Advanced Machine Learning
Lecture 20

Restricted Boltzmann Machines

01.02.2016

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de/

n
-
.
Q
P
=
(@)]
=
c
-
®
(b}
-
(D]
=
e
(@)
©
=
©
(D]
(&)
C
©
>
©
<

leibe®@vision.rwth-aachen.de

RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
» Regularization (Ridge, Lasso) J
> Gaussian Processes

M =9 =
st </

e Learning with Latent Variables

> Prob. Distributions & Approx. Inference w1
> Mixture Models %
. EM and Generalizations : .

e Deep Learning
> Linear Discriminants
> Neural Networks
~ Backpropagation & Optimization
> CNNs, RNNs, RBMs, etc.

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

B. Leibe

RWNTH
Recap: Long Short-Term Memory

& © ®
1 f

A
4) 4) 4)
—»>—® @ > —>
Ganh>
A 1 3 A
lclrllclilltalnhlljl
—> -
\U J C] _J ’\ J

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

e LSTMs

> Inspired by the design of memory cells
» Each module has 4 layers, interacting in a special way.

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

3
Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Elements of LSTMs

e Forget gate layer

- Look at h, ; and x, and output a
number between 0 and 1 for each ;
dimension in the cell state C, ;.

0: completely delete this,
1: completely keep this.

Lt

t =0 (Wp-lhi—1,2¢] + b
o Update gate layer fo=o Wr-lhi-y, @] =+ bf)

> Decide what information to store
in the cell state.

> Sigmoid network (input gate layer) iag
decides which values are updated. bt
» tanh layer creates a vector of new T

candidate values that could be .
— W’I;' h 1, b'I,
added to the state. i = o (Wirlhe—1, 4] + bi)

H
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(D]
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

C~’t = tanh(We - |hi—1,2¢] + bcA

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Elements of LSTMs

e Output gate layer "
~ Output is a filtered version of our
gate state.) %i'
~ First, apply sigmoid layer to decide B .
what parts of the cell state to = >
output. r

> Then, pass the cell state through a
tanh (to push the values to be
between -1 and 1) and multiply it
with the output of the sigmoid gate. /it = 0t * tanh (Ct)

U(Wo [ht—hxt] + bo)

o
-
|

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

5
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RWNTH
Recap: Gated Recurrent Units (GRU)

e Simpler model than LSTM h]‘
: : hei [)
> Combines the forget and input D
gates into a single update gate z,. e ©;
- Similar definition for a reset gate r,, o] o] [aph
but with different weights. \P‘ P

ze

> In both cases, merge the cell state

and hidden state.
2t =0 (Wz : [ht—laxt])

o Empirical results re =0 (W [hi—1, 24])

- Both LSTM and GRU can learn much j,, — tanh (W - [, % hy_1, 24])
longer-term dependencies than ~
regular RNNs he = (1 —2¢) * hy—1 + 2 x hy

> GRU performance similar to LSTM
(no clear winner yet), but fewer
parameters.

H
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

6
Source: Christgphlé@B?ah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Topics of This Lecture

e Unsupervised Learning
> Motivation

e Energy based Models
> Definition
» EBMs with Hidden Units
> Learning EBMs

e Restricted Boltzmann Machines
> Definition
> RBMs with Binary Units
> RBM Learning
> Contrastive Divergence

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

B. Leibe

Looking Back...

e We have seen very powerful deep learning methods.
> Deep MLPs
> CNNs
. RNNs (+LSTM, GRU)

> (When used properly) they work very well and have achieved
great successes in the last few years.

e But...
» All of those models have many parameters.
> They need A LOT of training data to work well.
» Labeled training data is very expensive.
= How can we reduce the need for labeled data?

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

B. Leibe

RWTH
Reducing the Need for Labeled Data

e Reducing Model Complexity

» E.g., GooglLeNet: big reduction in the number of parameters
compared to AlexNet (60M — 5M).

= More efficient use of the available training data.

 Transfer Learning

» ldea: Pre-train a model on a large data corpus (e.g., ILSVRC),
then just fine-tune it on the available task data.

~ This is what is currently done in Computer Vision.

= Benefit from generic representation properties of the pre-
trained model.

e Unsupervised / Semi-supervised Learning

» ldea: Try to learn a generic representation from unlabeled data
and then just adapt it for the supervised classification task.

H
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(D]
=
e
(@)
®
>
©
(D]
(&)
[
©
>
©
<

B. Leibe

n
F
.
Q
wid
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

Topics of This Lecture

e Energy based Models

> Definition
> EBMs with Hidden Units
> Learning EBMs

B. Leibe

10

Energy Based Models (EBM)

e Energy Based Probabilistic Models

~ Define the joint probability over a set of variables x through an

energy function
L B

p(x) = Ze

where the normalization factor 7 is called the partition function
X

> An EBM can be learned by performing (stochastic) gradient
descent on the negative log-likelihood of the training data

1
L(0,D) = N Z log p(zn)
T, €D

using the stochastic gradient — 810g6p‘9(:1:n)

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

11

B. Leibe

Energy Based Models: Examples

e We have been using EBMs all along...
» E.g., Collections of independent variables

Q0000 V

E(v) = Z fi(vi;b;) where f, encodes the NLL of v,
i

» E.g., Markov Random Fields

Q0000 V

MRF

E(v) = Zfz’(’ui; bi) + Z fij (vi, vj; wij)
i (2,)

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

12

Image Source: S.M. A. Eslami et al.

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

EBMs with Hidden Units

e |In the following

> We want to explore deeper models with (multiple layers of)
hidden units

» E.g., Restricted Boltzmann machines

QOO0 h

l\‘_ill‘.i"fl

Pe'e'e 4% 8N
i L 1

> This will lead to Deep Belief Networks (DBN) that were popular
until very recently.

B. Leibe

13

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

EBMs with Hidden Units

e Hidden variable formulation

> In many cases of interest, we do not observe the examples fully

> Split them into an observed part x and a hidden part h:

p(x) = ZP(X, h) = %Z e~ E(xh)

h

e Notation
> We define the free energy (inspired by physics)

F(x)=—log) e FtM
h

and write the joint probability as
e_F(x)

p(x) = with 7 = Ze_j:(x).

B. Leibe

14

EBMs with Hidden Units

e Expressing the gradient
- Free energy formulation of the joint probability

e_F(x) x
p(x) = 7 with 7 = Ze_ (x),

To]
5 - The negative log-likelihood gradient then takes the following
= form
= 0log p(x) 8.7: (x)
: : Rk
= 06
4
: — v
§ Positive Negative
E phase phase
(<)
§ (The names do not refer to the sign of each term, but to their
= effect on the probability density defined by the model)

15

B. Leibe

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

Challenge for Learning

 Ologp(x) _ OF(x) Zp(i) 8'7:(32).

00 00 00

~

X

e Problem
~ Difficult to determine this gradient analytically.
> Computing it would involve evaluating

5 ||

i.e., the expectation over all possible configurations of the input

X under the distribution p formed by the model!
= Often infeasible.

B. Leibe

16

Steps Towards a Solution...

e Monte Carlo approximation

~ Estimate the expectation using a fixed number of model samples
for the negative phase gradient (“negative particles”)

0log p(x) 855 3.7——
98
%(_J J
free energy avg. free energy

at current point for all other points
» With this, we almost have a practical stochastic algorithm for
learning an EBM.

- We just need to define how to extract the negative particles N.

- Many sampling approaches can be used here.
- MCMC methods are especially well-suited.

And this is where all parts of the lecture finally come together...
17

H
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

B. Leibe

Topics of This Lecture

e Restricted Boltzmann Machines
> Definition
> RBMs with Binary Units
> RBM Learning
> Contrastive Divergence

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

18

B. Leibe

RWTH
Restricted Boltzmann Machines (RBM)

e Boltzmann Machines (BM)

- BMs are a particular form of log-linear MRF, for which the free
energy is linear in its free parameters.

- To make them powerful enough to represent complicated
distributions, we consider some of the variables as hidden.

> In their general form, they are very complex to handle.

e Restricted Boltzmann Machines (RBM)

> RBMs are BMs that are restricted not to contain visible-visible
and hidden-hidden connections.

QO00O0 h

--‘h-"‘v v"’r-r"

H
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

> This makes them far easier to work with.

B. Leibe

19

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

RWNTH
Restricted Boltzmann Machines (RBM)

e Properties

~ Components QQ QD h
- Visible units v with offsets b X f:i;.’ N
- Hidden units h with offsets c .’iv i‘ vV

- Connection matrix W

> Energy Function of an RBM
=2 b Z cihy Z wisvihy
= —bTv —~ cTh ~h'Wv
~ This translates to a free energy formula

Fv)=-b'v - Z logz ehileitWiv)
i hi

B. Leibe

20

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

RWNTH
Restricted Boltzmann Machines (RBM)

e Properties (cont’d)

~ Because of their specific structure, QO OO0 h

Il‘h -*‘ '-" ﬂ'.l

visible and hidden units are N 'Z*l.’! 7
conditionally independent given one /ST AR |
another. Q0000 Vv

~ Therefore the following factorization property holds:

p(hlv) = Hp(hi\")
Hp(vj\h)-

p(vih)

B. Leibe

21

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

RWNTH
Restricted Boltzmann Machines (RBM)

e Interpretation of RBMs
~ Factorization property

plv) = []p(hilv)

p(vi) = [Tp(v;/b).

> RBMs can be seen as a product of experts specializing on
different areas.

- Experts detect negative constraints, if one of them returns
zero, the entire product is zero.

B. Leibe

22

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

RBMs with Binary Units

e Binary units
» v;and h; € {0,1} are considered Bernoulli variables.

~ This results in a probabilistic version of the usual neuron
activation function

plh; =1lv) = o(c; + W;v)
p(v; =1lh) = o(b; + W, h)

> The free energy of an RBM with binary units simplifies to

F(v)=-b'v— Z log (1 + e(CiJ“WiV)) .

B. Leibe

23

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

RBMs with Binary Units

e Binary units
> Free energy

F(v)=-b'v— Z log (1 + e(CiJ“WiV)) .

~ This results in the iterative update equations for the gradient
log-likelihoods

Olog p(v) (t) .
~ oW, = Ey [p(hilv) - v;] —v;” - a(W; - vit) 4+ ¢)
_alogp(V) = E,[p(hi|v)] — sigm(W; - vi")
C;
Olog p(v) (1)
-2 = Ealplo)] - v

B. Leibe

24

RBM Learning

e |terative approach

eve eve eve 'Y X
<vfhj>0 c® o <vih;> i)‘antasy
o ® O @ 0@ G ®

=0 t=1 t=2 t = infinity

~ Start with a training vector on the visible units. Then alternate
between updating all the hidden units in parallel and updating
all the visible units in parallel.

> This implements a Markov chain that we use to approximate the
gradient

0log p(v)
8wij

=< ’Uz',hj >0 — < vi,hj >

~ Better method in practice: Contrastive Divergence

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(D)
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

25

Slide credit: Geoff Hinton B. Leibe

Contrastive Divergence

®@0Oe
<V }?7 \<vr /
0 1
t=0 t=1
data reconstruction

e A surprising shortcut
~ Start with a training vector on the visible units.
> Update all the hidden units in parallel.
» Update the all visible units in parallel to get a “reconstruction”.
> Update the hidden units again (no further iterations).

~ This does not follow the gradient of the log likelihood.
But it works well [Hinton].

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

26

Slide credit: Geoff Hinton B. Leibe

Example

e RBM training on MNIST

» Persistent Contrastive Divergence with chain length 15

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

27

B. Leibe

Extension: Deep RBMs

Higher-level features:
Combinations of edges

Low-level features:
Edges

Y
NP

'w

l\'

Input: pixels

Image

n
F
.
Q
wid
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(D)
(&)
C
©
>
©
<

Built from unlabeled input.
28

Slide credit: Ruslan Salakhutdinov B. Leibe

