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e LSTMs
» Inspired by the design of memory cells
» Each module has 4 layers, interacting in a special way.

Image source: Christooher Qlah, github,
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Recap: Elements of LSTMs
¢ Output gate layer *"T
» Output is a filtered version of our
gate state.

First, apply sigmoid layer to decide
what parts of the cell state to
output.

» Then, pass the cell state through a
tanh (to push the values to be
between -1 and 1) and multiply it
with the output of the sigmoid gate.

v

o =0

hy = oy % tanh (C})

urce: Christopher Olah ithub.i

(W [herizy] + b))
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This Lecture: Advanced Machine Learning

* Regression Approaches f X 2 R
» Linear Regression -

» Regularization (Ridge, Lasso) 1941,
» Gaussian Processes

¢ Learning with Latent Variables
» Prob. Distributions & Approx. Inference
» Mixture Models
» EM and Generalizations

¢ Deep Learning
» Linear Discriminants
» Neural Networks
» Backpropagation & Optimization
» CNNs, RNNs, RBMs, etc.

B. Leibe

Recap: Elements of LSTMs

* Forget gate layer
» Look at h, ; and x, and output a
number between 0 and 1 for each
dimension in the cell state C, ;.
0: completely delete this,
1: completely keep this.

fe ﬂﬂ'-'-‘f-:fh Lag] + by)
¢ Update gate layer
» Decide what information to store
in the cell state.

» Sigmoid network (input gate layer)
decides which values are updated.

» tanh layer creates a vector of new
candidate values that could be
added to the state.

i =0 (Wilhey, ] + by)

Cy = tanh(We[h 1, 2] + bed
thub T

Source: Christooher Qlah,
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Recap: Gated Recurrent Units (GRU)

« Simpler model than LSTM -
» Combines the forget and input
gates into a single update gate z,.
~ Similar definition for a reset gate r,,
but with different weights.
» In both cases, merge the cell state
and hidden state.

z=o(W,-

[he—1.14])
[he—1s2e])
; = tanh (W -

» Empirical results re=o(Wr
» Both LSTM and GRU can learn much j,
longer-term dependencies than
regular RNNs he =
» GRU performance similar to LSTM
(no clear winner yet), but fewer
parameters.

[re = he_y.14])

(1—z) s hig + 24 % .'},

Source: ChristBarbS Ran ithub.i ing:L ST
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Topics of This Lecture

¢ Unsupervised Learning
> Motivation

* Energy based Models
» Definition
» EBMs with Hidden Units
» Learning EBMs

¢ Restricted Boltzmann Machines
» Definition
> RBMs with Binary Units
> RBM Learning
» Contrastive Divergence

B. Leibe
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Reducing the Need for Labeled Data

¢ Reducing Model Complexity

» E.g., GooglLeNet: big reduction in the number of parameters
compared to AlexNet (60M — 5M).

= More efficient use of the available training data.

e Transfer Learning

» ldea: Pre-train a model on a large data corpus (e.g., ILSVRC),
then just fine-tune it on the available task data.
» This is what is currently done in Computer Vision.

= Benefit from generic representation properties of the pre-
trained model.

¢ Unsupervised / Semi-supervised Learning

» ldea: Try to learn a generic representation from unlabeled data
and then just adapt it for the supervised classification task.

B. Leibe
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Energy Based Models (EBM)

¢ Energy Based Probabilistic Models

» Define the joint probability over a set of variables x through an
energy function

1 —Eix)
X) = —=¢€
px) ==
where the normalization factor Z is called the partition function

7— Z o Elx)
x

» An EBM can be learned by performing (stochastic) gradient
descent on the negative log-likelihood of the training data

£0.9)= 5 3 loga(a,)

Tn €D

PR
using the stochastic gradient — M{ﬁ_}’—J

B. Leibe
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Looking Back...

¢ We have seen very powerful deep learning methods.
» Deep MLPs
- CNNs
~ RNNs (+LSTM, GRU)

» (When used properly) they work very well and have achieved
great successes in the last few years.

e But...
> All of those models have many parameters.
» They need A LOT of training data to work well.
» Labeled training data is very expensive.
= How can we reduce the need for labeled data?

B. Leibe
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Topics of This Lecture
¢ Energy based Models
» Definition
> EBMs with Hidden Units
» Learning EBMs
B. Leibe 10
RWTH ACHET

Energy Based Models: Examples

¢ We have been using EBMs all along...
» E.g., Collections of independent variables

0000 vV

E(v) = Z Ji(vi;di)  where f; encodes the NLL of v
i

» E.g., Markov Random Fields

Q0000 v
MRF
E(v)= Zfi(?-’i;bi) + Z fij(viyvj; wij)
i [C))]

12

\mage Source: SM A Fslami et al
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EBMs with Hidden Units

¢ In the following

» We want to explore deeper models with (multiple layers of)
hidden units

» E.g., Restricted Boltzmann machines

» This will lead to Deep Belief Networks (DBN) that were popular
until very recently.

B. Leibe

EBMs with Hidden Units

¢ Expressing the gradient
» Free energy formulation of the joint probability

o Fix)
with 7= Zc”rl"".
x

p(x) = 7

» The negative log-likelihood gradient then takes the following

form
dlogp(x)  AF(x) -, OF(x%)
o~ ™
—
Positive Negative
phase phase

(The names do not refer to the sign of each term, but to their
effect on the probability density defined by the model)

B. Leibe
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Steps Towards a Solution...

¢ Monte Carlo approximation
» Estimate the expectation using a fixed number of model samples
for the negative phase gradient (“negative particles”)
 dlogp(x)  9F(x) 1 Z AF (%)
T e R
XEN
N

free energy avg. free energy
at current point for all other points

» With this, we almost have a practical stochastic algorithm for
learning an EBM.
> We just need to define how to extract the negative particles .
- Many sampling approaches can be used here.
- MCMC methods are especially well-suited.

And this is where all parts of the lecture finally come together...

17
B. Leibe
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EBMs with Hidden Units

¢ Hidden variable formulation
» In many cases of interest, we do not observe the examples fully
» Split them into an observed part x and a hidden part h:

plx) = Zp(x,h) = %Z o~ Filxh)
h

h

¢ Notation
» We define the free energy (inspired by physics)

Flx)=— lngE( E(x.h)

h

and write the joint probability as
Fix)
with  Z=3 e,
x

B. Leibe

L

p(x) =

Challenge for Learning

dlogp(x)  AF(x) ., OF(x)
o a2 g
e Problem
» Difficult to determine this gradient analytically.
» Computing it would involve evaluating
OF(x)
E
5]

i.e., the expectation over all possible configurations of the input
x under the distribution p formed by the model!

= Often infeasible.

B. Leibe
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Topics of This Lecture

¢ Restricted Boltzmann Machines
» Definition
» RBMs with Binary Units
» RBM Learning
» Contrastive Divergence

B. Leibe
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Restricted Boltzmann Machines (RBM)

¢ Boltzmann Machines (BM)
» BMs are a particular form of log-linear MRF, for which the free
energy is linear in its free parameters.

To make them powerful enough to represent complicated
distributions, we consider some of the variables as hidden.

» In their general form, they are very complex to handle.

v

¢ Restricted Boltzmann Machines (RBM)

> RBMs are BMs that are restricted not to contain visible-visible
and hidden-hidden connections.

R

X

» This makes them far easier to work with.

B. Leibe
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Restricted Boltzmann Machines (RBM)

¢ Properties (cont’d)

» Because of their specific structure,
visible and hidden units are
conditionally independent given one
another.

» Therefore the following factorization property holds:
p(hlv) = [[pthlv)
i
p(vlh) = ]p(e;h).
J

B. Leibe

©
T
g
JE|
=)
=
<
&
51
)
o
=
S
a
=
©
@
o
=
s
3
<

RBMs with Binary Units

¢ Binary units
» v;and h; € {0,1} are considered Bernoulli variables.

» This results in a probabilistic version of the usual neuron
activation function

plh: = 1|v) o(e; + Wiv)
plv; =1h) = o(b; + W, h)

» The free energy of an RBM with binary units simplifies to

Flv)=-blv Xlng (1+€("‘4+1""v)) )

B. Leibe
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Restricted Boltzmann Machines (RBM)

¢ Properties
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» Components QQhO*QO h
- Visible units v with offsets b R RR N
- Hidden units h with offsets ¢ ."‘6“."““ v
- Connection matrix W
» Energy Function of an RBM
E(v,h)=— X biv; — X cjhj — X wijvihy
i i ij
=-b'v-c'h-h"Wv
» This translates to a free energy formula
Flv)=-b'v— X log X ehileitWiv)
i hi
20
B. Leibe
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Restricted Boltzmann Machines (RBM)
¢ Interpretation of RBMs
» Factorization property
p(hlv) = [[pthlv)
i
p(vlh) = ]p(e;h).
J
» RBMs can be seen as a product of experts specializing on
different areas.
» Experts detect negative constraints, if one of them returns
zero, the entire product is zero.
; 2
B. Leibe
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RBMs with Binary Units

¢ Binary units
» Free energy

Flv)=-bTv-) log (1 + e(“-ﬂ"';v)) .

» This results in the iterative update equations for the gradient
log-likelihoods

_Ologp(v) _ _ RN ) OO
i, Ey [p(hi|v) - v;] —v;” - a(Wi - vV +¢;)
DBPY) iy v)] — sigm(W 1Y)
_Ologp(v) _ R0

[;’—bj = E.[p(vj|h)] v

B. Leibe
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RBM Learning

¢ |terative approach
o/no\ o;po\ \opo

ese

<‘F”‘l>// s e <\'!.'1_,->;/ a fantasy
i
ce e [we oe]
t=0 t=1 t=2 t = infinity

» Start with a training vector on the visible units. Then alternate
between updating all the hidden units in parallel and updating
all the visible units in parallel.

» This implements a Markov chain that we use to approximate the
gradient

dlog p(v)
dw;
» Better method in practice: Contrastive Divergence

=< v, by >0 — < v hy >

ide credit: Geoff Hinton B. Leibe

Example

e RBM training on MNIST
» Persistent Contrastive Divergence with chain length 15

B. Leibe
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Contrastive Divergence
eone eoe
<V <|',.i;‘.>‘
@ \WT Aw, = e(<vhp’ —<vh>h
t=0 t=1
data reconstruction

¢ A surprising shortcut
» Start with a training vector on the visible units.
» Update all the hidden units in parallel.
» Update the all visible units in parallel to get a “reconstruction”.
» Update the hidden units again (no further iterations).

v

This does not follow the gradient of the log likelihood.
But it works well [Hinton].

ide credit: Geoff Hinton B. Leibe

Extension: Deep RBMs

Higher-level features:
Combinations of edges

Low-level features:
Edges

Input: pixels

Built from unlabeled input.
28

lide credit: Ruslan Salakhutdinov B. Leibe




