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Recap: Neural Probabilistic Language Model

“softmax” units (one per possible next word) |

skip-layer
connections,

units that learn to predict the output word from features of thelinput words |

leamed distributed
encoding of word t-2
table look-up

index of word at -2

e Core idea

» Learn a shared distributed encoding (word embedding) for the
words in the vocabulary.

learned distributed
encoding of word t-1
table look-up

index of word at t-1

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language
Model, In JMLR, Vol. 3, pp. 1137-1155, 2003.

. 3
lide adaoted from Geoff Hinton B. Leibe

Image source: Geoff Hintor
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RWTH ACHET
Recap: word2vec CBOW Model
. B Input layer
« Continuous BOW Model g e
> Remove the non-linearity . N
from the hidden layer L W
» Share the projection layer 2 o
for all words (their vectors . Output laye
. \ Hidden layer ¥
are averaged) & SUM__—
Pl id
= Bag-of-Words model o ] W Wiy
(order of the words does not H
matter anymore) L edi
(= -dm
W,
.('x V-dim
5
B. Leibe lmage source: Xin Rong, 201
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This Lecture: Advanced Machine Learning
 Regression Approaches f X = R
» Linear Regression -
» Regularization (Ridge, Lasso) 199
» Gaussian Processes

¢ Learning with Latent Variables
» Prob. Distributions & Approx. Inference
» Mixture Models
» EM and Generalizations

¢ Deep Learning
» Linear Discriminants
» Neural Networks
» Backpropagation & Optimization
» CNNs, RNNs, RBMs, etc.

AREN

B. Leibe
RWTH CHE
Recap: word2vec -
e Goal A
» Make it possible to learn high-quality
word embeddings from huge data sets ' sum
(billions of words in training set). 5 L
4
e Approach CBOW
-~ Define two alternative learning tasks - -
for learning the embedding: A
- “Continuous Bag of Words” (CBOW) a4 |
- “Skip-gram”
» Designed to require fewer parameters. -
Skip-gram e
4w
’ 4
B. Leibe Jmage source: Mikolov et al.. 201
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RWTH/ACHEN
Recap: word2vec Skip-Gram Model

¢ Continuous Skip-Gram Model H Output laver
» Similar structure to CBOW

» Instead of predicting the current
word, predict words JW
within a certain range of [Putiaver

Ao,

Hidden layer/ /o

the current word. 3 ~ vl

» Give less weight to the more a o ."“‘ i
distant words " Wear E AN i

I
¢ Implementation Vidim
~ Randomly choose a number R € [1,C].
» Use R words from history and R words i

from the future of the current word
as correct labels.

= R+ R word classifications for each input.
B. Leibe

&

CxT.dim
6

Image source: Xio Rone, 201



http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Problems with 100k-1M outputs
 Weight matrix gets huge! [\loput layer
» Example: CBOW model

» One-hot encoding for inputs

= Input-hidden connections are
just vector lookups.

[exsxe]

=

PN

=

\ Hidden layer - UtPut ave

This is not the case for the |
hidden-output connections! o B Woy h, Wi
State h is not one-hot, and H Y
vocabulary size is 1M. b Nedim
= W'y, -has 300x 1M entries i

v
Crmsxexs)|

[esgasoo]

v

W,/
¢ Softmax gets expensive!

» Need to compute normaliza- "+
tion over 100k-1M outputs

CxT=dim

7
B. Leibe

Image source: Xin Rone, 201

Topics of This Lecture

¢ Recurrent Neural Networks (RNNs)
» Motivation
> Intuition

¢ Learning with RNNs
» Formalization
» Comparison of Feedforward and Recurrent networks
» Backpropagation through Time (BPTT)

¢ Problems with RNN Training
» Vanishing Gradients
» Exploding Gradients
» Gradient Clipping

B. Leibe
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Application: Part-of-Speech Tagging

Legend:

Noun - Verb |Adjective Adverb _ Preposition Article Interjection

Get help

Andrew and Maria thought their jobs were secure after the rancorous argument with the
customer , . alas ! Bad news is fast approaching - . especially after - viciously

insulted the customer on social media .

B. Leibe
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Recap: Hierarchical Softmax

niw.1)

n(ws.2)

(ws.3)

¢ |dea
» Organize words in binary search tree, words are at leaves
~ Factorize probability of word w), as a product of node
probabilities along the path.
- Learn a linear decision function y = v,,,;-h at each node to
decide whether to proceed with left or right child node.

= Decision based on output vector of hidden units directly.
8

Image source: Xin Rone, 201
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Recurrent Neural Networks
one to one

one to many many to one

T
L
B

Up to now

» Simple neural network structure: 1-to-1 mapping of inputs to
outputs

many to many many to many

a0 00
A OO O]
oog oo Hod

This lecture: Recurrent Neural Networks
» Generalize this to arbitrary mappings
10

B. Leibe Jmage source: Andrei Karpath,
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RWTH/ACHEN
Application: Predicting the Next Word

Goog

le catsatonthe X n
cal sat on the mat

cal sat on the mat poem

cat saton the mat story

cal sal on the mat research

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur, Recurrent Neural Network
Based Language Model, Interspeech 2010.

12

ide credit: Andrei Karpathy, Fei-Feili LA Jmage source: Mikoloy et al, 201



http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
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Application: Machine Translation

French words English words

A 4

A 8 € <E0S> w X v z

I. Sutskever, O. Vinyals, Q. Le, Sequence to Sequence Learning with Neural Networks,
NIPS 2014.

ide credit: Andrej Karpathy, Fei-Feilj B. Leibe

RNNs: Intuition

¢ Vanilla 2-layer classification net

10,001D class scores
(Softmax over 10k
words and a special
<END> token)
¥a=W;, hy

Hidden layer
<— (e.g., 500D vectors)

hy = max {0, W, x,}

Word embedding
,,X4,, <— (300D vector for
e each word)

ide credit: Andrei Karpathy, Fei-Feilj B. Leibe

Advanced Machine Learning Winter’15

RNNs: Intuition

¢ Turning this into an RNN (done!)

10,001D class scores
(Softmax over 10k
words and a special
<END> token)

¥i= W, hy

Hidden layer
<— (e.g., 500D vectors)
hy = max {0, W_,x,4

LWoha )

Word embedding
,,X4,, <— (300D vector for
et each word)

B. Leibe
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RNNs: Intuition

¢ Example: Language modeling
» Suppose we had the training sequence “cat sat on mat”

» We want to train a language model

p(next word | previous words)

» First assume we only have a finite, 1-word history.
» l.e., we want those probabilities to be high:
— pleat | <S>)
sat | cat)
on | sat)
mat | on)

- n(
= n(
- p(
— p(<E> | mat)

ide credit: Andrej Karpathy, Fei-Feilj B. Leibe

RNNs: Intuition

¢ Turning this into an RNN (wait for it...)

10,001D class scores
(Softmax over 10k
words and a special
<END> token)
¥a=W;, hy

Hidden layer
<— (e.g., 500D vectors)
hy = max {0, W, x,}

Word embedding
,,X4,, <— (300D vector for
et each word)

16

Image source: Andrei Karpath,

ide credit: Andrei Karpathy, Fei-Feilj B. Leibe
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RNNs: Intuition

¢ Training this on a
lot of sentences
would give us a —5
language model.

e l.e., awayto
predict

p(next word | L
previous words)

x0

ide credit: Andrei Karpathy, Fei-Feili LA



papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
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RNNs: Intuition
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¢ Training this on a
ot of sentences | Y0
would give us a —5
language model.
e l.e., awayto ho
predict sample!
p(next word | I
previous words)
X0 x1
<START> "cal"
19
ide credit: Andrej Karpathy, Fei-Feilj B. Leibe
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RNNs: Intuition
¢ Training this on a
lot of sentences | ¥0 y1
would give us a —
language model.
e le., a way to ho —! h1 sample!
predict
p(next word | —
previous words)
%0 x1 X2
sy “cat” “sat”
" 21
ide credit: Andrei Karpathy, Fei-Feilj B. Leibe
RWTH ACHET
RNNs: Intuition
¢ Training this on a
lot of sentences | Y0 ¥ y2
wouldgiveusa “—— 4 Y- sample
language model.
¢ l.e., awayto ho | 1 = 12
predict
p(next word | — L | L
previous words)
%0 x1 x2 x3
ST “cat” “sat” “on”

ide credit: Andrei Karpathy, Fei:Feili

B. Leibe
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RNNs: Intuition
¢ Training this on a
lot of sentences | Y0 v
would give us a —— 5
language model.
o I.e.,.awayto ho ! h1
predict
p(next word | 1 L
previous words)
x0 xi
sTAaT “cat”
ide credit: Andrej Karpathy, Eei-Feilj B. Leibe 20
RWTH CHE
RNNs: Intuition
¢ Training this on a 1 ] [ ]
lot of sentences | YO y1 y2
would giveusa 4 4 b5~
language model.
o I.e.,fawayto ho =l 1 = 2
predict
p(next word | —J 1 L
previous words)
x0 x1 x2
e “cat” “sat”
ide credit: Andrei Karpathv, Fei-Feilj B. Leibe 2
RWTH ACHET
RNNs: Intuition
¢ Training this on a 1 1 1 [ ]
lot of sentences | YO y1 y2 y3
would give us a 5 —5—
language model.
. I.e.,fa\wayto ho —f n1 Ll 12 L ha
predict
p(next word | —_ —
previous words) T T
X0 x1 X2 x3
R “cat” “sat” “on”
ide credit: Andrei Karpathy, Fei-Feilj B. Leibe u
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RNNs: Intuition
¢ Training this on a
lot of sentences | Y9 ¥ y2 y3
would give us a ——
language model.

e l.e., awayto
predict

p(next word | —
previous words)

sample!

RWTHAACHE

bty “cat” “sat” “on

x4

mat”

Slide credit: Andrej Karpathy, Fei-Feili B. Leibe

Topics of This Lecture

e Learning with RNNs
» Formalization
» Comparison of Feedforward and Recurrent networks
» Backpropagation through Time (BPTT)

B. Leibe

RNNs: Introduction

because they combine two

» Distributed hidden state that T T T
allows them to store a lot of
information about the past ™ [
efficiently.

Non-linear dynamics that allows
them to update their hidden
state in complicated ways.

v

¢ With enough neurons and time, RNNs can compute
anything that can be computed by your computer.

Slide credit: Geoff Hinton LA

¢ RNNs are very powerful, —= =

properties: L..| L 1L

Image source: Andrei Karpath)

29
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RNNs: Intuition
samples <END>? Done!
¢ Training this on a
lot of sentences | Y0 ¥l y2 y3 y4

wouldgiveusa —F— 5 I L1 L

language model.

e l.e., awayto
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: hO |+ h1 | h2 |+ h3 | h4
predict

p(next word | ] L L L

previous words)
x0 x1 x2 x3 x4
o “cat” “sat” “on” “mat"
ide credit: Andrej Karpathy, Eei-Feilj B. Leibe “v
RWTH CHE
RNNs: Introduction
* RNNs are regular NNs whose —= =
hidden units have additional
forward connections over time L I By

» You can unroll them to create b L L i
a network that extends over
time. ™[

» When you do this, keep in mind T T T T
that the weights for the hidden Al Al B o [ b
are shared between temporal
layers.

; 28
B. Leibe \nage source: Andrei Karoath
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Feedforward Nets vs. Recurrent Nets

¢ Imagine a feedforward network

» Assume there is a time delay
of 1 in using each connec-
tion.

= This is very similar to how
an RNN works.

» Only change: the layers
share their weights.

time ¢,

time ¢,

time ¢,

= The recurrent net is just a feedforward net that keeps
reusing the same weights.

B. Leibe
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Backpropagation with Weight Constraints

RWTH/CET
Backpropagation Through Time (BPTT)

¢ |t is easy to modify the backprop algorithm to
incorporate linear weight constraints

¢ Formalization

» Inputs X,

» To constrain w; = wu, , We start with the same initialization » Outputs Y,

and then m;l'(e surevthat the gradients are the same: . Hidden units h,
w = Vur

* 2 » Initial state h,

» We compute the gradients as usual and then use

. . Connection matrices
OE = OF

v

-W,
P Bt h
Suy S -W,
y
for both w, and w,. - W,

Configuration h; = (Wnx; + Wihe_y +b)

v

¥ = softmax (W, hy)

Advanced Machine Learning Winter’15
Advanced Machine Learning Winter’15

32

Slide adapted from Geoff Hinton B. Leibe B. Leibe

Image source: Richard Soch
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Backpropagation Through Time (BPTT)

y'lL y“‘lt B y’lg

Recap: Backpropagation Algorithm

OF _0u0E _ . 0F
dz; - dzy Ay = i) Ay
hy h, hy_, h,
oF e oE oF Wo Wan | [ W
N 2O N, 9B I I I
dyi z,: Jy; Oz; ZJ: i dz; W W W
X Xi—| X

9E 8z OE _ OE

dw;;  Ow;; 0z yié?,:j
o Efficient propagation scheme
» y; is already known from forward pass! (Dynamic Programming)

= Propagate back the gradient from layer j and multiply with y;.
33

¢ Error function
» Computed over all time steps: F = Z E.

1=

Advanced Machine Learning Winter’15
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lide adaoted from Geoff Hinton B. Leibe B. Leibe

RWTH ACHET
Backpropagation Through Time (BPTT)

A lf_' y"‘lL._ y‘-l E,

hy h, by

RWTH ACHET
Backpropagation Through Time (BPTT)

A lf_' y"‘lL._ y‘-l E,

dh,
hpy h, @ hy
W U

¢ Backpropagated gradient
OE _ 9E;, dh,
Qw;; ~ Bh, Bw;;

¢ Backpropagated gradient
JE _ OE; oh, OE, dh, dh,
Jw;; ~ 8h, Ow;;  Ohy Ohy_y Ow;;

» For weight w;;: » For weight w;;:

w ©
b T
& 2
IS IS
=) =)
= =
£ £
& I
3 51
3 3
o o
= =
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= =
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3 8
3 3
< <

B. Leibe B. Leibe
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Backpropagation Through Time (BPTT)

Y:-\l;
E_

* Backpropagated gradient
F iaht w.: JE _ OE, dh
» For weight w;;: E)_w,;J = oh, By

> In general: — =
w;;

9E (3E, dhy E)fhk)
T Ohy Ohy. dw;;

% oh, dh,_,
dh; Oh;_y Owy;

RWTH CHE
Backpropagation Through Time (BPTT)

YIlL

¢ Analyzing the terms

i JdE OFE, Oh; 8T hy,
» For weight w;;: 311:,-_, = 1;.4, (Bh, m Bw,j
P tion t Ihy h;
» Propagation term: —— = _—
pag (?fz,; ik (}h,‘_l 39
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Topics of This Lecture

¢ Problems with RNN Training
» Vanishing Gradients
» Exploding Gradients
» Gradient Clipping

B. Leibe

41
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Backpropagation Through Time (BPTT)

Y:-\l;
E_

¢ Analyzing the terms

- For weight w;;:

dE OF,; Ohy 97 Iy
oy Ohy Ohy. Ow,;
1<k<t

» This is the “immediate” partial derivative (with h;_, as constant)

i

38

RWTH CHE
Backpropagation Through Time (BPTT)

e Summary
» Backpropagation equations

E=)Y B

Legey

OE (35, ah, a*h,..)
1<k<t

w;; = %ﬁ w;;
Ohy dh; 1—[ T 4 i
== = W, diag (o' (hi_1))
Oh t>ink dhi—, t>ink

» Remaining issue: how to set the initial state h,?
= Learn this together with all the other parameters.

40

B. Leibe
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Problems with RNN Training

¢ Training RNNs is very hard
» As we backpropagate through the layers, the magnitude of the
gradient may grow or shrink exponentially
= Exploding or vanishing gradient problem!

» In an RNN trained on long sequences (e.g., 100 time steps) the
gradients can easily explode or vanish.

» Even with good initial weights, it is very hard to detect that the
current target output depends on an input from many time-steps
ago.

42
B. Leibe
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Exploding / Vanishing Gradient Problem

¢ Consider the propagation equations:
OE (35 ahy a*h,l.)
Jw;j e by Ohy, dw;;

dh, oh;
Ohi f>];!vl. oh;y

t>ixk
T
= (Wﬁh)
» if t goes to infinity and [ =t — k.

= We are effectively taking the weight matrix to a high power.
» The result will depend on the eigenvalues of W .

- Largest eigenvalue > 1 = Gradients may explode.

- Largest eigenvalue < 1 = Gradients will vanish.

- This is very bad...

RWTHAACHE

= H W, diag (¢'(h;_1))
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43
B. Leibe
RWTH CHE
Gradient Clipping
¢ Trick to handle exploding gradients
» If the gradient is larger than a threshold, clip it to that
threshold.
Algorithm 1 Psendo-code for norm elipping the gra-
dients whenever they explode
- a&
g 77
if ||g| = threshold then
g ””‘"-:‘i“h[g
end if
» This makes a big difference in RNNs
) 45
lide adapted from Richard Socher B. Leibe
RWTH ACHET
References and Further Reading
¢ RNNs
» R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training
recurrent neural networks, JMLR, Vol. 28, 2013.
» A. Karpathy, The Unreasonable Effectiveness of Recurrent
Neural Networks, blog post, May 2015.
47
B. Leibe

Advanced Machine Learning Winter’15

©
-
o
2
=
=)
=
£
&
51
a
o
=
S
<]
=
o
5
o
=
8
3
<

Why Is This Bad?

¢ Vanishing gradients in language modeling

» Words from time steps far away are not taken into consideration
when training to predict the next word.

e Example:

» ,Jane walked into the room. John walked in too. It was late in
the day. Jane said hi to “

= The RNN will have a hard time learning such long-range
dependencies.

44
de adapted from Richard Socher B. Leibe

Gradient Clipping Intuition

e -2.0
26 —24 =22

-28 “2655¢ of b

EECE—

e Example
» Error surface of a single RNN neuron
» High curvature walls
» Solid lines: standard gradient descent trajectories

» Dashed lines: gradients rescaled to fixed size
46

B. Leibe Image source: Pascaly et al.. 201

ide adapted from Richard Socher



http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

