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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Gaussian Processes 
 

• Learning with Latent Variables 

 Prob. Distributions & Approx. Inference 

 Mixture Models 

 EM and Generalizations 
 

• Deep Learning 

 Linear Discriminants 

 Neural Networks 

 Backpropagation & Optimization 

 CNNs, RNNs, RBMs, etc. 
B. Leibe 
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Recap: Neural Probabilistic Language Model 

 

 

 

 

 

 

 
 

• Core idea 

 Learn a shared distributed encoding (word embedding) for the 

words in the vocabulary. 

3 
B. Leibe Slide adapted from Geoff Hinton Image source: Geoff Hinton 

Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, A Neural Probabilistic Language  

Model, In JMLR, Vol. 3, pp. 1137-1155, 2003. P
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Recap: word2vec 

• Goal 

 Make it possible to learn high-quality 

word embeddings from huge data sets 

(billions of words in training set). 
 

• Approach 

 Define two alternative learning tasks 

for learning the embedding: 

– “Continuous Bag of Words” (CBOW) 

– “Skip-gram” 

 Designed to require fewer parameters. 

 

4 
B. Leibe 

Image source: Mikolov et al., 2015 
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Recap: word2vec CBOW Model 

• Continuous BOW Model 

 Remove the non-linearity 

from the hidden layer 

 Share the projection layer  

for all words (their vectors 

are averaged) 
 

 Bag-of-Words model 

(order of the words does not  

 matter anymore) 

 

5 
B. Leibe 

Image source: Xin Rong, 2015 
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Recap: word2vec Skip-Gram Model 

• Continuous Skip-Gram Model 

 Similar structure to CBOW 

 Instead of predicting the current 

word, predict words  

within a certain range of 

the current word. 

 Give less weight to the more 

distant words 

 

• Implementation 

 Randomly choose a number R 2 [1,C]. 

 Use R words from history and R words 

from the future of the current word 

as correct labels. 

 R+R word classifications for each input. 
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B. Leibe 
Image source: Xin Rong, 2015 

http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
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Problems with 100k-1M outputs 

• Weight matrix gets huge! 

 Example: CBOW model 

 One-hot encoding for inputs 

 Input-hidden connections are 

just vector lookups. 
 

 This is not the case for the 

hidden-output connections! 

 State h is not one-hot, and  

vocabulary size is 1M. 

 W’N£V has 300£1M entries 
 

• Softmax gets expensive! 

 Need to compute normaliza- 

tion over 100k-1M outputs 
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B. Leibe 
Image source: Xin Rong, 2015 
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Recap: Hierarchical Softmax 

 

 

 

 

 

 

• Idea 

 Organize words in binary search tree, words are at leaves 

 Factorize probability of word w0 as a product of node 

probabilities along the path. 

 Learn a linear decision function y = vn(w,j)¢h at each node to 

decide whether to proceed with left or right child node. 

 Decision based on output vector of hidden units directly. 
8 

B. Leibe 
Image source: Xin Rong, 2015 
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Topics of This Lecture 

• Recurrent Neural Networks (RNNs) 
 Motivation 

 Intuition 
 

• Learning with RNNs 
 Formalization 

 Comparison of Feedforward and Recurrent networks 

 Backpropagation through Time (BPTT) 
 

• Problems with RNN Training 
 Vanishing Gradients 

 Exploding Gradients 

 Gradient Clipping 
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Recurrent Neural Networks 

 

 

 

 

 

 

 

• Up to now 

 Simple neural network structure: 1-to-1 mapping of inputs to 

outputs 
 

• This lecture: Recurrent Neural Networks 

 Generalize this to arbitrary mappings 

10 
B. Leibe 

Image source: Andrej Karpathy 
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Application: Part-of-Speech Tagging 
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B. Leibe 

Image source: http://rewordify.com 
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Application: Predicting the Next Word  

 

12 
B. Leibe 

T. Mikolov, M. Karafiat, L. Burget, J. Cernocky, S. Khudanpur, Recurrent Neural Network  

Based Language Model, Interspeech 2010. 

Slide credit: Andrej Karpathy, Fei-Fei Li Image source: Mikolov et al., 2010 

http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
http://www.fit.vutbr.cz/research/groups/speech/publi/2010/mikolov_interspeech2010_IS100722.pdf
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Application: Machine Translation  

 

13 
B. Leibe Slide credit: Andrej Karpathy, Fei-Fei Li 

I. Sutskever, O. Vinyals, Q. Le, Sequence to Sequence Learning with Neural Networks,  

NIPS 2014. 
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RNNs: Intuition 

• Example: Language modeling 

 Suppose we had the training sequence “cat sat on mat” 

 

 We want to train a language model 

 

 

 First assume we only have a finite, 1-word history. 

 I.e., we want those probabilities to be high: 

– p(cat | <S>) 

– p(sat | cat) 

– p(on | sat) 

– p(mat | on) 

– p(<E> | mat) 
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B. Leibe 

p(next word | previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Vanilla 2-layer classification net 

15 
B. Leibe Slide credit: Andrej Karpathy, Fei-Fei Li 

Word embedding 

(300D vector for  

 each word) 

Hidden layer 

(e.g., 500D vectors) 

10,001D class scores 

(Softmax over 10k  

 words and a special 

 <END> token) 
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RNNs: Intuition 

• Turning this into an RNN (wait for it...) 

16 
B. Leibe Slide credit: Andrej Karpathy, Fei-Fei Li Image source: Andrej Karpathy 

Word embedding 

(300D vector for  

 each word) 

Hidden layer 

(e.g., 500D vectors) 

10,001D class scores 

(Softmax over 10k  

 words and a special 

 <END> token) 
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RNNs: Intuition 

• Turning this into an RNN (done!) 

17 
B. Leibe Slide credit: Andrej Karpathy, Fei-Fei Li Image source: Andrej Karpathy 

Word embedding 

(300D vector for  

 each word) 

Hidden layer 

(e.g., 500D vectors) 

10,001D class scores 

(Softmax over 10k  

 words and a special 

 <END> token) 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

18 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 

papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

19 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

20 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

21 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

22 
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p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 
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p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

24 
B. Leibe 

p(next word |  

         previous words) 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

25 
B. Leibe 

p(next word |  

         previous words) 

sample! 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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RNNs: Intuition 

• Training this on a 

lot of sentences  

would give us a  

language model. 

 

• I.e., a way to  

predict 

26 
B. Leibe 

p(next word |  

         previous words) 

samples <END>? Done! 

Slide credit: Andrej Karpathy, Fei-Fei Li 
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Topics of This Lecture 

• Recurrent Neural Networks (RNNs) 
 Motivation 

 Intuition 
 

• Learning with RNNs 
 Formalization 

 Comparison of Feedforward and Recurrent networks 

 Backpropagation through Time (BPTT) 
 

• Problems with RNN Training 
 Vanishing Gradients 

 Exploding Gradients 

 Gradient Clipping 
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RNNs: Introduction 

• RNNs are regular NNs whose 

hidden units have additional 

forward connections over time. 

 You can unroll them to create 

a network that extends over 

time. 

 When you do this, keep in mind 

that the weights for the hidden 

are shared between temporal 

layers.   

28 
B. Leibe 

Image source: Andrej Karpathy 
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RNNs: Introduction 

• RNNs are very powerful,  

because they combine two  

properties: 

 Distributed hidden state that  

allows them to store a lot of  

information about the past  

efficiently. 

 Non-linear dynamics that allows 

them to update their hidden 

state in complicated ways. 

 

• With enough neurons and time, RNNs can compute 

anything that can be computed by your computer. 

29 
B. Leibe Slide credit: Geoff Hinton Image source: Andrej Karpathy 
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Feedforward Nets vs. Recurrent Nets 

• Imagine a feedforward network 

 Assume there is a time delay 

of 1 in using each connec- 

tion. 

 This is very similar to how 

an RNN works. 

 Only change: the layers  

share their weights. 

 

 

 

 
 

 The recurrent net is just a feedforward net that keeps 

reusing the same weights.  

30 
B. Leibe 

time t0 

time t1 

time t2 

w22 w12 

w21 

w23 

w32 

w22 w12 

w21 

w23 

w32 
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Backpropagation with Weight Constraints 

• It is easy to modify the backprop algorithm to 

incorporate linear weight constraints 

 To constrain                , we start with the same initialization 

and then make sure that the gradients are the same: 

 
 

 We compute the gradients as usual and then use 

 

 

 

for both w1 and w2. 

31 
B. Leibe Slide adapted from Geoff Hinton 
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Backpropagation Through Time (BPTT) 

• Formalization 

 Inputs   xt 

 Outputs   yt 

 Hidden units  ht 

 Initial state h0 
 

 Connection matrices 

– Wxh 

–Why 

– Whh 

 

 Configuration 
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• Efficient propagation scheme 

 yi is already known from forward pass! (Dynamic Programming) 

 Propagate back the gradient from layer j and multiply with  yi.  

Recap: Backpropagation Algorithm 
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Backpropagation Through Time (BPTT) 
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• Error function 

 Computed over all time steps: 
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Backpropagation Through Time (BPTT) 
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• Backpropagated gradient 
 

 For weight wij: 
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Backpropagation Through Time (BPTT) 
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• Backpropagated gradient 
 

 For weight wij: 
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Backpropagation Through Time (BPTT) 
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• Backpropagated gradient 
 

 For weight wij: 

 
 

 In general: 
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Backpropagation Through Time (BPTT) 
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• Analyzing the terms 
 

 For weight wij: 

 
 

 This is the “immediate” partial derivative (with hk-1 as constant) 
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Backpropagation Through Time (BPTT) 
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• Analyzing the terms 
 

 For weight wij: 

 
 

 Propagation term: 
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Backpropagation Through Time (BPTT) 

• Summary 

 Backpropagation equations 

 

 

 

 

 

 

 

 

 

 Remaining issue: how to set the initial state h0? 

 Learn this together with all the other parameters. 
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Topics of This Lecture 

• Recurrent Neural Networks (RNNs) 
 Motivation 

 Intuition 
 

• Learning with RNNs 
 Formalization 

 Comparison of Feedforward and Recurrent networks 

 Backpropagation through Time (BPTT) 
 

• Problems with RNN Training 
 Vanishing Gradients 

 Exploding Gradients 

 Gradient Clipping 
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Problems with RNN Training 

• Training RNNs is very hard 

 As we backpropagate through the layers, the magnitude of the 

gradient may grow or shrink exponentially 

 Exploding or vanishing gradient problem! 
 

 In an RNN trained on long sequences (e.g., 100 time steps) the 

gradients can easily explode or vanish. 

 Even with good initial weights, it is very hard to detect that the 

current target output depends on an input from many time-steps 

ago. 
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Exploding / Vanishing Gradient Problem 

• Consider the propagation equations: 

 

 

 

 

 

 

 if t goes to infinity and l = t – k. 
 

 We are effectively taking the weight matrix to a high power. 

 The result will depend on the eigenvalues of Whh. 

– Largest eigenvalue > 1  Gradients may explode. 

– Largest eigenvalue < 1  Gradients will vanish. 

– This is very bad... 
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Why Is This Bad? 

• Vanishing gradients in language modeling 

 Words from time steps far away are not taken into consideration 

when training to predict the next word. 

 

• Example: 

 „Jane walked into the room. John walked in too. It was late in 

the day. Jane said hi to ____“ 

 

 The RNN will have a hard time learning such long-range 

dependencies. 
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Gradient Clipping 

• Trick to handle exploding gradients 

 If the gradient is larger than a threshold, clip it to that 

threshold. 

 

 

 

 

 

 

 

 

 This makes a big difference in RNNs 
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Gradient Clipping Intuition 

 

 

 

 

 

 

 
 

• Example 

 Error surface of a single RNN neuron 

 High curvature walls 

 Solid lines: standard gradient descent trajectories 

 Dashed lines: gradients rescaled to fixed size 
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