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Gestalt Theory

e Gestalt: whole or group
> Whole is greater than sum of its parts
~ Relationships among parts can yield new properties/features

e Psychologists identified series of factors that predispose
set of elements to be grouped (by human visual system)

“l stand at the window and see a house, trees, sky.
Theoretically | might say there were 327 brightnesses
and nuances of colour. Do | have “327"? No. | have sky,
house, and trees.”

Max Wertheimer
(1880-1943)

Untersuchungen zur Lehre von der Gestalt,
Psychologische Forschung, Vol. 4, pp. 301-350, 1923

http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm
B. Leibe

27


http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

Gestalt Factors

@ ® ® @ ® ® | Not grouped > ) P_ E_ B 5
5) 7( ( ( Parallelism
® @ o @ ® @ | Proximity
O O ® ® O O | Similarity ) 5 <

h

( gé_ > Symmetry
)C

® ® ) ) e @ iy ><Q(>

\ \ \ ‘. .\ .‘ Common Fate X Contin
ontinuity
¢ OGO .

Common Region

. @ @ . DQ Closure

e These factors make intuitive sense, but are very difficult to
translate into algorithms.
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Image source: Forsyth & Ponce

B. Leibe



RO INVERSITY
Continuity through Occlusion Cues
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RO INVERSITY
Continuity through Occlusion Cues

Continuity, explanation by occlusion
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RWTH
Continuity through Occlusion Cues
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B. Leibe Image source: Forsyth & Ponce



RWNTH
Continuity through Occlusion Cues
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B. Leibe Image source: Forsyth & Ponce
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B. Leibe

The Ultimate Gestalt?
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RWTHAACHEN
. UNIVERSITY
Image Segmentation

e Goal: identify groups of pixels that go together
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Slide credit: Steve Seitz, Kristen Grauman B. Leibe
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The Goals of Segmentation

e Separate image into coherent “objects”

Image Human segmentation

B. Leibe

Slide credit: Svetlana Lazebnik

35



RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

e Segmentation as clustering
> k-Means
> Feature spaces
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RWTH
Image Segmentation: Toy Example

white
| pixels

e 3 | black pixels gray o _
2 ot pi)iels _

input image L S J

Intensity

e These intensities define the three groups.

e We could label every pixel in the image according to
which of these primary intensities it is.
~ i.e., segment the image based on the intensity feature.

e What if the image isn’t quite so simple?
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Slide credit; Kristen Grauman B. Leibe
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Slide credit: Kristen Grauman
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B. Leibe Intensity 38



6000

5000 -

4000

3000

Pixel count

2000

1000

Input image 2100 -50 0 50 100 150 200 250 300
Intensity

¢ Now how to determine the three main intensities that
define our groups?

e We need to cluster.
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Slide credit; Kristen Grauman B. Leibe
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—08(eso e (e (E0-0—@C(eC(eOrC0 >
0 190 255
Intensity

_- 3
e - @:

e Goal: choose three “centers” as the representative
intensities, and label every pixel according to which of
these centers it is nearest to.

e Best cluster centers are those that minimize SSD
between all points and their nearest cluster center C;:

> > 1p — ¢il|?

clusters 1 points p in cluster 2

Slide credit; Kristen Grauman B. Leibe

40
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Clustering

e With this objective, it is a “chicken and egg” problem:

~ If we knew the cluster centers, we could allocate points to
groups by assighing each to its closest center.
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~ |If we knew the group memberships, we could get the centers by
computing the mean per group.
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Slide credit; Kristen Grauman B. Leibe



K-Means Clustering

e Basic idea: randomly initialize the k cluster centers, and
iterate between the two steps we just saw.

1. Randomly initialize the cluster centers, c,, ..., ¢
2. Given cluster centers, determine points in each cluster
- For each point p, find the closest c;. Put p into cluster i
3. Given points in each cluster, solve for c,
- Set ¢, to be the mean of points in cluster i
4. If c; have changed, repeat Step 2

(<o)
=
L0
—
U) o
—| ¢ Properties
S > Will always converge to some solution
79} o o
S > Can be a “local minimum”
i - Does not always find the global minimum of objective function:
= 2
£ D . lp — ¢l
8 clusters 2 points p in cluster 7
B. Leibe 42

Slide credit: Steve Seitz
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img as_col = double(im(:));
cluster membs = kmeans(img_as col, K);

labelim = zeros(size(im)) ;

for i=1:k
inds = find(cluster membs==i) ;
meanval = mean(img as column(inds)) ;
labelim(inds) = meanval;

end

Slide credit; Kristen Grauman B. Leibe
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K-Means++

e Can we prevent arbitrarily bad local minima?

1. Randomly choose first center.

2. Pick new center with prob. proportional to ||p — ¢;||°
> (Contribution of p to total error)

3. Repeat until k centers.

e Expected error = O(log k) * optimal

Arthur & Vassilvitskii 2007

Slide credit: Steve Seitz B. Leibe
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http://theory.stanford.edu/~sergei/slides/BATS-Means.pdf

Feature Space

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based on
intensity similarity

e Feature space: intensity value (1D)
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Slide credit; Kristen Grauman B. Leibe



Feature Space

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based
on color similarity

AB

©
—
S~
Yo
—
%2
=
c
©
D
>
2
S
Q
S
@)
@)

e Feature space: color value (3D)

B. Leibe

47

Slide credit: Kristen Grauman



©
—
S~
Yo
—
%2
=
c
£
D
>
2
S
Q
S
@)
@)

Segmentation as Clustering

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based

on texture similarity —I~I\ 11/ 17
~ |\ L/ -
8 S N 4
ERNEEE

Filter bank
of 24 filters

4

e Feature space: filter bank responses (e.g., 24D) 48

Slide credit; Kristen Grauman B. Leibe
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RWTH
Smoothing Out Cluster Assignments

e Assigning a cluster label per pixel may yield outliers:

‘ .

Original Labeled by cluster center’s
intensity

?

3
g

e How can we ensure they
are spatially smooth?

Slide credit; Kristen Grauman B. Leibe
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Segmentation as Clustering

e Depending on what we choose as the feature space, we
can group pixels in different ways.

e Grouping pixels based on
intensity+position similarity

4 Intensity

X
=> Simple way to encode both similarity and proximity.
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Slide credit; Kristen Grauman B. Leibe



Summary K-Means

e Pros
> Simple, fast to compute

~ Converges to local minimum
of within-cluster squared error

outher

(A): Undesirable clusters

outher

e Cons/issues

‘ °
(] go e . ©
. Setting k? ° e <
> Sensitive to initial centers (B): Ideal clusters
> Sensitive to outliers
> Detects spherical clusters only %00

o
-~ Assuming means can be g&"s 5?}
computed
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Slide credit; Kristen Grauman B. Leibe

(A): Two natural clusters

(B): &-means clusters



RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

e Probabilistic clustering
> Mixture of Gaussians, EM
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Probabilistic Clustering

e Basic questions

> What’s the probability that a point X is in cluster m?
> What’s the shape of each cluster?

e K-means doesn’t answer these questions.

e Basic idea

> Instead of treating the data as a bunch of points, assume that
they are all generated by sampling a continuous function.

> This function is called a generative model.
~ Defined by a vector of parameters 6

Slide credit: Steve Seitz B. Leibe
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Mixture of Gaussians

e One generative model is a mixture of Gaussians (MoG)

» K Gaussian blobs with means p;, cov. matrices 3., dim. D
1 1 Ty —1

- Blob j is selected with probability 7,

> The likelihood of observing X is a weighted mixture of Gaussians

Xw Zﬂjp X‘O 9:(7T1>N17217---77TM7HM72M)
56
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Slide adapted from Steve Seitz B. Leibe



Expectation Maximization (EM)

CE

——

e Goal
> Find blob parameters 6 that maximize the likelihood function:

p(datald) = H p(x,]0)
e Approach:
1. E-step: given current guess of blobs, compute ownership of each point

2. M-step: given ownership probabilities, update blobs to maximize
likelihood function

3. Repeat until convergence
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Slide credit: Steve Seitz B. Leibe
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Slide adapted from Bernt Schiele

S
EM Algorithm Haching Sturg

e Expectation-Maximization (EM) Algorithm

~ E-Step: softly assign samples to mixture components
WjN(Xn’Hja Ej)

>t TN (| )

> M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments
N

N; Z% x,,) = soft number of samples labeled ;

P)/j(xn)(_ \V/j:].,...,K, n:]-?""N

SYNew ~ new ~new\T

3 E Y5 (%) (X0, — ) (Xn — Ky )

J n=1 58
B. Leibe
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Applications of EM

e Turns out this is useful for all sorts of problems
> Any clustering problem
> Any model estimation problem
~ Missing data problems
~ Finding outliers

» Segmentation problems
- Segmentation based on color
- Segmentation based on motion
- Foreground/background separation

e EM demo
> http://lcn.epfl.ch/tutorial/english/gaussian/html/index.html

Slide credit: Steve Seitz B. Leibe
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http://lcn.epfl.ch/tutorial/english/gaussian/html/index.html

Segmentation with EM

Original image

EM segmentation results
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Image source: Serge Belongie

B. Leibe
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RWTH
Summary: Mixtures of Gaussians, EM

e Pros
~ Probabilistic interpretation
» Soft assignments between data points and clusters
~ Generative model, can predict novel data points
Relatively compact storage

Y

e Cons
> Local minima
- k-means is NP-hard even with k=2
Initialization
- Often a good idea to start with some k-means iterations.
> Need to know number of components
- Solutions: model selection (AIC, BIC), Dirichlet process mixture
~ Need to choose generative model

> Numerical problems are often a nuisance
B. Leibe

Y
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RWTHAACHEN
. . UNIVERSITY
Topics of This Lecture

e Model-free clustering
> Mean-Shift clustering

©
—
S~
Yo
—
%2
=
c
£
D
>
[2
S
Q
S
@)
@)

62
B. Leibe



©
—
S~
Yo
—
)
=
c
©
D
>
2
S
Q
£
(@]
@)

Finding Modes in a Histogram

12

10 I

L e

e How many modes are there?
» Mode = local maximum of the density of a given distribution
- Easy to see, hard to compute

Slide credit: Steve Seitz B. Leibe

63



RO INVERSITY
Mean-Shift Segmentation

e An advanced and versatile technique for clustering-
based segmentation

Segmented "landscape 1" Segmented "landscape 2"

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, Mean Shift: A Robust Approach toward Feature Space Analysis,
PAMI 2002.
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Slide credit: Svetlana Lazebnik B. Leibe


http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
http://www.caip.rutgers.edu/~comanici/Papers/MsRobustApproach.pdf

Mean-Shift Algorithm

12 T
s +

10k _ 1

O

0 2 4 (5] 8

e |terative Mode Search
1. Initialize random seed, and window W
2. Calculate center of gravity (the “mean”) of W: Y  zH(x)
3. Shift the search window to the mean reW
4. Repeat Step 2 until convergence
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Slide credit: Steve Seitz B. Leibe
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Mean-Shift
: Region of )
o interest
4 )
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o mass
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S
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Slide by Y. Ukrainitz & B. Sarel
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Mean-Shift
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Slide by Y. Ukrainitz & B. Sarel



RWTHAACHEN

. UNIVERSITY
Mean-Shift
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Real Modality Analysis

Tessellate the space Run the procedure in parallel

with windows
Slide by Y. Ukrainitz & B. Sarel
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Real Modality Analysis

The blue data points were traversed by the windows towards the mode.
Slide by Y. Ukrainitz & B. Sarel




Mean-Shift Clustering

e Cluster: all data points in the attraction basin of a mode

e Attraction basin: the region for which all trajectories
lead to the same mode
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RWNTH
Mean-Shift Clustering/Segmentation

e Find features (color, gradients, texture, etc)
e Initialize windows at individual pixel locations
e Perform mean shift for each window until convergence

e Merge windows that end up near the same “peak” or
mode 1] )

76

B. Leibe

Slide credit: Svetlana Lazebnik



Mean-Shift Segmentation Results
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http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html 77
Slide credit: Svetlana Lazebnik B. Leibe
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More Results

Slide credit: Svetlana Lazebnik

B. Leibe
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B. Leibe

Slide credit: Svetlana Lazebnik
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Problem: Computational Complexity

* Need to shift many windows...

e Many computations will be redundant.
B. Leibe



©
—
S~
Yo
—
%2
=
c
£
D
>
[2
S
Q
S
@)
@)

1.

Assign all points within radius r of end point to the mode.

B. Leibe
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2. Assign all points within radius r/c of the search path to the mode.

B. Leibe
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Summary Mean-Shift

e Pros
~ General, application-independent tool

» Model-free, does not assume any prior shape (spherical,
elliptical, etc.) on data clusters

> Just a single parameter (window size h)

- h has a physical meaning (unlike k-means)
» Finds variable number of modes
~ Robust to outliers

e Cons
» Output depends on window size
> Window size (bandwidth) selection is not trivial
> Computationally (relatively) expensive (~2s/image)
~ Does not scale well with dimension of feature space

Slide credit: Svetlana Lazebnik B. Leibe
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Segmentation: Caveats

e We’ve looked at bottom-up ways to segment an image
into regions, yet finding meaningful segments is
intertwined with the recognition problem.

e Often want to avoid making hard decisions too soon

e Difficult to evaluate; when is a segmentation successful?

84

B. Leibe

Slide credit: Kristen Grauman
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Generic Clustering

e We have focused on ways to group pixels into image
segments based on their appearance
> Find groups; “quantize” feature space

e In general, we can use clustering techniques to find
groups of similar “tokens”, provided we know how to
compare the tokens.

- E.g., segment an image into the types of motions present
> E.g., segment a video into the types of scenes (shots) present

B. Leibe
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References and Further Reading

e Background information on segmentation by clustering
can be found in Chapter 14 of

~ D. Forsyth, J. Ponce,
Computer Vision - A Modern Approach.
Prentice Hall, 2003

Computer
Vision
AP

A MODERN APPROACH

e More on the EM algorithm can be
found in Chapter 16.1.2.

e Try the k-means and EM demos at

> http://home.dei.polimi.it/matteucc/Clustering/tutorial html/AppletKM.html
> http://lcn.epfl.ch/tutorial/english/gaussian/html/index.html
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