Advanced Machine Learning
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Convolutional Neural Networks
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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
> Regularization (Ridge, Lasso) J
> Gaussian Processes

M =9 =
st </

e Learning with Latent Variables

> Prob. Distributions & Approx. Inference w1
> Mixture Models %
. EM and Generalizations : .

e Deep Learning
> Linear Discriminants
> Neural Networks
~ Backpropagation & Optimization
> CNNs, RNNs, RBMs, etc.
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Topics of This Lecture

e Tricks of the Trade

> Recap

> Initialization

> Batch Normalization
> Dropout

e Convolutional Neural Networks
» Neural Networks for Computer Vision
~ Convolutional Layers
- Pooling Layers

e CNN Architectures
> LeNet
> AlexNet
> VGGNet
> GooglLeNet
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Recap: Data Augmentation

v M N
> 522:::::? against expected “ m “ m H !
PN N

PN M
N T Y

e During testing

> When cropping was used
during training, need to
again apply crops to get
same image size.

~ Beneficial to also apply
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flipping during test. E ? ” E H‘ ﬂ
. Applying several ColorPCA - . 1 1E

variations can bring another Augmented training data

~1% improvement, but at a (from one original image)

significantly increased runtime.
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Image source: Lucas Beyer
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Recap: Normalizing the Inputs

e Convergence is fastest if
> The mean of each input variable

Mean
Cancellation

over the training set is zero. : o
> The inputs are scaled such that pA N
. KL-
all have the same covariance. Expansion

> Input variables are uncorrelated
if possible.

Covariance
Equalization

e Advisable normalization steps (for MLPs)

> Normalize all inputs that an input unit sees to zero-mean,
unit covariance.

» |If possible, try to decorrelate them using PCA (also known as
Karhunen-Loeve expansion).
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5
B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)




RWTH
Recap: Choosing the Right Learning Rate

E(w)

e Convergence of Gradient Descent by
> Simple 1D example |
. dE(W)
(T=1) — (1) _
W W

- What is the optimal learning rate 7,? _ .

b) ®rmin
» |If E is quadratic, the optimal learning rate is given by the
inverse of the Hessian

_(@REWO)\ T
Mot = \ T a2 |
- Advanced optimization techniques try to \Don’t go beyond

approximate the Hessian by a simplified form. thlS oint!

» If we exceed the optimal learning rate,

. U )}

bad things happen! O
. 6

B. Leibe Image source: Yann LeCun et al., Efficient BackProp (1998)
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RWTH
Recap: Advanced Optimization Techniques

e Momentum

> Instead of using the gradient to change the position of the
weight “particle”, use it to change the velocity. 7

g
~ -

~ Effect: dampen oscillations in directions of high
curvature

> Nesterov-Momentum: Small variation in the implementation

e RMS-Prop

~ Separate learning rate for each weight: Divide the gradient by
a running average of its recent magnitude.

e AdaGrad )

o AdaDelta , Some more recent techniques, work better
for some problems. Try them.

e Adam )

7

B. Leibe Image source: Geoff Hinton
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Trick: Patience

UNIVERSITY

e Saddle points dominate in high-dimensional spaces!

Training error (MSE)
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= Learning often doesn’t get stuck, you just may have to wait...

B. Leibe
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Reducing the Learning Rate

e Final improvement step after convergence is reached

> Reduce learning rate by a 1
factor of 10.

> Continue training for a few
epochs.

> Do this 1-3 times, then stop
training.

Reduced
learning rate

Training error

o Effect Epoch
> Turning down the learning rate will reduce
the random fluctuations in the error due to
different gradients on different minibatches.

e Be careful: Do not turn down the learning rate too soon!
» Further progress will be much slower after that.
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Slide adapted from Geoff Hinton B. Leibe



Topics of This Lecture

e Tricks of the Trade

> Recap

> Initialization

> Batch Normalization
> Dropout

n
F
.
Q
-
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(D)
(&)
C
©
>
©
<

B. Leibe



RWNTH
Batch Normalization [loffe & Szegedy ’14]

e Motivation
~ Optimization works best if all inputs of a layer are normalized.

e Idea

> Introduce intermediate layer that centers the activations of
the previous layer per minibatch.

~ l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients

o Effect

~ Much improved convergence
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RWTH
Dropout [Srivastava, Hinton *12]

(a) Standard Neural Net (b) After applying dropout.

e |dea
> Randomly switch off units during training.

~ Change network architecture for each data point, effectively
training many different variants of the network.

> When applying the trained network, multiply activations with
the probability that the unit was set to zero.

= Greatly improved performance

B. Leibe
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Topics of This Lecture

e Convolutional Neural Networks
> Neural Networks for Computer Vision
» Convolutional Layers
~ Pooling Layers
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RWTHAACHEN
UNIVERSITY

Neural Networks for Computer Vision

e How should we approach vision problems?

> Face Y/N?

e Architectural considerations
> Input is 2D = 2D layers of units
> No pre-segmentation = Need robustness to misalignments
> Vision is hierarchical = Hierarchical multi-layered structure
» Vision is difficult = Network should be deep
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Why Hierarchical Multi-Layered Models?

e Motivation 1: Visual scenes are hierarchically organized
Y1 Y2 Yk

Object Face

N

Object parts Eyes, nose, ...

N N

Primitive features  Oriented edges

T T

Input image Face image
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Slide adapted from Richard Turner B. Leibe



Why Hierarchical Multi-Layered Models?

e Motivation 2: Biological vision is hierarchical, too

Object Face Inferotemporal
N A cortex
i V4: different
ObJec/t\ parts Eyes, NOsE, .. textures

Primitive features  Oriented edges V1: simple and

T T complex cells
: : Photoreceptors,
Input image Face image )
retina
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Slide adapted from Richard Turner B. Leibe



RWTHAACHEN
UNIVERSITY

Inspiration: Neuron Cells

Axonal arborization

\ Axon from another cell

Synapse

Dendrite

\/

Synapses
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Slide credit: Svetlana Lazebnik, Rob Fergus B. Leibe



Hubel/Wiesel Architecture

e D. Hubel, T. Wiesel (1959, 1962, Nobel Prize 1981)

» Visual cortex consists of a hierarchy of simple, complex, and
hyper-complex cells

Hubel & Weisel featural hierarchy

topographical mapping high level

complex cells mid lewvel

simple cells

®
@D
D

i low level
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Slide credit: Svetlana Lazebnik, Rob Fergus B. Leibe



RWTH
Why Hierarchical Multi-Layered Models?

e Motivation 3: Shallow architectures are inefficient at
representing complex functions
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An MLP with 1 hidden layer However, if the function is deep,
can implement any function a very large hidden layer may
(universal approximator) be required.

19

Slide adapted from Richard Turner B. Leibe



RWTH
What’s Wrong With Standard Neural Networks?

e Complexity analysis
> How many parameters does

D
this network have?
0| = 3D+ D
D2
~» For asmall 32x32 image
0] = 3-32* +32% ~ 3-10° ,
D
e Consequences
. Hard to train D?

> Need to initialize carefully

> Convolutional nets reduce the
number of parameters!
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Slide adapted from Richard Turner B. Leibe



RWTHAACHEN
UNIVERSITY

Convolutional Neural Networks (CNN, ConvNet)

C3:f. maps 16@10x10
INPUT C1: feature maps S4:f. maps 16@5x5

6@28x28
saxz CS:layer g jayer OQUTPUT
120 84 10

6@14x14

| | Fullconrl»ection l Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

e Neural network with specialized connectivity structure
> Stack multiple stages of feature extractors
> Higher stages compute more global, more invariant features
> Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

n
F
.
Q
-
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(¢b}
(&)
c
©
>
©
<

21

Slide credit: Svetlana Lazebnik B. Leibe


http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

RWNTH
Convolutional Networks: Intuition

e Fully connected network

> E.g. 1000x1000 image
1M hidden units

= 1T parameters!

@
®
@
@

e |deas to improve this
> Spatial correlation is local
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Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe



RWTHAACHEN
. L UNIVERSITY
Convolutional Networks: Intuition

e Locally connected net

> E.g. 1000x1000 image

1M hidden units
10x 10 receptive fields

= 100M parameters!

e |deas to improve this
» Spatial correlation is local
> Want translation invariance
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Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe



RWTHAACHEN
. L UNIVERSITY
Convolutional Networks: Intuition

e Convolutional net

> Share the same parameters
across different locations

> Convolutions with learned
kernels

n
F
.
Q
-
=
(@)}
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(¢b}
(&)
c
©
>
©
<

24

Image source: Yann LeCun

B. Leibe

Slide adapted from Marc’Aurelio Ranzato



Convolutional Networks: Intuition |

e Convolutional net

> Share the same parameters
across different locations

> Convolutions with learned
kernels

Learn multiple filters

> E.g. 1000x 1000 image

100 filters
10x 10 filter size

= 10k parameters

e Result: Response map
> size: 1000x1000x100

> Only memory, not params!
25

Image source: Yann LeCun

n
F
.
Q
P
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

Slide adapted from Marc’Aurelio Ranzato B. Leibe



CHEN
UNIVERSITY

Important Conceptual Shift

e Before

output layer
Input
layer hidden layer

B. Leibe

Slide credit: FeiFei Li, Andrej Karpathy

e Now:
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Convolution Layers

Example
Hidden neuron image: 32x32x3 volume

in next layer Before: Full connectivity

>O 32x32x3 weights

Now: Local connectivity

One neuron connects to, e.g.,
9x5x3 region.

32 = Only 5x5x3 shared weights.

32

3

e Note: Connectivity is
> Local in space (5xb5 inside 32x32)
> But full in depth (all 3 depth channels)
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Slide adapted from FeiFei Li, Andrej Karpathy B Léibe
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Convolution Layers

32

depth dimension
T

00000

before: “hidden layer of 200 neurons”
now: “output volume of depth 200"

32

3

e All Neural Net activations arranged in 3 dimensions

> Multiple neurons all looking at the same input region,
stacked in depth

Slide adapted from FeiFei Li, Andrej Karpathy B Léibe
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Convolution Layers

30 Naming convention:
~—_ HEIGHT
—-"'"""---.

—=0D000Q
////’VWDTH

DEPTH
32

3

e All Neural Net activations arranged in 3 dimensions

> Multiple neurons all looking at the same input region,
stacked in depth

> Form a single [1x1xdepth] depth column in output volume.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x 3 connectivity
stride 1

e Replicate this column of hidden neurons across space,
with some stride.

n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(D)
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

31

Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x 3 connectivity
stride 1

e Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x 3 connectivity
stride 1

e Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x 3 connectivity
stride 1

e Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x 3 connectivity
stride 1

= 5x5 output

e Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x 3 connectivity
stride 1

= 5x5 output

What about stride 2?

e Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x 3 connectivity
stride 1

= 5x5 output

What about stride 2?

e Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

Example:

7x7 input

assume 3 x 3 connectivity
stride 1

= 5x5 output

What about stride 2?
= 3x 3 output

e Replicate this column of hidden neurons across space,
with some stride.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



Convolution Layers

0/0 0 00

0 Example:

0 7x7 input

0 assume 3 x 3 connectivity
; stride 1

= 5x5 output

What about stride 2?
= 3x 3 output

e Replicate this column of hidden neurons across space,
with some stride.

e |n practice, common to zero-pad the border.
» Preserves the size of the input spatially.
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Slide credit: FeiFei Li, Andrej Karpathy B. Leibe



CHEN
UNIVERSITY

Activation Maps of Convolutional Filters

Activations:

ARG SERERENNCIIN AR RS ESARTENER ISR

one filter = one depth slice (or activation map) 5% 5 filters

Actlvatloi

Iﬂﬂlﬂ A

Bk S

EEMETEE |

.E Each activation map is a depth
slice through the output volume.

Activation maps

n
-
s
Q
wid
=
(@)}
=
c
| —
®
(b}
|
(0D}
=
e
(@)
©
=
©
(¢b}
(&)
c
©
>
©
<

40

Slide adapted from FeiFei Li, Andrej Karpathy B Léibe



CHEN
UNIVERSITY

Effect of Multiple Convolution Layers

Low-Level
Feature

Mid-Level
il

Feature

High-Level_'

Feature

Trainable
Classifier
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Slide credit: Yann LeCun

B. Leibe

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 201 3]
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Convolutional Networks: Intuition

e Let’s assume the filter is
an eye detector

> How can we make the
detection robust to the
exact location of the eye?
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Image source: Yann LeCun

Slide adapted from Marc’Aurelio Ranzato B. Leibe



Convolutional Networks: Intuition

e Let’s assume the filter is
an eye detector

> How can we make the
detection robust to the
exact location of the eye?

e Solution:

> By pooling (e.g., max or avg)
filter responses at different
spatial locations, we gain
robustness to the exact
spatial location of features.
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Image source: Yann LeCun

B. Leibe

Slide adapted from Marc’Aurelio Ranzato



Max Pooling

Single depth slice

A
« 1112 4
max pool with 2x2 filters
516 |7 |8 and stride 2 6 | 8

n
i >
: 31210 3|4
=
> 1123 |4
=
® y
£
CE% o Effect:
E ~ Make the representation smaller without losing too much
§ information
é > Achieve robustness to translations

Slide adapted from FeiFei Li, Andrej Karpathy B Léibe



Max Pooling

Single depth slice

A
« 11112 | 4
max pool with 2x2 filters
516 |7 |8 and stride 2 6 | 8

To]
i >
8 31210 3|4
=
> 1123 |4
o y
;% « Note
E » Pooling happens independently across each slice, preserving the
o number of slices.
3
<

45

Slide adapted from FeiFei Li, Andrej Karpathy B Léibe



R\WNTH .
CNNs: Implication for Back-Propagation

e Convolutional layers
> Filter weights are shared between locations
= Gradients are added for each filter location.
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: . UNIVERSITY
Topics of This Lecture

e CNN Architectures
> LeNet
> AlexNet
> VGGNet
> GooglLeNet
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RWTHAACHEN

. UNIVERSITY
CNN Architectures: LeNet (1998)
C1: feature maps C3:f. matps16@10x1804.f S -
32332 6@26x28 S2: f. maps "B CS5:layer
6@14x14 120 5 tayer (NN

| | Fullconrl.ection I Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

e Early convolutional architecture
> 2 Convolutional layers, 2 pooling layers
> Fully-connected NN layers for classification
> Successfully used for handwritten digit recognition (MNIST)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.
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Slide credit: Svetlana Lazebnik B. Leibe
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ImageNet Challenge 2012

RS IM«‘.GEN ET
> ~14M labeled internet images | |
A ey

> 20k classes

> Human labels via Amazon
Mechanical Turk

""‘ TR

e Challenge (ILSVRC)

> 1.2 million training images
> 1000 classes

. Goal: Predict ground-truth [Deng et al. CVPR 09]
class within top-5 responses

> Currently one of the top benchmarks in Computer Vision
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CNN Architectures: AlexNet (2012)

| A\ : 3 A | ' f
A ek L |
| “\ g“\ \ §\‘ ¥ \_‘, i ) \ e \ | \
’h“\'\ NV - AT 3\ N ANAN,....
N B ‘\ - %/0Y . ¥ 192 192 128 2048 \ 2048\"‘3”5‘-
1Ny \.\.. X \g 128 \ \ - \ \ \ / _ﬂ/ e k
a e \ \ f 13 A 1 \ \
i d 1K : =/ e VYN
1224 I 5 N i} E"H » 3\ \ - 5]“ II ) td__, Lol | ‘
3 ! . , ense ense
\ :\\: . x\\ij_?f }-‘ ' \L % ) 13 }\\Il"' J |
Wi \ - \ 1) ' e N ) . b ' — 1500
" 192 92 128 Max ' L]
22 \ Max . - M pooling 2048 2048
\Jz;';d(\‘ pooling e p;(:lmg
3 l_.‘.r

o Similar framework as LeNet, but

Bigger model (7 hidden layers, 650k units, 60M parameters)
More data (10¢ images instead of 103)

> GPU implementation

~ Better regularization and up-to-date tricks for training (Dropout)

Y

Y

A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012. 50

Image source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012
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ILSVRC 2012 Results

N
a
2
b
2
@
'y
=3
o
=

N
F
—
Q
-
.E
(@)]
=
c
|-
®
(¢b]
|

SuperVision Amsterdam

e AlexNet almost halved the error rate
> 16.4% error (top-5) vs. 26.2% for the next best approach
= A revolution in Computer Vision

» Acquired by Google in Jan ‘13, deployed in Google+ in May ‘13

51
B. Leibe



n
F
.
Q
-
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

AlexNet Results

mite

container shi

motor scooter

mite container ship motor scooter leopard
K black widow | lifeboat | go-kart| jaguar
cockroach amphibian| moped | cheetah
: tick fireboat| bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

: r i ~

-

W
grille mushroom cherry adagascar cat
i convertible | _ agaric | _dalmatian| e’ mankey
grille mushroom grape| | spider monkey
2 pickup | jelly fungus elderberry| titi
beach wagon gill fungus |ffordshire bullterrier | indri

fire engine

dead-man’s-fingers

currant

howler monkey

B. ||n%88 source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012
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AlexNet Results

Test image Retrieved images
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Image source: A. Krizhevsky, I. Sutskever and G.E. Hinton, NIPS 2012
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e Main ideas

>

>

>

Deeper network

Stacked convolutional
layers with smaller
filters (+ nonlinearity)

Detailed evaluation
of all components

RWNTH
CNN Architectures: VGGNet (2015)

ConvNet Configuration

A A-LRN B (@ D E
11 weight 11 weight 13 weight 16 weight 16 weight § 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB imagp)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 conv3-128 conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 f§ conv3-128
maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 [ conv3-256
conv3-256 | conv3-256 | conv3-256 conv3-256 | conv3-256 f§ conv3-256
convl-256 | conv3-256 || conv3-256
conv3-256
maxpool
conv3-512 | conv3-512 | conv3-512 | comv3-512 | conv3-512 f conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 f conv3-512
convl-512 | conv3-512 || conv3-512
conv3-512
maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 § conv3-512
conv3-512 | conv3-512 | conv3-512 | comv3-512 | conv3-512 f conv3-512
convl-512 | conv3-512 || conv3-512
conv3-512
maxpool T
FC-4096 madalrity uscd
FC-4096
FC-1000
soft-max
55
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Image source: Simonyan & Zisserman




n
F
.
Q
wid
=
(@)]
=
c
| -
®
(b}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

Comparison to AlexNet

Input : Image input
M A Conv | : Convolutional layer
5 & ‘M ling |
= § g ps § o o 5‘, Pool : Max-pooling layer
Er < < = < =2 (W)
- FC : Fully-connected layer
b8 b » b & b b
< ae we g = % Softmax  : Softmax layer
- - ~y - - - -
— N w BN (&)} D ~
VGGNet
&
5 0 0O - 0 (®) - 0 0O © 0 (®) o 0O (w) o
= o) o) o o) o o) o o o o o o o = o A A a = 4
EEIE R EIE EEIEI|IIEE[E|IE [ IB|[E|E|IE 3
>
Q L QO QO QO o} QO
< < < < < < <
@ ® D [¢] @ @ ®
- =3 - = - = .
i N w S (6] D ~

K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale

Image Recognition, ICLR 2015

B. Leibe
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Image source: Hirokatsu Kataoka
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RWNTH
CNN Architectures: GooglLeNet (2014)

Filter
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions A [} [
1x1 convolutions 1x1 convolutions 3x3 max pooling

Previous layer

(b) Inception module with dimension reductions

e Main ideas
“Inception” module as modular component
> Learns filters at several scales within each module

C. Szegedy, W. Liu, Y. Jia, et al, Going Deeper with Convolutions,
arXiv:1409.4842, 2014. 58

Image source: Szegedy et al.
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RWNTH
Results on ILSVRC

Method _ top-1 val. erTor (%) | top-5 val. error (%) | top-3 test error (%)
VGG (2 nets, multi-crop & dense eval.) 23.7 6.8 6.8
VGG (1 net, multi-crop & dense eval.) 24 .4 7.1 7.0
VGG (ILSVRC submission, 7 nets, dense eval.) ‘ 24.7 ‘ 7.5 ‘ 7.3 |
GooglLeNet (Szegedy et al., 2014) (1 net) - 7.9
GoogleNet (Szegedy et al., 2014) (7 nets) - 6.7
= | MSRA (He et al., 2014) (11 nets) - - 8.1
8 MSRA (He et al., 2014) (1 net) 27.9 9.1 9.1
-g Clarifai (Russakovsky et al., 2014) (multiple nets) - - 11.7
E Clarifar (Russakovsky et al., 2014) (1 net) - - 12.5
> Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 14.7 14.8
i= |Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net) 37.5 16.0 16.1
- OverFeat (Sermanet et al.. 2014) (7 nets) 34.0 13.2 13.6
8 OverFeat (Sermanet et al., 2014) (1 net) 357 14.2 -
o | | Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets) 38.1 16.4 16.4
GCJ Krizhevsky et al. (Krizhevsky et al., 2012) (1 net) 40.7 18.2 -
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Image source: Simonyan & Zisserman
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