Advanced Machine Learning
Lecture 20

Restricted Boltzmann Machines

01.02.2016

Bastian Leibe
RWTH Aachen
http://www.vision.rwth-aachen.de/
leibe@vision.rwth-aachen.de
This Lecture: *Advanced Machine Learning*

- **Regression Approaches**
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Gaussian Processes

- **Learning with Latent Variables**
 - Prob. Distributions & Approx. Inference
 - Mixture Models
 - EM and Generalizations

- **Deep Learning**
 - Linear Discriminants
 - Neural Networks
 - Backpropagation & Optimization
 - CNNs, RNNs, **RBM**s, etc.
Recap: Long Short-Term Memory

• LSTMs
 - Inspired by the design of memory cells
 - Each module has 4 layers, interacting in a special way.

Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Recap: Elements of LSTMs

• Forget gate layer
 - Look at h_{t-1} and x_t and output a number between 0 and 1 for each dimension in the cell state C_{t-1}.
 - 0: completely delete this,
 - 1: completely keep this.

• Update gate layer
 - Decide what information to store in the cell state.
 - Sigmoid network (input gate layer) decides which values are updated.
 - tanh layer creates a vector of new candidate values that could be added to the state.

\[
\begin{align*}
 f_t &= \sigma (W_f \cdot [h_{t-1}, x_t] + b_f) \\
 i_t &= \sigma (W_i \cdot [h_{t-1}, x_t] + b_i) \\
 \tilde{C}_t &= \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)
\end{align*}
\]

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Recap: Elements of LSTMs

- **Output gate layer**
 - Output is a filtered version of our gate state.
 - First, apply sigmoid layer to decide what parts of the cell state to output.
 - Then, pass the cell state through a tanh (to push the values to be between -1 and 1) and multiply it with the output of the sigmoid gate.

\[
o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)
\]
\[
h_t = o_t \times \tanh(C_t)
\]

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Recap: Gated Recurrent Units (GRU)

• Simpler model than LSTM
 - Combines the forget and input gates into a single update gate z_t.
 - Similar definition for a reset gate r_t, but with different weights.
 - In both cases, merge the cell state and hidden state.

• Empirical results
 - Both LSTM and GRU can learn much longer-term dependencies than regular RNNs
 - GRU performance similar to LSTM (no clear winner yet), but fewer parameters.

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
Topics of This Lecture

• **Unsupervised Learning**
 - Motivation

• **Energy based Models**
 - Definition
 - EBMs with Hidden Units
 - Learning EBMs

• **Restricted Boltzmann Machines**
 - Definition
 - RBMs with Binary Units
 - RBM Learning
 - Contrastive Divergence
Looking Back...

- We have seen very powerful deep learning methods.
 - Deep MLPs
 - CNNs
 - RNNs (+LSTM, GRU)
 - (When used properly) they work very well and have achieved great successes in the last few years.

- But...
 - All of those models have many parameters.
 - They need A LOT of training data to work well.
 - Labeled training data is very expensive.
 \[How \ can \ we \ reduce \ the \ need \ for \ labeled \ data? \]
Reducing the Need for Labeled Data

• Reducing Model Complexity
 ➢ E.g., GoogLeNet: big reduction in the number of parameters compared to AlexNet (60M → 5M).
 ⇒ More efficient use of the available training data.

• Transfer Learning
 ➢ Idea: Pre-train a model on a large data corpus (e.g., ILSVRC), then just fine-tune it on the available task data.
 ➢ This is what is currently done in Computer Vision.
 ⇒ Benefit from generic representation properties of the pre-trained model.

• Unsupervised / Semi-supervised Learning
 ➢ Idea: Try to learn a generic representation from unlabeled data and then just adapt it for the supervised classification task.
Topics of This Lecture

• Unsupervised Learning
 ➢ Motivation

• Energy based Models
 ➢ Definition
 ➢ EBM\'s with Hidden Units
 ➢ Learning EBMs

• Restricted Boltzmann Machines
 ➢ Definition
 ➢ RBMs with Binary Units
 ➢ RBM Learning
 ➢ Contrastive Divergence
Energy Based Models (EBM)

- Energy Based Probabilistic Models
 - Define the joint probability over a set of variables \(x \) through an energy function

\[
p(x) = \frac{1}{Z} e^{-E(x)}
\]

where the normalization factor \(Z \) is called the partition function

\[
Z = \sum_x e^{-E(x)}
\]

- An EBM can be learned by performing (stochastic) gradient descent on the negative log-likelihood of the training data

\[
\mathcal{L}(\theta, \mathcal{D}) = \frac{1}{N} \sum_{x_n \in \mathcal{D}} \log p(x_n)
\]

using the stochastic gradient

\[
- \frac{\partial \log p(x_n)}{\partial \theta}
\]
Energy Based Models: Examples

• We have been using EBMs all along...
 - E.g., Collections of independent variables
 \[
 E(\mathbf{v}) = \sum_i f_i(\mathbf{v}_i; b_i) \quad \text{where } f_i \text{ encodes the NLL of } \mathbf{v}_i
 \]
 - E.g., Markov Random Fields
 \[
 E(\mathbf{v}) = \sum_i f_i(\mathbf{v}_i; b_i) + \sum_{(i,j)} f_{ij}(\mathbf{v}_i, \mathbf{v}_j; w_{ij})
 \]
EBMs with Hidden Units

- In the following
 - We want to explore deeper models with (multiple layers of) hidden units
 - E.g., Restricted Boltzmann machines

- This will lead to Deep Belief Networks (DBN) that were popular until very recently.
EBMs with Hidden Units

• Hidden variable formulation
 - In many cases of interest, we do not observe the examples fully
 - Split them into an observed part \(x \) and a hidden part \(h \):

 \[
 p(x) = \sum_{h} p(x, h) = \frac{1}{Z} \sum_{h} e^{-E(x, h)}
 \]

• Notation
 - We define the free energy (inspired by physics)

 \[
 \mathcal{F}(x) = -\log \sum_{h} e^{-E(x, h)}
 \]

 and write the joint probability as

 \[
 p(x) = \frac{e^{-\mathcal{F}(x)}}{Z} \quad \text{with} \quad Z = \sum_{x} e^{-\mathcal{F}(x)}.
 \]
EBMs with Hidden Units

• Expressing the gradient
 - Free energy formulation of the joint probability
 \[p(x) = \frac{e^{-\mathcal{F}(x)}}{Z} \quad \text{with} \quad Z = \sum_x e^{-\mathcal{F}(x)}. \]
 - The negative log-likelihood gradient then takes the following form
 \[-\frac{\partial \log p(x)}{\partial \theta} = \frac{\partial \mathcal{F}(x)}{\partial \theta} - \sum_{\tilde{x}} p(\tilde{x}) \frac{\partial \mathcal{F}(\tilde{x})}{\partial \theta}. \]

 Positive phase \hspace{2cm} Negative phase

(The names do not refer to the sign of each term, but to their effect on the probability density defined by the model)
Challenge for Learning

\[- \frac{\partial \log p(x)}{\partial \theta} = \frac{\partial F(x)}{\partial \theta} - \sum_{\tilde{x}} p(\tilde{x}) \frac{\partial F(\tilde{x})}{\partial \theta}.\]

• Problem
 - Difficult to determine this gradient analytically.
 - Computing it would involve evaluating

\[\mathbb{E}_p \left[\frac{\partial F(x)}{\partial \theta} \right]\]

i.e., the expectation over all possible configurations of the input \(x\) under the distribution \(p\) formed by the model!

\(\Rightarrow\) Often infeasible.
Steps Towards a Solution...

• Monte Carlo approximation
 - Estimate the expectation using a fixed number of model samples for the negative phase gradient (“negative particles”)
 \[
 - \frac{\partial \log p(x)}{\partial \theta} \approx \frac{\partial F(x)}{\partial \theta} - \frac{1}{|N|} \sum_{\tilde{x} \in N} \frac{\partial F(\tilde{x})}{\partial \theta}.
 \]

 - free energy at current point
 - avg. free energy for all other points
 - With this, we almost have a practical stochastic algorithm for learning an EBM.
 - We just need to define how to extract the negative particles \(N \).
 - Many sampling approaches can be used here.
 - **MCMC methods** are especially well-suited.

And this is where all parts of the lecture finally come together...
Topics of This Lecture

• Unsupervised Learning
 ➢ Motivation

• Energy based Models
 ➢ Definition
 ➢ EBMs with Hidden Units
 ➢ Learning EBMs

• Restricted Boltzmann Machines
 ➢ Definition
 ➢ RBMs with Binary Units
 ➢ RBM Learning
 ➢ Contrastive Divergence
Restricted Boltzmann Machines (RBM)

- **Boltzmann Machines (BM)**
 - BMs are a particular form of log-linear MRF, for which the free energy is linear in its free parameters.
 - To make them powerful enough to represent complicated distributions, we consider some of the variables as hidden.
 - In their general form, they are very complex to handle.

- **Restricted Boltzmann Machines (RBM)**
 - RBMs are BMs that are restricted not to contain visible-visible and hidden-hidden connections.
 - This makes them far easier to work with.
Restricted Boltzmann Machines (RBM)

- **Properties**
 - **Components**
 - Visible units \mathbf{v} with offsets \mathbf{b}
 - Hidden units \mathbf{h} with offsets \mathbf{c}
 - Connection matrix \mathbf{W}
 - **Energy Function of an RBM**

 \[
 E(\mathbf{v}, \mathbf{h}) = - \sum_{i} b_i v_i - \sum_{j} c_j h_j - \sum_{i,j} w_{ij} v_i h_j
 \]

 \[
 = - \mathbf{b}^T \mathbf{v} - \mathbf{c}^T \mathbf{h} - \mathbf{h}^T \mathbf{W} \mathbf{v}
 \]
 - **This translates to a free energy formula**

 \[
 \mathcal{F}(\mathbf{v}) = - \mathbf{b}^T \mathbf{v} - \sum_{i} \log \sum_{h_i} e^{h_i(c_i + W_i \mathbf{v})}.
 \]
Restricted Boltzmann Machines (RBM)

- Properties (cont’d)

 - Because of their specific structure, visible and hidden units are conditionally independent given one another.

 - Therefore the following factorization property holds:

\[
p(h|v) = \prod_i p(h_i|v) \quad \text{and} \quad p(v|h) = \prod_j p(v_j|h).
\]
Restricted Boltzmann Machines (RBM)

- Interpretation of RBMs
 - Factorization property
 \[
 p(h|v) = \prod_i p(h_i|v) \\
 p(v|h) = \prod_j p(v_j|h).
 \]
 - RBMs can be seen as a product of experts specializing on different areas.
 - Experts detect negative constraints, if one of them returns zero, the entire product is zero.
RBMs with Binary Units

- **Binary units**
 - v_j and $h_i \in \{0,1\}$ are considered Bernoulli variables.
 - This results in a probabilistic version of the usual neuron activation function
 \[p(h_i = 1|v) = \sigma(c_i + W_i v) \]
 \[p(v_j = 1|h) = \sigma(b_j + W_j^\top h) \]
 - The free energy of an RBM with binary units simplifies to
 \[F(v) = -b^\top v - \sum_i \log \left(1 + e^{(c_i + W_i v)} \right). \]
RBMs with Binary Units

- Binary units
 - Free energy
 \[\mathcal{F}(\mathbf{v}) = -\mathbf{b}^\top \mathbf{v} - \sum_i \log \left(1 + e^{(c_i + W_i \mathbf{v})} \right) . \]
 - This results in the iterative update equations for the gradient log-likelihoods
 \[
 \begin{align*}
 - \frac{\partial \log p(\mathbf{v})}{\partial W_{ij}} &= \mathbb{E}_\mathbf{v} [p(h_i | \mathbf{v}) \cdot v_j] - v_j^{(t)} \cdot \sigma(W_i \cdot \mathbf{v}^{(t)} + c_i) \\
 - \frac{\partial \log p(\mathbf{v})}{\partial c_i} &= \mathbb{E}_\mathbf{v} [p(h_i | \mathbf{v})] - \text{sigmoid}(W_i \cdot \mathbf{v}^{(t)}) \\
 - \frac{\partial \log p(\mathbf{v})}{\partial b_j} &= \mathbb{E}_\mathbf{v} [p(v_j | \mathbf{h})] - v_j^{(t)}
 \end{align*}
 \]
RBM Learning

- Iterative approach

- Start with a training vector on the visible units. Then alternate between updating all the hidden units in parallel and updating all the visible units in parallel.
- This implements a Markov chain that we use to approximate the gradient

\[
\frac{\partial \log p(v)}{\partial w_{ij}} = \langle v_i, h_j \rangle^0 - \langle v_i, h_j \rangle^\infty
\]

- Better method in practice: Contrastive Divergence

Slide credit: Geoff Hinton
Contrastive Divergence

- A surprising shortcut
 - Start with a training vector on the visible units.
 - Update all the hidden units in parallel.
 - Update the all visible units in parallel to get a “reconstruction”.
 - Update the hidden units again (no further iterations).
 - This does not follow the gradient of the log likelihood. But it works well [Hinton].

\[\Delta w_{ij} = \varepsilon \left(<v_i h_j>^0 - <v_i h_j>^1 \right) \]
Example

- RBM training on MNIST
 - Persistent Contrastive Divergence with chain length 15
Extension: Deep RBMs

Input: pixels

Low-level features: Edges

Higher-level features: Combinations of edges

Built from unlabeled input.

Image

Slide credit: Ruslan Salakhutdinov