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Announcements

e Last lecture next Thursday: Repetition
> Summary of all topics in the lecture
~ “Big picture” and current research directions
~ Opportunity to ask questions

~ Please use this opportunity and prepare questions!

e Exam format
> Exams will be oral
> Duration: 30 minutes

> | will give you 4 questions and expect you to answer 3 of them.
- Each such question will cover material from ~1-2 lecture slots
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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
» Regularization (Ridge, Lasso) J
> Gaussian Processes

M =9 =
st </

e Learning with Latent Variables

> Prob. Distributions & Approx. Inference w1
> Mixture Models %
. EM and Generalizations : .

e Deep Learning
> Linear Discriminants
> Neural Networks
~ Backpropagation & Optimization
> CNNs, RNNs, RBMs, etc.
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Topics of This Lecture

e Recap: Restricted Boltzmann Machines

> Energy based Models
> RBMs
~ Deep Belief Networks

e |nitialization Revisited
~ Analysis
> Glorot Initialization
> Extension to RelLU

e Outlook

> Reinforcement Learning

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

B. Leibe



RWTH
Recap: Energy Based Models (EBM)

e Energy Based Probabilistic Models

~ Define the joint probability over a set of variables x through an

energy function
L B

p(x) = Ze

where the normalization factor 7 is called the partition function
X

> An EBM can be learned by performing (stochastic) gradient
descent on the negative log-likelihood of the training data

1
L(0,D) = N Z log p(zn)
T, €D

using the stochastic gradient — 810g6p‘9(:1:n)
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Recap: EBMs with Hidden Units

e Expressing the gradient
» Free energy for a model with hidden variables h

F(x)=—log) e~ E(h)

- Free energy formulation of the joint probability
e_j:(x)

_ : _ —F(x)
p(x) = > with 7 = ;e .

» The negative log-likelihood gradient then takes the following
form, which is difficult to determine analytically

dlogp(x) OF(x) _. 0F(x)
~ = —%:p(X) -

00 0

v v

Positive Negative
phase phase
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RWTH
Recap: Steps Towards a Solution...

e Monte Carlo approximation

~ Estimate the expectation using a fixed number of model samples
for the negative phase gradient (“negative particles”)

0log p(x) 855 3.7——
98
%(_J J
free energy avg. free energy

at current point for all other points
» With this, we almost have a practical stochastic algorithm for
learning an EBM.

- We just need to define how to extract the negative particles N.

- Many sampling approaches can be used here.
- MCMC methods are especially well-suited.

And this is where all parts of the lecture finally come together...
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RWTH
Recap: Restricted Boltzmann Machines

e Properties QQ%Q‘D h
. Energy Function of an RBM Q0000 Vv

- — Z bi’U@' — Z thj — Z wijvihj
U J %]
~ This translates to a free energy formula

F(v) V—ZlogZeh i(citWiv),

> Factorization property
p(h[v)

|
@.E

=
S
>

p(vi) = [Tp(v;/b).

> RBMs can be seen as a product of experts specializing on
different areas and detecting negative constraints.
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Recap: RBMs with Binary Units

e Binary units
> Free energy

F(v)=-b'v— Z log (1 + e(CiJ“WiV)) .

n

5 - This results in the iterative update equations for the gradient
S log-likelihoods

2 o

T = B lpltlv) v = ol o (Wi v 401
= ol

_g - ng(V) = Ey[p(h|v)] — sigm(W; - v\*))

S Ci

]

= Olog p(v) t

: ~ 2P = By fp(osfh)] - v

= J

>

<
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Recap: RBM Learning (Slow)

e |terative approach

eve eve eve 'Y X
<vfhj>0 c® o <vih;> i)‘antasy
o ® O @ 0@ G ®

=0 t=1 t=2 t = infinity

~ Start with a training vector on the visible units. Then alternate
between updating all the hidden units in parallel and updating
all the visible units in parallel.

> This implements a Markov chain that we use to approximate the
gradient

0log p(v)
8wij

=< ’Uz',hj >0 — < Ui,hj >

~ Better method in practice: Contrastive Divergence
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RWNTH
Recap: Contrastive Divergence (Fast)

®@0Oe
<V }?7 \<vr /
0 1
t=0 t=1
data reconstruction

e A surprising shortcut
~ Start with a training vector on the visible units.
> Update all the hidden units in parallel.
» Update the all visible units in parallel to get a “reconstruction”.
> Update the hidden units again (no further iterations).

~ This does not follow the gradient of the log likelihood.
But it works well [Hinton].
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Historical Perspective

e Training deep networks is difficult

~ Major difficulty: getting the gradient to propagate to the lower
layers, so that the weights there can be learned

~ Initialization of the weights plays a major role
- Weights too small = Signal shrinks from layer to layer
- Weights too large = Signal grows until it is too massive

= Vanishing and exploding gradient problems known from RNNs

e How can we arrive at a good initialization?
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RWTHAACHEN
UNIVERSITY

Deep Belief Networks (DBN)

e DBN as stacked RBMs

e—E(x,h)

. RBM: p(v,h) =

» Pre-train each layer from bottom
up by considering each pair of layers
as an RBM.

> Jointly fine-tune all layers using
back-propagation algorithm

= Layer-by-layer unsupervised training
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Topics of This Lecture

e |nitialization Revisited
»  Analysis
> Glorot Initialization
> Extension to RelLU
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Glorot Initialization

e Breakthrough results

> In 2010, Xavier Glorot published an analysis of what went wrong
in the initialization and derived a method for automatic
initialization.

> This new initialization massively improved results and made
direct learning of deep networks possible overnight.

~ Let’s look at his analysis in more detail...

X. Glorot, Y. Bengio, Understanding the Difficulty of Training Deep
Feedforward Neural Networks, AISTATS 2010.
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jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf

RWTH
Effect of Sigmoid Nonlinearities

Sigmaoid
o Effects of sigmoid/tanh function :-: SN S .

' saturated - < linear - saturated |

> Linear behavior around 0 0.8 _ ..... oo .......... ..... e
~ Saturation for large inputs i <o --- SR

e |f all parameters are too small 1 T I T T R
~ Variance of activations will drop in each layer
~ Sigmoids are approximately linear close to 0
» Good for passing gradients through, but...
» Gradual loss of the nonlinearity
= No benefit of having multiple layers

e If activations become larger and larger
~ They will saturate and gradient will become zero
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Image source: http://deepdish.io/2015/02/24/network-initialization/




n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

Analysis

e Variance of neuron activations

» Suppose we have an input X with n components and a linear
neuron with random weights W that spits out a number Y.

> What is the variance of Y ?
Y =W X, +WeXo+...+ W_ X,
~ |If inputs and outputs have both mean 0, the variance is
Var(W; X;) = E[X;]*Var(W;) + E[W;]*Var(X;) + Var(W;)Var(i;)
— Var(W;)Var(X;)
- If the X, and W, are all i.i.d, then
Var(Y) = Var(W1 X; + WXy +--- + W, X,,) = nVar(W;)Var(X;)

= The variance of the output is the variance of the input, but
scaled by n Var(W,).

B. Leibe
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Analysis (cont’d)

e Variance of neuron activations

~ if we want the variance of the input and output of a unit to be
the same, then n Var(W,) should be 1. This means

T-'TEl_I'(Fi"rf} — 1 — 1

g Thin

~ If we do the same for the backpropagated gradient, we get
1

Mot

Var(W;) =

> As a compromise, Glorot & Bengio propose to use
2

Var(W) =
E'-I{ ] Nin 7 Mout

= Randomly sample the weights with this variance. That’s it.

B. Leibe
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Extension to ReLU

e Another improvement for learning deep models
> Use Rectified Linear Units (ReLU) |

g(a) = max{0,a}

~ Effect: gradient is propagated with
a constant factor

dg(a) [ 1, a>0
oa 0, else

e We can also improve them with proper initialization
> However, the Glorot derivation was based on tanh units,
linearity assumption around zero does not hold for ReLU.
- He et al. made the derivations, proposed to use instead

Var(W) = ——

Ttin
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RWTHAACHEN
UNIVERSITY

Topics of This Lecture

e QOutlook

> Reinforcement Learning
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Outlook: Reinforcement Learning

e Learning to play computer games

Convglution Convvolution Fully cgnnected Fully cgnnected
Input: | = L o\ Output:
pixels 9 : . - control
+game i o\ | e E® commands
Z i ?
scores o | O\ e —
. e N\
eH -0: (0 =

+

/77 AN\ /
dooooon oo

AN IRJEJe VN>
+ 1+ f+ + 1+ 1+ 1+
@] (@] (@) (@] (@] (@] (@] (@)

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518,
pp. 529-533, 2015
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http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

Results: Space Invaders
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Results: Breakout
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Advanced Machine Learning Winter’15

Video Pinball
Boxing
Breakout

Star Gunner
Robotank
Atlantis

Crazy Climber
Gopher

Demon Attack
Name This Game
Krull

Assault

Road Runner
Kangaroo
James Bond
Tennis

Pong

Space Invaders
Beam Rider
Tutankham
Kung-Fu Master
Freeway

Time Pilot
Enduro

Fishing Derby
Up and Down
Ice Hockey
Q*bert
H.E.R.O.
Asterix

Battle Zone
Wizard of Wor
Chopper Command
Centipede
Bank Heist
River Raid
Zaxxon

Amidar

Alien

Venture
Seaquest
Double Dunk
Bowling

Ms. Pac-Man
Asteroids
Frostbite
Gravitar

Private Eye
Montezuma's Revenge

T

At human-level or above

“""***'"""'!'mnu!llml

Below human-level

Best linear learner

Space Invaders |

Kung-Fu Master :

T
300

400

500

4,500%
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Name This Game |

Road Runner |

Fishing Derby |
Up and Down

Wizard of Wor |
Chopper Command

B ]

Krull |
Assault

Kangaroo |
James Bond |
Tennis |

Pong |

Beam Rider :
Tutankham

Freeway ]
Time Pilot il
Enduro

Ice Hockey |
Q'bert |
H.E.R.O. ]
Asterix |
Battle Zone |

Centipede |
Bank Heist |
River Raid |

Zaxxon |

Amidar |
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UNIVERSITY

Comparison with Human Performance
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view
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Learned Representation

/

A

~ s ‘ /

SRR

R . £ l..,.
: o3 / P : ; :
2 : Y I R ’

e t-SNE embedding of DQN last hidden layer (Space Inv.)
2

B. Leibe
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ldea Behind the Model

e Interpretation

A action values Q(s,a)

e L2 Regression Loss

received

target value

e Collect experience dataset:
> Set of tuples {(s,a,s’,r), ... }
~ (State, Action taken, New state, Reward

> Assume finite number of actions

> Each number here is a real-valued
Conviat quantity that represents the
“Q function” in Reinforcement Learning

predicted value

( ) ]E‘.sar,s U(D) (r_{':'ln?}XQ(Sfﬁaf:Uj_

)

O(s.a: 0

)
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Slide credit: Andrej Karpaty B. Leibe

Current reward + estimate of future reward, discounted by y .



RWTH
References and Further Reading

e |nitialization

~ X. Glorot, Y. Bengio, Understanding the difficulty of training
deep feedforward neural networks, AISTATS 2010.

- K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet
Classification, arXiv 1502.01852, 2015.

e RelLu

~ X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural
networks, AISTATS 2011.
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