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Computer Vision - Lecture 4

Gradients & Edges
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Topics of This Lecture

¢ Recap: Linear Filters

¢ Multi-Scale representations
» How to properly rescale an image?

¢ Filters as templates
» Correlation as template matching

¢ Image gradients
» Derivatives of Gaussian

¢ Edge detection
» Canny edge detector
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RWTH ACHET
Recap: Smoothing with a Gaussian

e Parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel and controls the amount of smoothing.

: n |
20-
W

]

: n‘
2.
o

0

h = fspecial ('gaussian', fsize, sigma);
out = imfilter(im, h);
imshow (out) ;
pause;
end 7

for sigma=1:3:10

ide credit: Kristen Grauman LA
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Course Outline

¢ Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

¢ Segmentation

e Local Features & Matching

Object Recognition and Categorization
¢ 3D Reconstruction

¢ Motion and Tracking

B. Leibe

Recap: Gaussian Smoothing

- A
O

e Gaussian kernel
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* Rotationally symmetric

¢ Weights nearby pixels more
than distant ones
» This makes sense as
‘probabilistic’ inference
about the signal

¢ A Gaussian gives a good model
of a fuzzy blob

6

B. Leibe Image Source; Forsvth & Ponc
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Recap: Effect of Filtering

* Noise introduces high frequencies.

To remove them, we want to apply a /J‘\_ ,_JL

“low-pass” filter. T

The ideal filter shape in the

frequency domain would be a box.
But this transfers to a spatial sinc,
which has infinite spatial support.

* A compact spatial box filter

creates artifacts. —:ﬁl AV ARV

transfers to a frequency sinc, which

¢ A Gaussian has compact support in
both domains. This makes it a
convenient choice for a low-pass
filter.

B. Leibe
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Recap: Low-Pass vs. High-Pass

Original image

B. Leibe

Image Source: S, Chenne:

UNIVERSITY]

Low-pass
filtered

High-pass
filtered

Motivation: Fast Search Across Scales

.search (&
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Image
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ource; Irani & Ba:

Recap: Sampling and Aliasing

Fourier
Transform Magnitude
Signal A Spectrum
Sample Copy and
Shift
Sampled Fouricr _
Signal Transform ;/lasr:wdt
—_ l pectrum

B. Leibe

lmage Source: Forsvth & Poncd
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Topics of This Lecture

¢ Multi-Scale representations
» How to properly rescale an image?
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Recap: Sampling and Aliasing

Fourier
Tramsform Magnitude

Signal —_— } Spectrum
[Saﬂwm J Copy and
Shill

Sampled Fourier
i Magnitude

Signal Transform A Spectrum
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ftisss
l “ut out by
multiplication
with box filter

Aceurately
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Reconstrusted
Signal
Magnituda
o Spectrum

B. Leibe

Image Source; Forsvth & Ponc
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Recap: Sampling and Aliasing

Fourier

ransform Magnitude

-
Sample Ca—
Shift
Sampled .
Signal Transform Magnitude
- Spectrum
: R m
=
= 1
=
2
= Cutout by
2 multiplication
2 Inaccurately Inverse with box filter
> Reconstructed Fourier
3 Signal Teanslorm
3 * Magnitude
g Spectrum
=
S T
O
B. Leibe
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lmage Source: Forsvth & Poncd
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Recap: Resampling with Prior Smoothing

256 x 256

128 x 128 64 x 64 32 x 32 16 x 16
00T
I‘I‘OI- l‘l'

! Artifacts!

no
smoothing

Gaussian
o=1

Gaussian
oc=2

* Note: We cannot recover the high frequencies, but we
can avoid artifacts by smoothing before resampling.

1
B. Leibe Image Source: Forsvth & Ponc
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Gaussian Pyramid - Stored Information
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B. Leibe

All the extra
levels add very
little overhead
for memory or
computation!
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ource; Irani & Ba:
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The Laplacian Pyramid

Li =G; —expand(G,.,)
G; = L; +expand(G;.,)

Gaussian Pyramid

Laplacian Pyramid

— Ln:Gn

Wl -
L

Why is this useful?
I Do
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The Gaussian Pyramid
Low resolution = (G, *gaussian) { 2 g

ALSHIANC2

High resolution

B. Leibe

ource: Irani & Bas
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Summary: Gaussian Pyramid

¢ Construction: create each level from previous one
» Smooth and sample

¢ Smooth with Gaussians, in part because
» a Gaussian*Gaussian = another Gaussian
- G(oy) * G(oy) = G(sqrt(c, 2* 5, %))

« Gaussians are low-pass filters, so the representation is
redundant once smoothing has been performed.

= There is no need to store smoothed images at the
full original resolution.

ide credit: David Lowe B. Leibe
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Laplacian ~ Difference of Gaussian

DoG = Difference of Gaussians
Cheap approximation - no derivatives needed.

B. Leibe
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Topics of This Lecture Note: Filters are Templates
* Applying a filter at some point ¢ Insight
can be seen as taking a dot- - Filters look like the effects
product between the image they are intended to find.

and some vector. ~ Filters find effects they
¢ Filtering the image is a set of look like.

dot products.
~ Correlation as template matching

4 %’
¢ Filters as templates ﬁ

Computer Vision WS 15/16
Computer Vision WS 15/16

21
B. Leibe

B. Leibe

RWTH//CHEN RWTH/ACHEN
UNIVERSITY} UNIVERSITY}

% Template § Template
b o
= =
g’ é Ny A
) 23 o Detected template 2
ide credit; Kristen Grauman B. Leibe ide credit; Kristen Grauman B. Leibe
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Where’s Waldo? Correlation as Template Matching

¢ Think of filters as a dot product of the filter vector with
the image region
» Now measure the angle between the vectors

a-b
a-b=alb|cosé cosé =
lallbl
» Angle (similarity) between vectors can be measured by

9 Q normalizing the length of each vector to 1 and taking the dot
B i product.
. £
5 i 5 a
K] ) ) ’ a . N
> Detected template Correlation map > 0, b
Q Q
§_ é Template
£ 3
o 25 O Image region Vector interpretation

26

jt: Kristen Grauman B. Leibe B. Leibe




Topics of This Lecture Derivatives and Edges...

1st derivative

=Y * Image gradients < [N

= . . . T}

o » Derivatives of Gaussian e [ -

= 2 P I e ) | |
s 5 1 1 N Il l
& @ | 2nd derivative |

s 2 | | = ‘

5 5 S N SN— “zero crossings” — T __— !
g = . i I
=l 5| ol second 1
£ = derivative
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Differentiation and Convolution Partial Derivatives of an Image

« For the 2D function f(X,y), the partial derivative is:
ACOBICEN R

&0 &

* For discrete data, we can approximate this using finite
differences:

axy)  fx+Ly)-f(xy)
ox 1

¢ To implement the above as convolution, what would be
the associated filter?

Which shows changes with respect to x?
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Slide credit: Kristen Grauman B. Leibe

ide credit: Kristen Grauman B. Leibe

Assorted Finite Difference Filters Image Gradient

¢ The gradient of an image:

vi= o5

* The gradient points in the direction of most rapid intensity change

I_w=[§§.o] -[-[ . % vr= (33
0,9

Vf=

* The gradient direction (orientation of edge normal) is given by:
—1(9f j0f
f =tan—1 ( : )
>> My = fspecial(‘sobel’); 35/87
>> outim = imfilter (double(im), My);
>> imagesc (outim) ;
>> colormap gray;

* The edge strength is given by the gradient magnitude
_ ﬂ 2 3_f 2
VA= EGDH™ + &

ide credit; Steve Seitz B. Leibe
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Effect of Noise Solution: Smooth First

¢ Consider a single row or column of the image
» Plotting intensity as a function of position gives a signal

o 200 400 600 800 1000 1200 1400 1600 1800 2000
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ide credit: Steve Seit; B. Leibe lide credit: Steve Seitz B. Leibe
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Derivative Theorem of Convolution Derivative of Gaussian Filter
1) — (0
gj(h *xf)= (M’Z) *f
« Differentiation property of convolution. g * h) * |
Sigma = 50
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Slide credit: Steve Seit; B. Leibe ide adapted from Kristen Grauman
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Derivative of Gaussian Filters Laplacian of Gaussian (LoG)
: 9?2
* Consider 55(h* f)
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Summary: 2D Edge Detection Filters

Gaussian Derivative of Gaussian gt
w2402 Py il
o o (u,v) = Le B ——ho(u,v) vzho(“- v) )"
St 2702 dx ot
3 \.'! |
E i
=
.2 2. .
2« V<is the Laplacian operator:
g 2, 92 f 92 f
é- V= 2 + 9y
o
- 39
ide credit; Kristen Grauman B. Leibe
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Edge Detection

¢ Goal: map image from 2D array of pixels to a set of
curves or line segments or contours.

« Why?

)

"
L]

~
v3 ™ g;f_l.—?
V)

Figure from J. Shotton et al., PAMI 2007

(0

¢ Main idea: look for strong gradients, post-process
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Slide credit; Kristen Grauman, David Lowe B. Leibe

Gradients — Edges

Primary edge detection steps

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast
3. Edge localization

» Determine which local maxima from filter output are actually
edges vs. noise

> Thresholding, thinning

e Two issues
» At what scale do we want to extract structures?
> How sensitive should the edge extractor be?

Computer Vision WS 15/16
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adapted from Kristen Grauman B. Leibe
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Topics of This Lecture

« Edge detection
» Canny edge detector

B. Leibe

Designing an Edge Detector

¢ Criteria for an “optimal” edge detector:

» Good detection: the optimal detector should minimize the
probability of false positives (detecting spurious edges caused by
noise), as well as that of false negatives (missing real edges).
Good localization: the edges detected should be as close as
possible to the true edges.

Single response: the detector should return one point only for
each true edge point; that is, minimize the number of local
maxima around the true edge.

v

v

@ n] ul [ ] |

o | 0 (1]

| ul il | |

&} i En

g | E HER

Tue Poor robustness Too many

edge to noise lo: responses. 42
o, Leibe Source: Li Fei-Feil

RWTH/ACHEN

Scale: Effect of o on Derivatives

o = 3 pixels

¢ The apparent structures differ depending on Gaussian’s
scale parameter.

= Larger values: larger-scale edges detected
= Smaller values: finer features detected

45

ide credit; Kristen Grauman LA
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Sensitivity: Recall Thresholding Original Image

e Choose a threshold t

* Set any pixels less than t
to zero (off).

* Set any pixels greater than
or equal t to one (on).

FT[i,j]—{l’ if F[i, j]=t

!
o n
46
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lide credit: Kristen Grauman
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Gradient Magnitude Image Thresholding with a Lower Threshold
Y N R LRy S
' ( (,/ | ,;/~ —~ﬂ/ﬁ:‘- e
L - - e
N ) e (
— O/ .'/ -
- i {\ o 1N OC’ ,‘/ /) \
. X el —
s \0\ u/\/,‘\ SN B
~ o SRR 7
@ 9 \ - U/J ‘,) ? I
2 5 s
o ~ i~
1 J
= 2 1 /
£ £
® 48 S : 49
Slide credit: Kristen Grauman ide credit: Kristen Grauman B. Leibe

RWTH/ACHEN
Thresholding with a Higher Threshold
‘ , I

( 5
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Canny Edge Detector

Probably the most widely used edge detector in
computer vision

¢ Theoretical model: step-edges corrupted by additive
Gaussian noise

= ¢ Canny has shown that the first derivative of the
o 7 Gaussian closely approximates the operator that
. optimizes the product of signal-to-noise ratio and
s localization.

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
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51
ide credit; Kristen Grauman B. Leibe B. Leibe Source: Li Fei-Fei]



http://www.graphics.pku.edu.cn/members/chenyisong/lectures/readings/Canny86pami.pdf
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Canny Edge Detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):
» Define two thresholds: low and high
» Use the high threshold to start edge curves and the low

The Canny Edge Detector

Gradient magnitude

Slide credit; Kristen Grauman B. Leibe

threshold to continue them
e MATLAB:
>> edge(image, ‘canny’);
>> help edge
52
8. Leibe Source: D. Lowe, L. Fei-Fei
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Non-Maximum Suppression

[ ] [ ] q [ ]
Gradient /

¢ Check if pixel is local maximum along gradient direction,
select single max across width of the edge
» Requires checking interpolated pixels p and r
= Linear interpolation based on gradient direction

B. Leibe

57
Source: Forsyth & Ponce
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The Canny Edge Detector
Original image (Lena)
53

lide credit: Kristen Grauman B. Leibe
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The Canny Edge Detector

How to turn

these thick

regions of

the gradient
into curves?

Slide credit; Kristen Grauman B. Leibe
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The Canny Edge Detector

Problem: pixels
along this edge
didn’t survive
the thresholding.

Thinning
(non-maximum suppression)

lide credit; Kristen Grauman B. Leibe
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Solution: Hysteresis Thresholding

¢ Hysteresis: A lag or momentum factor
* Idea: Maintain two thresholds k&, and k,,

» Use ky;, to find strong edges to start edge chain

~ Use k,,,, to find weak edges which continue edge chain
¢ Typical ratio of thresholds is roughly

khiyh / klow =2

59
B. Leibe Source: D. Lowe, S. SeitZ]

Object Boundaries vs. Edges

Background Shadows

Texture
Slide credit; Kristen Grauman B. Leibe
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References and Further Reading

¢ Background information on linear filters and their
connection with the Fourier transform can be found in
Chapter 7 of F&P. Additional information on edge
detection is available in Chapter 8.
» D. Forsyth, J. Ponce,

Computer Vision - A Modern Approach.
Prentice Hall, 2003

Computer
Vision

B. Leibe
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Hysteresis Thresholding

!L‘.‘nu.."'}

‘= l.||
2t I
_—

Original image

couesy o G Loy

High threshold Low threshold

(strong edges) (weak edges)
B. Leibe

Hysteresis threshold

60
Source: L, Fej-Fej
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Edge Detection is Just the Beginning...

Image Human segmentation Gradient magnitude

¢ Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

62
B. Leibe Source: L. Lazebnik
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http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

