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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
> Regularization (Ridge, Lasso) J
> Gaussian Processes

M =9 =
st </

e Learning with Latent Variables

> Prob. Distributions & Approx. Inference w1
> Mixture Models %
. EM and Generalizations : .

e Deep Learning
> Linear Discriminants
> Neural Networks
~ Backpropagation
> CNNs, RNNs, RBMs, etc.
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Recap: Perceptrons

e One output node per class
y1(x) y2(x)  yk(x)

Output layer

Weights
Input layer
To=1 T1 X9 T4
e Outputs
» Linear outputs With output nonlinearity

d d
Yr(X) = Z Wiix; yr(X) =g (Z szﬂ%)

= Can be used to do multidimensional linear regression or
multiclass classification.
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RWNTH
Recap: Non-Linear Basis Functions

e Straightforward generalization
y1(x) y2(x)  yr(x)

Output layer

o Weights

:E Feature layer

% Mapping (fixed)
E Input layer

g

c

= * Outputs

s » Linear outputs with output nonlinearity
3 d i

g Yr(x) = Z Wiig(z:) y(x) =g (Z Wki¢($z‘))
= i=0 i=0

4
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RWTH
Recap: Non-Linear Basis Functions

e Straightforward generalization
y1(x) y2(x)  yr(x)

Output layer
Weights

Feature layer
Mapping (fixed)

Input layer

e Remarks
> Perceptrons are generalized linear discriminants!
» Everything we know about the latter can also be applied here.
- Note: feature functions ¢(x) are kept fixed, not learned!
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Recap: Perceptron Learning

 Process the training cases in some permutation
~ If the output unit is correct, leave the weights alone.

~ If the output unit incorrectly outputs a zero, add the input
vector to the weight vector.

~ If the output unit incorrectly outputs a one, subtract the input
vector from the weight vector.

e Translation

wi ™ = wl?) — 0 (g (xn; W) — tin) 65 (%)

> This is the Delta rule a.k.a. LMS rule!

= Perceptron Learning corresponds to 1st-order (stochastic)
Gradient Descent of a quadratic error function!
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Recap: Loss Functions

e We can now also apply other loss functions

> L, loss ) = Least-squares regression
L(tay(x)) — Zn (y(xn) - tn)

To]
= > L4 loss: = Median regression
Q
§ L(t,y(x)) = Zn Yy (Xn) — ta
2 .~ Cross-entropy loss = Logistic regression
g L(t,y(x)) = = 2 {tn Inyn + (1 —n) In(1 — yn) }
o .
= - Hinge loss = SVM classification
g L(t,y(x)) =2, [1 = tay(xn)]4
g » Softmax loss = Multi-class probabilistic classification
2 _ _ exp(yk (%))
2 L(t,y(x) = =22, 2k {H (tn = k)In > exp(y; (X)) }
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Recap: Multi-Layer Perceptrons

e Adding more layers
y1(X) y2(x)  yr(x)

Output layer

Hidden layer

Input layer
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Topics of This Lecture

e Learning with Hidden Units

e Obtaining the Gradients
~ Naive analytical differentiation
> Numeric differentiation
Backpropagation
~ Computational graphs
> Automatic differentiation

Y

e Practical Issues
> Nonlinearities
> Sigmoid outputs and the L, loss
> Implementing Softmax correctly
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Learning with Hidden Units

e How can we train multi-layer networks efficiently?

> Need an efficient way of adapting all weights, not just the last
layer.

e |dea: Gradient Descent
> Set up an error function

— Z L(tna y(X’n; W)) + ’\Q(W)
with a loss L(-) and a regularizer Q(-).
., Eg., Lt,y(x; W) =3 (y(x,; W) —t,,)° L, loss

_ 2 L, regularizer
Q(W) T HW‘ ‘F (“Weight decay”)

= Update each weight W( )in the direction of the gradient
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Gradient Descent
e Two main steps
1. Computing the gradients for each weight

2. Adjusting the weights in the direction of
the gradient
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Topics of This Lecture

e Obtaining the Gradients
~ Naive analytical differentiation
> Numeric differentiation
- Backpropagation
~ Computational graphs
> Automatic differentiation
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Obtaining the Gradients

e Approach 1: Naive Analytical Differentiation
y1(x) y2(x)  yk(x)

OE(W OE(W
WD T ow®
OFE (W OE(W
W T ow

» Compute the gradients for each variable analytically.

- What is the problem when doing this?
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Excursion: Chain Rule of Differentiation

e One-dimensional case: Scalar functions

dz dy
dy q
Yy Ay = Y — Ax
dy dx
dx
dz dy
A —~ZA
’ ° T dy dx v
dz _ dzdy
dz dydz

B. Leibe
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RWNTH
Excursion: Chain Rule of Differentiation

e Multi-dimensional case: Total derivative

0z 0z 0y; 0z Oy

“L 92 oY

= Need to sum over all paths that lead to the target
variable zx.

B. Leibe

9z O 0z O 0z |
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Obtaining the Gradients

e Approach 1: Naive Analytical Differentiation
y1(x) y2(x)  yk(x)

HE(W) HE(W)
owyy T ow)

8E(W) 8E(W)
6W(1) v 6W(1)

10

» Compute the gradients for each variable analytically.

- What is the problem when doing this?
= With increasing depth, there will be exponentially many paths!
= Infeasible to compute this way.
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Topics of This Lecture

e Obtaining the Gradients
~ Naive analytical differentiation
> Numerical differentiation
- Backpropagation
~ Computational graphs
> Automatic differentiation
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Obtaining the Gradients

e Approach 2: Numerical Differentiation
y1(x) y2(x)  yk(x)

. Given the current state W), we can evaluate E(W (),

- ldea: Make small changes to W(?) and accept those that improve
E(W®™),

= Horribly inefficient! Need several forward passes for each
weight. Each forward pass is one run over the entire dataset!
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Topics of This Lecture

e Obtaining the Gradients
~ Naive analytical differentiation
> Numerical differentiation
- Backpropagation
~ Computational graphs
> Automatic differentiation
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Obtaining the Gradients

e Approach 3: Incremental Analytical Differentiation

- ldea: Compute the gradients layer by layer.

~ Each layer below builds upon the results of the layer above.
= The gradient is propagated backwards through the layers.
= Backpropagation algorithm
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y1(x) y2(x)  yr(x) OF(W
ayj \
OE(W)
aw
ij
HE(W)
827;
N 9E(W)
aw (M
ij
HE(W)
8337;
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Backpropagation Algorithm

e Core steps

1. Convert the discrepancy b= 9 Z (tj —yj )2
between each output and its jEoutput
target value into an error OE ,
derivate. 6—yj = —(t —yj)

2. Compute error derivatives in
each hidden layer from error
derivatives in the layer above.

3. Use error derivatives w.r.t.
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activities to get error derivatives OF R OF
w.r.t. the incoming weights Yy Ow; 1.
21
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RWNTH
Backpropagation Algorithm

E.g. with sigmoid output nonlinearity
OFE  0Oy; OF ¢ oOF
92 =y; (1 —y;j) 53—

zj  0%; Oy; Oy;

e Notation
~ y,; Output of layer j Connections: =z, = Z Wi 5Yi
> z: Input of layer j z
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Backpropagation Algorithm

e Notation
~ y,; Output of layer j Connections: z; = Z Wi5Yi
- z; Input of layer j 925 wi
B. Leibe Oy; Y

Slide adapted from Geoff Hinton

8_E ~ Oy; OE - _)8E
0z; B 0z; 0y, — Y & 0y

0z; OF oF
Z 8yz 0z; Z Wij @
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e Notation
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> z; Input of layer j

Slide adapted from Geoff Hinton

~ y,; Output of layer j

Backpropagation Algorithm

OE _ Oy; 0F _ (1— .)8_E
0z;  0z; Oy; Vs Ui 0y

0z; OF oF
Z 8yz 0z; Z Wij @

OF 0z; OF OF

Ow;;  Ow;; 0z, ~ 9z 0z;

dws; i 24
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Backpropagation Algorithm

OE _ Oy; 0F _ (1— .)8_E
0z; N 0z; 0y, — Y & 0y

Oy; ; Oy; 0z waa_zj

8w7;j B (’9fw@-j 823' B yza
e Efficient propagation scheme
> vy, is already known from forward pass! (Dynamic Programming)
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= Propagate back the gradient from layer ;7 and multiply with y..
25
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Summary: MLP Backpropagation

e Forward Pass e Backward Pass
y(© — x h« §% = 2 L(t,y) + Az5Q
for k=1,...,ldo for k—lll ..,1 do
2(F) — W)y (k=1) h+ 25 =hog(y™)
o0
yF) = Qk(Z(k)) a\?vbzk) = hy*=DT 4 A S W
endfor h < By(?‘f_l) — WE)Th
y = y(l) endfor

E=L(t,y) + A\Q(W)

e Notes
~ For efficiency, an entire batch of data X is processed at once.
> (© denotes the element-wise product
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Analysis: Backpropagation

e Backpropagation is the key to make deep NNs tractable
> However...

e The Backprop algorithm given here is specific to MLPs

~ It does not work with more complex architectures,
e.g. skip connections or recurrent networks!

- Whenever a new connection function induces a
different functional form of the chain rule, you
have to derive a new Backprop algorithm for it.

= Tedious...

e Let’s analyze Backprop in more detail
~ This will lead us to a more flexible algorithm formulation
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Computational Graphs

e We can think of mathematical expressions as graphs

~ E.g., consider the expression
e = (a+b)*x(b+1)

- We can decompose this into / \

the operations @

c = a—+b -
d = b+1 / \ /
ed @ &

and visualize this as a computational graph.

e Evaluating partial derivatives 3—}; in such a graph

> General rule: sum over all possible paths from Y to X

and multiply the derivatives on each edge of the path together.
28

Image source: Christopher Olah, colah.github.io
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Factoring Paths

e Problem: Combinatorial explosion
» Example:

o )
/60\ N
6
N N
» There are 3 paths from X to Y and 3 more from Y to Z.
0Z

-

s

£

=

3

= ~ If we want to compute ox» We need to sum over 3 x 3 paths:
G 07

0 a—X:a5+oae—l—ozC—l—ﬁ(S—l—ﬁe—l—ﬁC—l—’ycS—l—fye—l-’)/C

s > Instead of naively summing over paths, it’s better to factor them
5 07 X

jés oy — (@t B+7)*(0+e+()

29

Image source: Christopher Olah, colah.github.io
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Efficient Factored Algorithms

Forward-Mode Differentiation (;—X)

Lo S
0
9z _ Apply operator 7+
0X 5 fay € = PPty op 0X
e ¢ (a+ﬁ+‘§)(5+e+g) to every node.

Reverse-Mode Differentiation (‘%Z)
<€

Q )
oz /60\ -~ " - Apply operator 8—82
X~ |Fo |55 =5+ et ¢|So> a7 =L to every node.
(a+8+7)(6+e+c)%/ \Cb/

e Efficient algorithms for computing the sum

> Instead of summing over all of the paths explicitly, compute
the sum more efficiently by merging paths back together at
every node.

Slide inspired by Christopher Olah
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Image source: Christopher Olah, colah.github.io
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Why Do We Care?

e Let’s consider the example again

> Using forward-mode differentiation
from b up...

- Runtime: O(#edges)

~ Result: derivative of every node

with respect to b. =
% _

1
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Why Do We Care?

e Let’s consider the example again

> Using reverse-mode differentiation
from e down... %

- Runtime: O(#edges) ?A

> Result: derivative of e with %

respect to every node.

= This is what we want to compute in Backpropagation!

» Forward differentiation needs one pass per node. With backward
differentiation can compute all derivatives in one single pass.

= Speed-up in O(#inputs) compared to forward differentiation!
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Topics of This Lecture

e Obtaining the Gradients
~ Naive analytical differentiation
> Numerical differentiation
- Backpropagation
~ Computational graphs
» Automatic differentiation
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Obtaining the Gradients

e Approach 4: Automatic Differentiation
y1(x) y2(x)  yr(x)

> Convert the network into a computational graph.

» Each new layer/module just needs to specify how it affects the
forward and backward passes.

~ Apply reverse-mode differentiation.
= Very general algorithm, used in today’s Deep Learning packages
34
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RWTH
Modular Implementation (e.g., Torch)

e Solution in many current Deep Learning libraries
> Provide a limited form of automatic differentiation

» Restricted to “programs” composed of “modules” with a
predefined set of operations.

e Each module is defined by two main functions
1. Computing the outputs y of the module given its inputs x

y = module.fprop(x)

where x, y, and intermediate results are stored in the module.

2. Computing the gradient 0F/0x of a scalar cost w.r.t. the
inputs x given the gradient 0F/0y w.r.t. the outputs y

98 — module.bprop( g—f)
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Topics of This Lecture

e Practical Issues
> Nonlinearities
> Sigmoid outputs and the L, loss
> Implementing Softmax correctly
» Efficient batch processing
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Commonly Used Nonlinearities

1
14+exp{—a}

e Hyperbolic tangent
g(a) = tanh(a)
= 20(2a) — 1

e Softmax
exp{—a;}
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e Sigmoid /
g9(a) = o(a) -
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Commonly Used Nonlinearities (2) o

e Rectified linear unit (ReLU)

g(a) = max{0,a}

e Maxout
g(a) = max{w,a+b;}
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e Hard tanh |
g(a) = max{—1,min{1,a}} _
e ds o0 ds do as 2008
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Usage

e Output nodes

~ Typically, a sigmoid or tanh function is used here.
- Sigmoid for nice probabilistic interpretation (range [0,1]).
- tanh for regression tasks

e Internal nodes
» Historically, tanh was most often used.

~ tanh is better than sigmoid for internal nodes, since it is
already centered.

» Internally, tanh is often implemented as piecewise linear
function (similar to hard tanh and maxout).

- More recently: ReLU often used for classification tasks.

B. Leibe
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Topics of This Lecture

e Practical Issues
> Nonlinearities
> Sigmoid outputs and the L, loss
> Implementing Softmax correctly
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Another Note on Error Functions
- A

E (Zn) Ideal misclassification error
Squared error

Squared error on tanh

Zero gradient!

No penalty for
“too correct”
data points!

t, € {~1,1} N

=2 y 0 T3 on = tny(Xan)

e Squared error on sigmoid/tanh output function
» Avoids penalizing “too correct” data points.
> But: zero gradient for confidently incorrect classifications!

= Do not use L, loss with sigmoid outputs (instead: cross-entropy)!
42

Image source: Bishop, 2006
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Topics of This Lecture

e Practical Issues
> Nonlinearities
> Sigmoid outputs and the L, loss
> Implementing Softmax correctly
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RWTH
Implementing Softmax Correctly

e Softmax output
- De-facto standard for multi-class outputs

E(w :—N 3 I(¢t,, =k)In exp(wy, X) }
w zz{< i 2

e Practical issue

~ Exponentials get very big and can have vastly different
magnitudes.

» Trick 1: Do not compute first softmax, then log,
but instead directly evaluate log-exp in the denominator.

> Trick 2: Softmax has the property that for a fixed vector b
softmax(a + b) = softmax(a)
= Subtract the largest weight vector w, from the others.

B. Leibe
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RWNTH
References and Further Reading

 More information on Backpropagation can be found in
Chapter 6 of the Goodfellow & Bengio book

lan Goodfellow, Aaron Courville, Yoshua Bengio
Deep Learning
MIT Press, in preparation

https://goodfeli.github.io/dlbook/

B. Leibe
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