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Topics of This Lecture

e Tricks of the Trade
> Recap
> Initialization
» Batch Normalization
» Dropout

¢ Convolutional Neural Networks
» Neural Networks for Computer Vision
» Convolutional Layers
» Pooling Layers

¢ CNN Architectures
» LeNet
> AlexNet
» VGGNet
» GooglLeNet
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Recap: Normalizing the Inputs

¢ Convergence is fastest if
» The mean of each input variable
over the training set is zero. :
» The inputs are scaled such that w
all have the same covariance. Expansion
» Input variables are uncorrelated Covmnance 4
if possible.

Equatzation

Mean
Cancefation

.
e
. >
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¢ Advisable normalization steps (for MLPs)

> Normalize all inputs that an input unit sees to zero-mean,
unit covariance.

» If possible, try to decorrelate them using PCA (also known as
Karhunen-Loeve expansion).

5
B. Leibe ) mace source: Yann LeCun et al,, Efficient BackProp (1998]
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This Lecture: Advanced Machine Learning
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* Regression Approaches
» Linear Regression

» Regularization (Ridge, Lasso) A/ N
» Gaussian Processes

¢ Learning with Latent Variables
» Prob. Distributions & Approx. Inference
» Mixture Models
» EM and Generalizations

¢ Deep Learning
» Linear Discriminants
» Neural Networks
» Backpropagation & Optimization
» CNNs, RNNs, RBMs, etc.

B. Leibe
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Recap: Data Augmentation
o Effect
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Augmented training data
(from one original image)

¢ During testing

» When cropping was used
during training, need to
again apply crops to get
same image size.
Beneficial to also apply
flipping during test.
Applying several ColorPCA
variations can bring another
~1% improvement, but at a
significantly increased runtime.

B. Leibe
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Image source; Lucas Bevel
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RWTH/ACHEN
Recap: Choosing the Right Learning Rate

. Els
« Convergence of Gradient Descent ¥

» Simple 1D example

AE(W)
dw

What is the optimal learning rate 7),,,?

W=l —w —y

v

b} n

If E is quadratic, the optimal learning rate is given by the
inverse of the Hessian

EEWwE
Nopt = | —=——

v

dWw?

v

Advanced optimization techniques try to Don't go beyond
approximate the Hessian by a simplified form. | this point!

If we exceed the optimal learning rate,
bad things happen!

v

6
B. Leibe ) mage cource: Yann LeCun et al,, Efficient BackProp (19981
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Recap: Advanced Optimization Techniques

¢ Momentum
» Instead of using the gradient to change the position of the
weight “particle”, use it to change the velocity.

Effect: dampen oscillations in directions of high
curvature
» Nesterov-Momentum: Small variation in the implementation
e RMS-Prop
~ Separate learning rate for each weight: Divide the gradient by
a running average of its recent magnitude.

¢ AdaGrad
¢ AdaDelta
¢ Adam

v

Some more recent techniques, work better
for some problems. Try them.

B. Leibe

Image source: Geoff Hint
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Reducing the Learning Rate

¢ Final improvement step after convergence is reached
» Reduce learning rate by a
factor of 10.
» Continue training for a few
epochs.
» Do this 1-3 times, then stop
training.

Reduced
learning rate

Training error

o Effect
» Turning down the learning rate will reduce
the random fluctuations in the error due to

different gradients on different minibatches.

Epoch

=4

¢ Be careful: Do not turn down the learning rate too soon!

» Further progress will be much slower after that.

9
lide adaoted from Geoff Hinton B. Leibe
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RWTHACHEN

Batch Normalization [loffe & Szegedy ’14]

¢ Motivation
» Optimization works best if all inputs of a layer are normalized.

¢ Idea

» Introduce intermediate layer that centers the activations of
the previous layer per minibatch.

» l.e., perform transformations on all activations
and undo those transformations when backpropagating gradients

o Effect
» Much improved convergence

B. Leibe
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Trick: Patience

¢ Saddle points dominate in high-dimensional spaces!

— Training error (MSE) ||
90} *— Norm of the gradients ||

10°

Training error (MSE)

Norm of the gradients

i : i %\ﬂ. : I Lll ) |
mﬁ“@ﬁ“*\\,‘ AN Rl |

00 300 w00 50

= Learning often doesn’t get stuck, you just may have to wait...

B. Leibe Lmage source; Yoshua Bengi

Topics of This Lecture

e Tricks of the Trade
» Recap
» Initialization
» Batch Normalization
» Dropout

B. Leibe
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RWTHACHEN
[Srivastava, Hinton ’12]

{a) Standard Neural Net

¢ Idea
> Randomly switch off units during training.
» Change network architecture for each data point, effectively
training many different variants of the network.
~ When applying the trained network, multiply activations with
the probability that the unit was set to zero.
= Greatly improved performance

B. Leibe
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Topics of This Lecture

¢ Convolutional Neural Networks
» Neural Networks for Computer Vision
» Convolutional Layers
» Pooling Layers

B. Leibe
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Why Hierarchical Multi-Layered Models?

¢ Motivation 1: Visual scenes are hierarchically organized

Object Face

!

Object parts Eyes, nose, ...

Primitive features

Oriented edges

Input image Face image

B. Leibe

ide adapted from Richard Turner
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Inspiration: Neuron Cells

Axonal arbarization

Axon from another cell

Synapse
Dendrite

Synapses

Cell body or Soma

B. Leibe

ide credit: Svetlana lazebnik, Rob Ferou:
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» Input is 2D

» No pre-segmentation
» Vision is hierarchical
» Vision is difficult

Neural Networks for Computer Vision

¢ How should we approach vision problems?

¢ Architectural considerations

RWTHAACHE

E— Face Y/N?

= 2D layers of units

= Need robustness to misalignments
= Hierarchical multi-layered structure
= Network should be deep

B. Leibe

Object

Object parts

Primitive features

Input image

ide adapted from Richard Turner

Why Hierarchical Multi-Layered Models?

¢ Motivation 2: Biological vision is hierarchical, too

RWTHACHEN

Inferotemporal
Face
T cortex

V4: different

Eyes, nose, ... textures

V1: simple and

Oriented edges
complex cells

Photoreceptors,
retina

Face image

B. Leibe
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RWTHACHEN

Hubel/Wiesel Architecture

e D. Hubel, T. Wiesel (1959, 1962, Nobel Prize 1981)

» Visual cortex consists of a hierarchy of simple, complex, and
hyper-complex cells

Hubel & Weisel
topographical mapping

featural hierarchy

hyFer—mmp\ex

cells 5
<TY

complex cells A

simple cells

high level

low level

(&)
&
D
@

ide credit: Svetlana | azebnik, Rob Ferol B. Leibe
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Why Hierarchical Multi-Layered Models?

¢ Motivation 3: Shallow architectures are inefficient at
representing complex functions

TN
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An MLP with 1 hidden layer
can implement any function
(universal approximator)

However, if the function is deep,
a very large hidden layer may
be required.

ide adapted from Richard Turner B. Leibe

TRWTH/ T
Convolutional Neural Networks (CNN, ConvNet)

©3:1. maps 16@10x10
C1: festure maps. s4;
6@28x28

1. maps 16@5x5.

INPUT
3232

maps
1

s21
s@14

|
| Gaussian comections
i Convot

¢ Neural network with specialized connectivity structure
» Stack multiple stages of feature extractors
» Higher stages compute more global, more invariant features
» Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

21

ide credit: Svetlana Lazebnik B. Leibe
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RWTHP T
Convolutional Networks: Intuition

¢ Locally connected net
» E.g. 1000x 1000 image
1M hidden units
10x 10 receptive fields

= 100M parameters!

\O * Ideas to improve this

~ Spatial correlation is local
» Want translation invariance

23

lmage source: Yann LeCu

ide adanted from Marc’Aurelio Ranzato B. Leibe
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What’s Wrong With Standard Neural Networks?

¢ Complexity analysis
> How many parameters does

D
this network have?
f =3D°+D
D‘z
. For a small 32x32 image ’4. .
|0 =3-32" +32* ~ 3. 10° 64‘./ s
"}0 D
LN
¢ Consequences .“.
~ Hard to train \‘ B.( n?
» Need to initialize carefully L¥ 0
pey ] &y
» Convolutional nets reduce the
number of parameters!
ide adapted from Richard Turner B. Leibe ®

Convolutional Networks: Intuition '

¢ Fully connected network
» E.g. 1000x 1000 image
1M hidden units
= 1T parameters!

@,
O
©)

¢ |deas to improve this
~ Spatial correlation is local

22

Image source: Yann LeCu

ide adated from Marc’Aurelio Ranzato B. Leibe
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RWTHP T
Convolutional Networks: Intuition

¢ Convolutional net
» Share the same parameters
across different locations

~ Convolutions with learned
kernels

24

lmage source: Yann LeCu

ide adapted from Marc’Aurelio Ranzatg LA
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Slide adapted from Marc’Aurelio Ranzato.

Convolutional Networks: Intuition

¢ Convolutional net
» Share the same parameters

B. Leibe

across different locations

» Convolutions with learned
kernels

Learn multiple filters

» E.g. 1000x 1000 image
100 filters
10x 10 filter size

= 10k parameters

¢ Result: Response map

» size: 1000x 1000x 100
~ Only memory, not params!

Image source: Yann LeCu

RWTHAACHE

Convolution Layers

in next layer

3

¢ Note: Connectivity is

Slide adapted from Feifei Li, Andrei Karpath

Hidden neuron

B. Leibe

Example
image: 32x32x 3 volume

Before: Full connectivity
32x32x 3 weights

Now: Local connectivity
One neuron connects to, e.g.
5x5x3 region.

>

= Only 5x5x3 shared weights.

» Local in space (5x5 inside 32x32)
> But full in depth (all 3 depth channels)

Convolution Layers

000

S

Naming convention:

HEIGHT

/ wIDTH

DEPTH

¢ All Neural Net activations arranged in 3 dimensions
> Multiple neurons all looking at the same input region,

stacked in depth

» Form asingle [1x1xdepth] depth column in output volume.

slide credit: FeiFeili Andrei Karpath

B. Leibe
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Important Conceptual Shift
¢ Before

output layer
input
o Now: layer hidden layer
26

ide credit: FeiFei |, Andrej Karpath: B. Leibe

Convolution Layers

depth dimension
—_—

00000

before: “hidden layer of 200 neurons”
now: “output volume of depth 200"

¢ All Neural Net activations arranged in 3 dimensions

» Multiple neurons all looking at the same input region,
stacked in depth

ide adated from FeiFei Li, Andrei Karpathy  B- Leibe
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Convolution Layers

Example:

7x7 input

assume 3 x 3 connectivity
stride 1

¢ Replicate this column of hidden neurons across space,
with some stride.

ide credit: FeiFei |i, Andrei Karpath LA
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Convolution Layers

slide credit: FeiFei Li, Andrej Karpath

B. Leibe

Example:

7x7 input

assume 3x 3 connectivity
stride 1

¢ Replicate this column of hidden neurons across space,
with some stride.

Convolution Layers

with some stride.

lide credit: Feifei Li, Andrei Karpath

B. Leibe

Example:

7%7 input

assume 3x 3 connectivity
stride 1

¢ Replicate this column of hidden neurons across space,

Convolution Layers

Example:

7x7 input

assume 3 x 3 connectivity
stride 1

= 5x5 output

What about stride 2?

¢ Replicate this column of hidden neurons across space,

with some stride.

slide credit: FeiFeili Andrei Karpath

B. Leibe
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Convolution Layers

Example:

7x7 input

assume 3x 3 connectivity
stride 1

* Replicate this column of hidden neurons across space,

with some stride.

Slide credit: Feifei i, Andrej Karpath:

Convolution Layers

Example:

7x7 input

assume 3x 3 connectivity
stride 1

= 5x5 output

¢ Replicate this column of hidden neurons across space,

with some stride.

ide credit: Feifei Li, Andrei Karpath
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Convolution Layers

¢ Replicate this column of hidden neurons across space,

with some stride.

ide credit: FeiFei | Andrei Karpath

Example:

7x7 input

assume 3 x 3 connectivity
stride 1

= 5x5 output

What about stride 2?
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. UNIVERSITY
Convolution Layers

Example:

7x7 input

assume 3x 3 connectivity
stride 1

= 5x5 output

What about stride 2?
= 3x3 output

¢ Replicate this column of hidden neurons across space,
with some stride.

ide credit: FeiFei i, Andrej Karpathy B. Leibe
RWTH/CHET
. . ... UNIVERSITY
Activation Maps of Convolutional Filters

Activations:

BINEEEDNCIIANAN RSOSSN RS
one fiter = one depth slice (or activation map) 5x5 filters

Each activation map is a depth
slice through the output volume.

Activation maps

40

ide adapted from FeiFei i, Andrei Karpathy B- teibe

RWTHAACHET]
. . UNIVERSITY
Convolutional Networks: Intuition

¢ Let’s assume the filter is
an eye detector

» How can we make the
detection robust to the
exact location of the eye?

42

ide adapted from Marc’Aurelio Ranzato B Lefbe . Yano LeCy

. UNIVERSITY]
Convolution Layers
0/0/0/0|0O
0 Example:
0 7x7 input
assume 3x 3 connectivity
g stride 1

= 5x5 output

What about stride 2?
= 3x3 output

* Replicate this column of hidden neurons across space,
with some stride.

¢ In practice, common to zero-pad the border.
» Preserves the size of the input spatially.

Advanced Machine Learning Winter’15

ide credit: FeiFei i, Andrej Karpathy B. Leibe

UNIVERSITY
Effect of Multiple Convolution Layers

Low-Level| |Mid-Level| [High-Level Trainable
- ! -
Feature Feature Feature Classifier
N

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Advanced Machine Learning Winter’15

M«

ide credit: Yann leCun B. Leibe

RWTHAACHER
. . UNIVERSITY
Convolutional Networks: Intuition

e Let’s assume the filter is
an eye detector

» How can we make the
detection robust to the
exact location of the eye?

¢ Solution:

» By pooling (e.g., max or avg)
filter responses at different
spatial locations, we gain
robustness to the exact
spatial location of features.
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lmage source: Yann LeCu

ide adapted from Marc’Aurelio Ranzatg LA
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Max Pooling

Single depth slice
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X 11124
max pool with 2x2 filters
5 6 7 8 and stride 2 6 8
3(2(1(0 3
11234
—
y
o Effect:
» Make the representation smaller without losing too much
information
» Achieve robustness to translations
ide adapted from FeiFei i, Andrej Karpathy B- Leibe “
RWTH CHE
CNNs: Implication for Back-Propagation
¢ Convolutional layers
» Filter weights are shared between locations
= Gradients are added for each filter location.
) 46
B. Leibe
RWTH ACHET

CNN Architectures: LeNet (1998)

C3:1. maps 16@10x10.
S4:1. maps 16@5x5

521, maps
6@14x14 r

Ci: feature maps.
INPUT
o 6@28x28

— — |
| | Fullcondection | Gaussian comections
Convolutions Subsamping Convoltions  Subsampling Full connection

¢ Early convolutional architecture
» 2 Convolutional layers, 2 pooling layers

» Fully-connected NN layers for classification
» Successfully used for handwritten digit recognition (MNIST)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to
document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998.

48

ide credit: Svetlana | azebnik LA
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Max Pooling

Single depth slice
11124

5|67

max pool with 2x2 filters
and stride 2 6 8

* Note

» Pooling happens independently across each slice, preserving the
number of slices.

45

ide adapted from FeiFei i, Andrej Karpath B. Leibe
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RWTH/CHEN
Topics of This Lecture
e CNN Architectures
» LeNet
» AlexNet
» VGGNet
» GoogLeNet
B. Leibe 47
RWTH/ACHET

ImageNet Challenge 2012

IMAGEN
» ~14M labeled internet images
=

» 20k classes X

> Human labels via Amazon i N
Mechanical Turk B, )

ET

—— ]

¢ Challenge (ILSVRC)
» 1.2 million training images
» 1000 classes

» Goal: Predict ground-truth
class within top-5 responses

» Currently one of the top benchmarks in Computer Vision

[Deng et al., CVPR’09]

49
B. Leibe
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RWTH/CET
CNN Architectures: AlexNet (2012)

52

208

< 1578 \dense

K} %‘\({?(/L\

1

« Similar framework as LeNet, but
» Bigger model (7 hidden layers, 650k units, 60M parameters)
» More data (10¢ images instead of 103)
» GPU implementation
» Better regularization and up-to-date tricks for training (Dropout)

A. Krizhevsky, |. Sutskever, and G. Hinton, ImageNet Classification with Deep
Convolutional Neural Networks, NIPS 2012. 50

Image source: A, Krizhevsky, |, Sutskever and G.E, Hinton, NIPS 201

AlexNet Results

RWTH/ACHEN
CNN Architectures: VGGNet (2015)

¢ Main ideas = RSTELY
. Deeper network [
» Stacked convolutional | wwis o | eom
layers with smaller [
filters (+ nonlinearity) |
» Detailed evaluation
of all components

o313 | con 3128 |

12
convl-

ool
noh

Mainly used—

55
B. Leibe

Image source: Simonvan & Zisserm

ILSVRC 2012 Results

¢ AlexNet almost halved the error rate
» 16.4% error (top-5) vs. 26.2% for the next best approach
= A revolution in Computer Vision

Advanced Machine Learning Winter’15

B. Leibe

» Acquired by Google in Jan ‘13, deployed in Google+ in May ‘13 5

1

AlexNet Results

Advanced Machine Learning Winter’15

Comparison to AlexNet
Image input

Conv Convolutional layer

Pool | : Max-pooling layer

[
Au0)
Auo)
1004
A0y
100,

24
4
Xewyos

™ FC : Fully-connected layer

T 5 &§ 5§ § B E§

8 T 5 33 3 S 32 Softmax | : Softmax layer

E SN @ 2 & 3 =

=l VGGNet
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5 K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale
= Image Recognition, ICLR 2015

<

B. Leibe

56

Image source: Hirokatsy Kataok

Test image Retrieved images
54
lmage source: A, Krizhevsky, L Sutskever and G.E, Hinton, NIPS 201



http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/pdf/1409.1556
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http://arxiv.org/pdf/1409.1556
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CNN Architectures: GoogLeNet (2014)

Pravius

111 comoitons

tayar

a1 comvolitions

(b) Inception module with dimension reductions

¢ Main ideas

“Inception” module as modular component
» Learns filters at several scales within each module

C. Szegedy, W. Liu, Y. Jia, et al, Going Deeper with Convolutions,

arXiv:1409.4842, 2014.

58

Image source: Szegedy et al,

Results on ILSVRC

[Method Ttop-1 val_ error (%) top-5 val. error (%a) [ top-3 fest error (%)
VGG (2 nets, mulli-crop & dense eval. )

VGG (1 net, multi-crop & dense eval.) 244 7.1 | 70 |
VGG (ILSVRC submission. 7 nets, dense eval ) 247 75 [ 73 ]
GoogLeNet (Szegedy et al 2014) (L net) 79

GoogLeNet (Sz . 2014) (7 nets) 6.7
MSRA (He et al., 2014) (11 nets) - - 51

MSRA (He et al., 2014) (1 net} 279 9.1 9.1

Clarifan (Russakovsky et al., 2014) (multiple nets) - - 1.7
Clarifan (Russakovsky et al, 2014) (1 net) - 12.5

Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets) 36.0 7 148

Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net) 3735 16.0 16.1
OverFeat (Sermanet et al_ 2014) (7 nets) 340 132 13.6
OverFeat (Senmanet et al., 2014) (1 net) 357 12 -
Knizhevsky et al. (Knzhevsky et al., 2012) (5 nets) 381 164 16.4
Krizhevsky et al. (Krizhevsky et al.. 2012) (1 net) 0.7 182 -

B. Leibe

60

Image source: Simonvan & Zisserma
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GooglLeNet Visualization
g 1.1 1,04
IR ML T
Tajeniug gl gy 18wy wa 1.,
OO g,
Convolution
Pooling
Other
B. Leibe »
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