Advanced Machine Learning Lecture 15

Convolutional Neural Networks

11.01.2016

Bastian Leibe **RWTH Aachen** http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Topics of This Lecture

· Tricks of the Trade

- Recap
- Initialization
- **Batch Normalization**
- Dropout

· Convolutional Neural Networks

- > Neural Networks for Computer Vision
- Convolutional Layers
- Pooling Layers

CNN Architectures

- LeNet
- AlexNet
- VGGNet
- GoogLeNet

Recap: Normalizing the Inputs

· Convergence is fastest if

- The mean of each input variable over the training set is zero.
- The inputs are scaled such that all have the same covariance.
- Input variables are uncorrelated if possible.

Advisable normalization steps (for MLPs)

- > Normalize all inputs that an input unit sees to zero-mean, unit covariance.
- If possible, try to decorrelate them using PCA (also known as Karhunen-Loeve expansion).

Recap: Choosing the Right Learning Rate · Convergence of Gradient Descent Simple 1D example $W^{(\tau-1)} = W^{(\tau)} - \eta \frac{\mathrm{d}E(W)}{\mathrm{d}W}$ > What is the optimal learning rate η_{opt} ? If E is quadratic, the optimal learning rate is given by the inverse of the Hessian Don't go beyond Advanced optimization techniques try to this point! approximate the Hessian by a simplified form. If we exceed the optimal learning rate, bad things happen!

Property Pro

7.0 7.3
7.0
7.3
8.1
9.1
11.7
12.5
14.8
16.1
13.6
-
16.4
-

References and Further Reading • LeNet • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE 86(11): 2278-2324, 1998. • AlexNet • A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012. • VGGNet • K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015 • GoogleNet • C. Szegedy, W. Liu, Y. Jia, et al, Going Deeper with Convolutions, arXiv:1409.4842, 2014.