Advanced Machine Learning
Lecture 18

Recurrent Neural Networks

21.01.2016

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de/

n
-
.
Q
P
=
(@)]
=
c
-
®
(b}
-
(D]
=
e
(@)
©
=
©
(D]
(&)
C
©
>
©
<

leibe®@vision.rwth-aachen.de

RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
» Regularization (Ridge, Lasso) J
> Gaussian Processes

M =9 =
st </

e Learning with Latent Variables

> Prob. Distributions & Approx. Inference w1
> Mixture Models %
. EM and Generalizations : .

e Deep Learning
> Linear Discriminants
> Neural Networks
~ Backpropagation & Optimization
> CNNs, RNNs, RBMs, etc.

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

B. Leibe

RWTH
Recap: Neural Probabilistic Language Model

“softmax” units (one per possible next word)
skip-layer K r
connections

units that leajn to predict the output word from features of the|input words

¢ 1

learned distributed learned distributed
encoding of word t-2 encoding of word t-1
1‘ table look-up 1‘ table look-up
index of word at t-2 index of word at t-1

e Core idea

> Learn a shared distributed encoding (word embedding) for the
words in the vocabulary.

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language
Model, In JMLR, Vol. 3, pp. 1137-1155, 2003.

B. Leibe

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

3

Image source: Geoff Hinton

Slide adapted from Geoff Hinton

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

Recap: word2vec

e Goal

> Make it possible to learn high-quality
word embeddings from huge data sets
(billions of words in training set).

e Approach
- Define two alternative learning tasks
for learning the embedding:
- “Continuous Bag of Words” (CBOW)
- “Skip-gram”

~ Designed to require fewer parameters.

B. Leibe

INPUT PROJECTION OUTPUT

w(t-2)

SUM

CBOW

wi(t+1)

N

w(t+2)

Skip-gram

w(t-2)

w(t-1)

w(t+1)

w(t+2)

4

Image source: Mikolov et al., 2015

Recap: word2vec CBOW Model

Input layer

e Continuous BOW Model

> Remove the non-linearity
from the hidden layer

- Share the projection layer
for all words (their vectors

C == O OQ]

[O

Output layer

- Hldden layer 5
are averaged) o IV o
O = O

= Bag-of-Words model Xop
(order of the words does not
matter anymore)

QO =
=~
<;:-.
T;'
(@]
fN—T

O w000l |
e
=
|

(O

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

5

Image source: Xin Rong, 2015

B. Leibe

RWTH
Recap: word2vec Skip-Gram Model

Output layer

[eNeNe]

e Continuous Skip-Gram Model
> Similar structure to CBOW

» Instead of predicting the current
word, predict words
within a certain range of

Vi

. O us

J

Input layer

the current word. g g
~ Give less weight to the more B .
distant words T [Wry 17
of — o
e Implementation V-dim

[eNeNe]

~ Randomly choose a number R € [1,C].

> Use R words from history and R words

from the future of the current word
as correct labels. o

= R+ R word classifications for each input. > V-dim
B. Leibe

[O am=
—

H
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

Image source: Xin Rong, 2015

Problems with 100k-1M outputs

Input layer

0 0 0]

e Weight matrix gets huge!
> Example: CBOW model
~ One-hot encoding for inputs

= Input-hidden connections are
just vector lookups.

x};\,

Output layer

> This is not the case for the
hidden-output connections! x,

~ State h is not one-hot, and
vocabulary size is 1M.

= W', has 300x 1M entries

0 0 0]

e Softmax gets expensive!

- Need to compute normaliza- ¢
tion over 100k-1M outputs

[O nm

(O

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

7

Image source: Xin Rong, 2015

B. Leibe

Recap: Hierarchical Softmax

n(w,,1)

w] w, w 3 W 4 w V-1 w V

e |dea
> Organize words in binary search tree, words are at leaves

~ Factorize probability of word w, as a product of node
probabilities along the path.

- Learn a linear decision function y = v, ;-h at each node to
decide whether to proceed with left or right child node.

= Decision based on output vector of hidden units directly.

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

8

Image source: Xin Rong, 2015

B. Leibe

Topics of This Lecture

e Recurrent Neural Networks (RNNs)

> Motivation
> Intuition

e Learning with RNNs
> Formalization
» Comparison of Feedforward and Recurrent networks
~ Backpropagation through Time (BPTT)

e Problems with RNN Training
~ Vanishing Gradients
> Exploding Gradients
> Gradient Clipping

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

B. Leibe

RWNTH
Recurrent Neural Networks

one to one one to many many to one many to many many to many
f Pt f Pt Pt f
f f Pt ! R i Pt

e Up to now

~ Simple neural network structure: 1-to-1 mapping of inputs to
outputs

e This lecture: Recurrent Neural Networks
» Generalize this to arbitrary mappings

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

10

Image source: Andrej Karpathy

B. Leibe

CHEN
UNIVERSITY

Application: Part-of-Speech Tagging

LEgEFId:I ck the legend words to toggle highlighting. Get help on this page

MNoun - Verb - Adverb _ Preposition Article Interjection

Andrew - Maria thought - jobs were secure after the - argument with the

customer , . alas ! - news is fast approaching - . especially after - viciously
insulted the customer on - media .

n
F
.
Q
-
=
(@)}
=
c
| —
®
(b}
|
(0D}
=
e
(@)
©
=
©
(¢b}
(&)
c
©
>
©
<

11

Image source: http://rewordify.com

B. Leibe

Application: Predicting the Next Word

INPUT (t) OUTPUT (t)
Go gle cat sat on the U n
=
5 CONTEXT (t) cat sat on the mat
cat sat on the mat poem
cat sat on the mat story
—
> 7 cat sat on the mat research
= Learn more
—
e
—
.

CONTEXT (t-1)

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur, Recurrent Neural Network
Based Language Model, Interspeech 2010.

n
F
.
Q
P
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

12

Image source: Mikolov et al., 2010

Slide credit: Andrej Karpathy, Fei-Fei Li B. Leibe

http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf

French words

Application: Machine Translation

English words

..

e

> =

N

T T]

B C

<EQS>

/‘://Y\‘A 1
> > S

A A A A A

<EQS> w X Y Z

|. Sutskever, O. Vinyals, Q. Le, Sequence to Sequence Learning with Neural Networks,

NIPS 2014.

n
F
.
Q
wid
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

Slide credit: Andrej Karpathy, Fei-Fei Li

B. Leibe

papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

RNNSs: Intuition

e Example: Language modeling
> Suppose we had the training sequence “cat sat on mat”

> We want to train a language model

p(next word | previous words)

~ First assume we only have a finite, 1-word history.
» l.e., we want those probabilities to be high:
— p(cat | <S>)

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

Slide credit: Andrej Karpathy, Fei-Fei Li B. Leibe

14

RNNSs: Intuition

e Vanilla 2-layer classification net

10,001D class scores
(Softmax over 10k
words and a special

<END> token)

oD v

Hidden layer
<— (e.g., 500D vectors)

h4 — INnax {O, Wth4}

y0 y y2 y3 y4 | <—

hO h1 h2 h3 h4

Word embedding
x0 x1 X2 X3 X4 |<— (300D vector for

<START> il‘.catﬂ iisat'ﬂ il‘.on'l! timatil
each word)

n
F
.
Q
-
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(D)
(&)
C
©
>
©
<

15

Slide credit: Andrej Karpathy, Fei-Fei Li B. Leibe

RNNSs: Intuition

e Turning this into an RNN (wait for it...)

10,001D class scores
(Softmax over 10k
words and a special

<END> token)

N TN A

Hidden layer
<— (e.g., 500D vectors)

h, = max {0, W x4}

y0 V1 y2 y3 y4 | <—

hO h1 h2 h3 h4

e

%0 X1 X2 X3 X4 |e— (300D vector for
s “cat” “sat” “on” L each word)

n
F
.
Q
wid
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

16

B. Leibe Image source: Andrej Karpathy

Slide credit: Andrej Karpathy, Fei-Fei Li

RNNSs: Intuition

e Turning this into an RNN (done!)

y0 y1 y2 y3 y4
: e
:
2 hO—> h1 > h2— h3 — h4
: R
=
ki x0 X1 X2 X3 x4
e START> “cat” “sat” “on” “‘mat’
S
2

B. Leibe

Slide credit: Andrej Karpathy, Fei-Fei Li

10,001D class scores
(Softmax over 10k
words and a special
<END> token)

Y4 = Whyh4

€

Hidden layer
<— (e.g., 500D vectors)

h4 = INax {0, Wth4
+Wpnhs}
Word embedding

<— (300D vector for
each word)

17

Image source: Andrej Karpathy

RN ERaH

RNNs: Intuition

e Training this on a
lot of sentences y0
would give us a
language model. T

-

g

4 * le, awayto ho
=] predict

é previous wO’rds)

<

3

p=

©

: x0
C <START>
®

>

©

<

18

Slide credit: Andrej Karpathy, Fei-Fei Li B. Leibe

RNNSs: Intuition

e Training this on a
lot of sentences

would give us a
language model.

e |l.e., away to
predict

hO

p(next word |
previous words)

n
F
.
Q
P
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

<START=

14

Slide credit: Andrej Karpathy, Fei-Fei Li

B. Leibe

sample!

RNNSs: Intuition

e Training this on a
lot of sentences

would give us a
language model.

e |l.e., away to
predict

p(next word |
previous words)

n
F
.
Q
-
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

B. Leibe

Slide credit: Andrej Karpathy, Fei-Fei Li

n
F
.
Q
-
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

RNNSs: Intuition

e Training this on a
lot of sentences
would give us a
language model.

e |l.e., away to
predict

p(next word |
previous words)

Slide credit: Andrej Karpathy, Fei-Fei Li

yO y1

hO —>| h1

%0 X X2

<START> “Cat” “Sat”
B. Leibe

sample!

21

RNNSs: Intuition

e Training this on a
lot of sentences
would give us a
language model.

e |l.e., away to
predict

p(next word |
previous words)

n
F
.
Q
-
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

Slide credit: Andrej Karpathy, Fei-Fei Li

y0 y y2

hO —{ h1 h2

%0 X1 X2

<START> “Cat" “Sat”
B. Leibe

22

n
F
.
Q
-
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

RNNSs: Intuition

e Training this on a
lot of sentences
would give us a
language model.

e |l.e., away to
predict

p(next word |
previous words)

Slide credit: Andrej Karpathy, Fei-Fei Li

y0 y1 y2

hO — h1 h2

x0 X1 X2 X3

‘cat’ ‘sat” ‘on”
B. Leibe

RNNSs: Intuition

e Training this on a
lot of sentences y0 y y2 y3
would give us a
language model. T T T T
e |.e., away to

hO | h1 » h2 —{ h3

predict

p(next word |

previous words) I I I I

%0 X1 X2 X3

<START> “Cat” lisat" on

3 n

n
F
.
Q
-
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(D)
(&)
C
©
>
©
<

24

Slide credit: Andrej Karpathy, Fei-Fei Li B. Leibe

n
F
.
Q
-
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(D)
(&)
C
©
>
©
<

RNNSs: Intuition

e Training this on a
lot of sentences
would give us a
language model.

e |l.e., away to
predict

p(next word |
previous words)

Slide credit: Andrej Karpathy, Fei-Fei Li

sample!
y0 y1 y2 y3
hO —{ h1 h2 —> h3
%0 X1 X2 X3 x4
‘cat” ‘sat” ‘on” “mat”
B. Leibe -

n
F
.
Q
-
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(D)
(&)
C
©
>
©
<

RNNSs: Intuition

e Training this on a
lot of sentences
would give us a
language model.

e |l.e., away to
predict

p(next word |
previous words)

Slide credit: Andrej Karpathy, Fei-Fei Li

RWI'H ACK jL N
Hmm \ L

samples <END>? Done!

yO y1 y2 y3 y4
hO — h1 h2 h3 —> h4
x0 X1 X2 X3 x4
<START> “Cat” “Sat" iﬂon" “mat”
B. Leibe “v

Topics of This Lecture

e Learning with RNNs
> Formalization
» Comparison of Feedforward and Recurrent networks
~ Backpropagation through Time (BPTT)

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

27

B. Leibe

RNNs: Introduction

e RNNs are regular NNs whose
hidden units have additional
forward connections over time

> You can unroll them to create T T T T
a hetwork that extends over
time. i

> When you do this, keep in mind T T T T

that the weights for the hidden
are shared between temporal
layers.

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

28

Image source: Andrej Karpathy

B. Leibe

RNNs: Introduction

e RNNs are very powerful,
because they combine two
properties:

~ Distributed hidden state that T T T T

allows them to store a lot of
information about the past

efficiently.

> Non-linear dynamics that allows T T T T
them to update their hidden
state in complicated ways.

e With enough neurons and time, RNNs can compute
anything that can be computed by your computer.

H
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

29
Slide credit: Geoff Hinton B. Leibe Image source: Andrej Karpathy

RWNTH
Feedforward Nets vs. Recurrent Nets

 Imagine a feedforward network

> Assume there is a time delay
of 1 in using each connec- time %,
tion.

= This is very similar to how
an RNN works.

> Only change: the layers time ¢,
share their weights.

= The recurrent net is just a feedforward net that keeps
reusing the same weights.

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

30

B. Leibe

RWTH
Backpropagation with Weight Constraints

e |t is easy to modify the backprop algorithm to
incorporate linear weight constraints

- To constrain w; = wy , We start with the same initialization
and then make sure that the gradients are the same:

le — V’wg

> We compute the gradients as usual and then use
oOF OF
- _|_ -
811)1 8?1)2

for both w, and w,.

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

31

Slide adapted from Geoff Hinton B. Leibe

Backpropagation Through Time (BPTT)

e Formalization

yt—l yt yt+1
> Inputs X, 4 T
ht—l h ht+1
> Outputs Y, O ‘@ P
: . W
. Hidden units h, — @ o @ W e
" ® > @ o
> Initial state h, O '®) 0
. . X1 Xy Xt _J
> Connection matrices r
-W,, (o000 (eoee| (0o00)
- Why
— Whh

. Configuration h; =0 (W ,x; + Wy hy 1 +)
y:+ = softmax (Wp,hy)

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

32

B. Leibe Image source: Richard Socher

RWTH
Recap: Backpropagation Algorithm

OE _ Oy; 0F _ (1— .)8_E
0z; N 0z; 0y, — Y & 0y

Oy ; Oy; 0z waa_zj

8w7;j B (’9fw@-j 823' B yza
e Efficient propagation scheme
> vy, is already known from forward pass! (Dynamic Programming)

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

= Propagate back the gradient from layer ;7 and multiply with y..
33

Slide adapted from Geoff Hinton B. Leibe

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(D)
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

RWTH
Backpropagation Through Time (BPTT)

A A

| hg h; h, ; h,
P > P P >
Whn Whn Wi
Wa:h W:ch Wa:h
| | |) | | |
X1 Xt—1 Xt

e Error function
» Computed over all time steps: F = Z By
1<t<T

B. Leibe

34

Backpropagation Through Time (BPTT)

S L i

P > > R R
W
W, ‘ ‘
X1 Xt—1 X¢

e Backpropagated gradient
~ OE 0E; Ohy
J* 8wf,;j N 8ht 8107;3'

» For weight w,

n
F
.
Q
-
lE
(@)]
=
c
| -
(qv]
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

' 35
B. Leibe

Backpropagation Through Time (BPTT)

)jj lEl Yt—llEt_l Tl Et
B dh
hg h, _Laht—l @
> > .. > <—> N
Wi J
X1 Xt—1 X¢

e Backpropagated gradient
~ 0E OE; Ohy +8Et Oh; 0Oh;_;
J* 8w7;j N Oht 8w7;j 8ht 8ht_1 8”(1)7;3'

» For weight w,

n
F
.
Q
-
lE
(@)]
=
c
| -
(qv]
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

' 36
B. Leibe

RWTH
Backpropagation Through Time (BPTT)

)f IEl YI_IIEt—l YtlEt
— 8411)_ aht_l 81’11; I
hO 81’].1> h > p .(91'1:_2> oh;_1 1 @ >
W J
W | |
I] | I] | I |
X1 Xt—1 Xt

e Backpropagated gradient
OE 0E, Oh, N OF; Oh, aht_1+
8wij N Bht E)wij Bht Oht_l 8w7;j

In general: OF _ Z (aEt Ohy thk)
. 8’21)@3 1<k<t 8ht Bhk aww

- For weight w,:

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

RWTH
Backpropagation Through Time (BPTT)

yi1 lEl Yt_llEt—l YtlEt

— 5411)_*[ohy_ oh; I
hg Eahl> :h1> > E(’?ht_g> Eaht—l 1 @ >
Wi J
|] | |) | | |
X1 Xt—1 Xt

e Analyzing the terms

| OF B OFE, Oh; O hy,
» For weight W ;8 8’(1)7;3’ — 1<Zk<t (8ht Ohp 8wz’j

- This is the “immediate” partial derivative (with h, , as constant)

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(D)
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

38

RWTH
Backpropagation Through Time (BPTT)

— dhg Ohy_ _Oh; I
ho eahl, h > .. .Eah _2> — > @ >
W J
I] | |] | | |
X1 Xt—1 Xt

e Analyzing the terms
OF OFE; Oh; OTh
- For weight w,: = Z (il -)

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(D)
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

8’wz'j 1<k<t Ohy Oy, (')’w?;j
- Propagation term: Ohp H oh;_;

t>i>k

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

RWTH
Backpropagation Through Time (BPTT)

e Summary
- Backpropagation equations

1<t<T
OF 5 (6Et Oh; 8+hk)
8’(1)7;3' | <k<t 8ht ahk 8w?;j
Ohy
— = w, h,
= 1 a — =]| Windiag (o' (hi-))
t>i>k t>1>k

- Remaining issue: how to set the initial state h?
= Learn this together with all the other parameters.

B. Leibe

40

RWTHAACHEN

Topics of This Lecture

e Problems with RNN Training
> Vanishing Gradients
> Exploding Gradients
> Gradient Clipping

n
F
.
Q
P
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

41

B. Leibe

Problems with RNN Training

e Training RNNs is very hard

~ As we backpropagate through the layers, the magnitude of the
gradient may grow or shrink exponentially

= Exploding or vanishing gradient problem!

> In an RNN trained on long sequences (e.g., 100 time steps) the
gradients can easily explode or vanish.

> Even with good initial weights, it is very hard to detect that the
current target output depends on an input from many time-steps
ago.

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

42

B. Leibe

RWTH
Exploding / Vanishing Gradient Problem

e Consider the propagation equations:

8w@-j N 8ht 8hk 8wz-j

1<k<t
Oh, H
— = W, diag (o’ (h;_1))
Ohy, t2i>k t>i>k
l
— (W;Th)

- if t goes to infinityand [= ¢t — k.

= We are effectively taking the weight matrix to a high power.

~ The result will depend on the eigenvalues of W, ,.
- Largest eigenvalue > 1 = Gradients may explode.
- Largest eigenvalue < 1 = Gradients will vanish.
- This is very bad...

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

43

B. Leibe

Why Is This Bad?

e Vanishing gradients in language modeling

- Words from time steps far away are not taken into consideration
when training to predict the next word.

e Example:

> ,Jane walked into the room. John walked in too. It was late in
the day. Jane said hi to “

= The RNN will have a hard time learning such long-range
dependencies.

n
F
.
Q
P
.E
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

44

Slide adapted from Richard Socher B. Leibe

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

Gradient Clipping

e Trick to handle exploding gradients

~ If the gradient is larger than a threshold, clip it to that
threshold.

Algorithm 1 Pseudo-code for norm clipping the gra-
dients whenever they explode

~ OE
00
8

> threshold then

threshold ~
el &

[k

end if

> This makes a big difference in RNNs

Slide adapted from Richard Socher B. Leibe

45

Gradient Clipping Intuition

e Example
~ Error surface of a single RNN neuron
» High curvature walls
> Solid lines: standard gradient descent trajectories
» Dashed lines: gradients rescaled to fixed size

B. Leibe

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(D)
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

46

Image source: Pascalu et al., 2013

Slide adapted from Richard Socher

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

RWNTH
References and Further Reading

e RNNSs

> R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training
recurrent neural networks, JMLR, Vol. 28, 2013.

> A. Karpathy, The Unreasonable Effectiveness of Recurrent
Neural Networks, blog post, May 2015.

B. Leibe

47

http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

