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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
> Regularization (Ridge, Lasso) J
> Gaussian Processes

M =9 =
st </

e Learning with Latent Variables

> Prob. Distributions & Approx. Inference w1
> Mixture Models %
. EM and Generalizations : .

e Deep Learning
> Linear Discriminants
> Neural Networks
~ Backpropagation
> CNNs, RNNs, RBMs, etc.
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RWTH
Recap: Generalized Linear Discriminants

e Extension with non-linear basis functions
- Transform vector x with M nonlinear basis functions ¢ (x):

M
Yk(X) =g Zwkjcbj (%) + wio
j=1

- Basis functions ¢ (x) allow non-linear decision boundaries.
» Activation function g( - ) bounds the influence of outliers.
> Disadvantage: minimization no longer in closed form.

e Notation
M
Yr(x) = g Zwqubj (x) with qbo(X) =1
§=0
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Recap: Gradient Descent

e |terative minimization
~ Start with an initial guess for the parameter values w,g(;).
> Move towards a (local) minimum by following the gradient.

e Basic strategies

. “Batch learning” ]iTJF ) _ w,(f ) By OE(w)
J J 8wkj

W(T)

(T+1) _ <T> né‘E( )|
K Qwy; w(m)

where FE(w) = Z E,(w
n=1

B. Leibe

> “Sequential updating”
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Recap: Gradient Descent

e Example: Quadratic error function
N

E(w) =) (y(xn;w) — tn)°

n=1

28 ¢ Sequential updating leads to delta rule (=LMS rule)
g (r+1) _ | (7) .

é L% = Wg,; — 7 (yk (Xm W) — tkm) ¢j (Xn)
(@)}

= _ (7

E‘B — wkj o naknqu (Xn)

(0]

= - where

= 5kn — yk(Xn§ W) — Tkn

k5

§ = Simply feed back the input data point, weighted by the
é classification error.

Slide adapted from Bernt Schiele B. Leibe



RWTH
Recap: Probabilistic Discriminative Models

e Consider models of the form
p(Cile) = y(¢p) = o(w' @)
with p(Calp) = 1—p(Ci|0)

e This model is called logistic regression.

e Properties
~ Probabilistic interpretation
» But discriminative method: only focus on decision hyperplane

~ Advantageous for high-dimensional spaces, requires less
parameters than explicitly modeling p(¢|C,) and p(C,).
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Recap: Logistic Regression

e Let’s consider a data set {¢,,t } withn=1,...,N,
where ¢, = ¢(x,) andt, € {0,1}, t = (t1,...,tn)" .

e Withy = p(Cl|q§ ), we can write the likelihood as

p(t|w) = Hyn {T—ya}' ™

e Define the error function as the negative log-likelihood
E(w) = —Inp(tjw)

= =) {talny,+ (1 —t,)In(l - y,)}

n=1
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» This is the so-called cross-entropy error function.




RWTH
Recap: Gradient of the Error Function

e Gradient for logistic regression
N

VE(w) = Z(yn_tn)¢n

n=1

e This is the same result as for the Delta (=LMS) rule
(r+1) _ ) (7) :
Wy ; = Wy — MYk (Xn; W) — ten)@5(Xn)
e We can use this to derive a sequential estimation
algorithm.
- However, this will be quite slow...
» More efficient to use 2"9-order Newton-Raphson = IRLS
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Recap: Softmax Regression

e Multi-class generalization of logistic regression

- In logistic regression, we assumed binary labels ¢,, € {0,1}
» Softmax generalizes this to K values in 1-of-K notation.

Py =1xw) exp(wq X) |
(s ) Py =2|x;w) 1 exp(W, X)
y(x;w) = . = — .
; > i1 exp(W, X) :
Py = K|x;w)]| | exp(W ;X) |

> This uses the softmax function

exp(ax)

Zj exp(a;)

> Note: the resulting distribution is normalized.
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RWTH
Recap: Softmax Regression Cost Function

e Logistic regression

> Alternative way of writing the cost function
N

E(w) = — Z {tnlny, + (1 —t,)In(1 —yn)}

= —ZZ k)In P (y, = k|x,; W)}

e Softmax regression
» Generalization to K classes using indicator functions.
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e N K L — ) exp(w, x) }
) nz_:u;{ ( ) > exp(w] x)
Ve, E(W) = —Z n=k)InP (y, = k|x,; W)]

B. Leibe
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RWTH
Side Note: Support Vector Machine (SVM)

e Basic idea Margin

~ The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points.

> Up to now: consider linear classifiers

wix+b=0

e Formulation as a convex optimization problem

» Find the hyperplane satisfying
1

arg min — ||w||”
w,b 2

under the constraints
th(W X, +0)>1 Vn

based on training data points x, and target values ¢,, € {—1, 1}.

13
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SVM - Analysis

e Traditional soft-margin formulation
N
. 1 2 “Maximize
min 5 [w| +C§:1§n

weRD | £, cR+ the margin”

subject to the constraints
J “Most points should

tny(xn) > 1-¢, be on the correct
side of the margin”

e Different way of looking at it
> We can reformulate the constraints into the objective function.

N
1 5
min o [wl* +C Y [1—tay(xa)],

N Y] N n=1
~ ~

L, regularizer “Hinge loss”

J
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where [z], := max{0,z}.
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R\WNTH
SVM Error Function (Loss Function)

E (2) Ideal misclassification error
Squared error
Hinge error

Robust to outliers!

Favors sparse
/ solutions!
' i
“Hinge error” used in SVMs

- Zero error for points outside the margin (z, > 1).
- Linearly increasing error for misclassified points (z, < 1).
= Leads to sparse solutions, not sensitive to outliers.

- Not differentiable around z, = 1 = Cannot be optimized directly. ,:
B. Leibe

Not differentiable! \ \

—2 -1 0
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Image source: Bishop, 2006
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Slide adapted from Christoph Lampert

SVM - Discussion

e SVM optimization function

N
1,
min o Wwl[* +C ) [1—tay(xa)l,

- J -
Yo Yo

L, regularizer Hinge loss

n=1 ,

e Hinge loss enforces sparsity

Only a subset of training data points actually influences the
decision boundary.

This is different from sparsity obtained through the regularizer!
There, only a subset of input dimensions are used.

Unconstrained optimization, but non-differentiable function.
Solve, e.g. by subgradient descent

Currently most efficient: stochastic gradient descent

16
B. Leibe



Topics of This Lecture

e A Short History of Neural Networks

e Perceptrons
> Definition
> Loss functions
» Regularization
» Limits

e Multi-Layer Perceptrons
> Definition
> Learning
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INIVERSITY
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
» And a cool learning algorithm: “Perceptron Learning”

> Hardware implementation “Mark | Perceptron”
for 20x 20 pixel image analysis

HYPL

Ehe New llork Eimes

“The embryo of an electronic computer
that [...] will be able to walk, talk, see,
write, reproduce itself and be conscious
of its existence.”

& R
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Image source: Wikipedia, clipartpanda.com



RWNTH
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
1969 Minsky & Papert

»  They showed that (single-layer) Perceptrons cannot solve all
problems.

~ This was misunderstood by many that they were worthless.

Neural Networks
don’t work!

600/
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RWTH
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
1969 Minsky & Papert

1980s Resurgence of Neural Networks
»  Some notable successes with multi-layer perceptrons.
~ Backpropagation learning algorithm

HYPLE

{OMG! They work like

the human brain!

Oh no! Killer robots will 1
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RWTH
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
1969 Minsky & Papert

1980s Resurgence of Neural Networks
»  Some notable successes with multi-layer perceptrons.
~ Backpropagation learning algorithm

~  But they are hard to train, tend to overfit, and have
unintuitive parameters.

» So, the excitement fades again.

800’
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RWTH
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
1969 Minsky & Papert
1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods
»  Notably Support Vector Machines
»  Machine Learning becomes a discipline of its own.
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RWTH
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
1969 Minsky & Papert
1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

»  Notably Support Vector Machines
»  Machine Learning becomes a discipline of its own.
» The general public and the press still love Neural Networks.

I’m doing Machine Learning. ]
[ So, you’re using Neu%]

Actually...
23
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RWTH
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods
2005+ Gradual progress

~ Better understanding how to successfully train deep networks
~ Availability of large datasets and powerful GPUs
» Still largely under the radar for many disciplines applying ML

[ Are you using Neurw]
%n. Get real! ]

24
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RWTH
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods
2005+ Gradual progress

2012 Breakthrough results

» ImageNet Large Scale Visual Recognition Challenge
» A ConvNet halves the error rate of dedicated vision approaches.
~ Deep Learning is widely adopted.

HYPL

B. Leibe
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RWTHAACHEN
UNIVERSITY

Topics of This Lecture

e Perceptrons
> Definition
> Loss functions
> Regularization
» Limits
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Perceptrons (Rosenblatt 1957)

e Standard Perceptron

Output layer
Weights

o=l T1 T g Input layer

e |nput Layer
> Hand-designed features based on common sense

e Outputs
> Linear outputs Logistic outputs
y(x) = w ' x + w y(x) = o(w'x +wp)

e Learning = Determining the weights w

B. Leibe
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Extension: Multi-Class Networks

e One output node per class
y1(x) y2(x)  yk(x)

Output layer

Weights
Input layer
To=1 T1 X9 T4
e Outputs
> Linear outputs Logistic outputs

d d
Yr(X) = Z Wiz, yk(x) =0 (Z Wkifcz’)

= Can be used to do multidimensional linear regression or
multiclass classification.
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RWNTH
Extension: Non-Linear Basis Functions

e Straightforward generalization
y1(x) y2(x)  yr(x)

Output layer

o Weights

:E Feature layer

% Mapping (fixed)
E Input layer

g

c

= * Outputs

s > Linear outputs Logistic outputs

3 d i
0w = > Wste ) = (Wit
= i=0 i=0

29
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RWNTH
Extension: Non-Linear Basis Functions

e Straightforward generalization
y1(x) y2(x)  yr(x)

Output layer
Weights

Feature layer
Mapping (fixed)

Input layer

e Remarks
> Perceptrons are generalized linear discriminants!

- Note: feature functions ¢(x) are kept fixed, not learned!
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B. Leibe

» Everything we know about the latter can also be applied here.

30



Perceptron Learning

e Very simple algorithm

* Process the training cases in some permutation
~ If the output unit is correct, leave the weights alone.

~ If the output unit incorrectly outputs a zero, add the input
vector to the weight vector.

~ If the output unit incorrectly outputs a one, subtract the input
vector from the weight vector.

e This is guaranteed to converge to a correct solution if
such a solution exists.
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Perceptron Learning

e Let’s analyze this algorithm...

* Process the training cases in some permutation
~ If the output unit is correct, leave the weights alone.

~ If the output unit incorrectly outputs a zero, add the input
vector to the weight vector.

~ If the output unit incorrectly outputs a one, subtract the input
vector from the weight vector.

e Translation

T+1) (1)
wl(cj | = W
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Perceptron Learning

e Let’s analyze this algorithm...

* Process the training cases in some permutation
~ If the output unit is correct, leave the weights alone.

~ If the output unit incorrectly outputs a zero, add the input
vector to the weight vector.

~ If the output unit incorrectly outputs a one, subtract the input
vector from the weight vector.

e Translation
(r+1) _ _ (7) :
Wy ; — Wy — 7 (yk (X’na W) — tkn) ¢j (Xn)
> This is the Delta rule a.k.a. LMS rule!

= Perceptron Learning corresponds to 1st-order (stochastic)
Gradient Descent of a quadratic error function!

Slide adapted from Geoff Hinton B. Leibe
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Loss Functions

e We can now also apply other loss functions

> L2 loss ) = Least-squares regression
L(tay(x)) — Zn (y(xn) - tn)

To]
= > L1 loss: = Median regression
Q
§ L(t,y(x)) = Zn Yy (Xn) — ta
2 .~ Cross-entropy loss = Logistic regression
g L(t,y(x)) = = 2 {tn Inyn + (1 —n) In(1 — yn) }
(b) .
= - Hinge loss = SVM classification
g L(t,y(x)) =2, [1 = tay(xn)]4
g » Softmax loss = Multi-class probabilistic classification
@©
3 L(t,y(x)) = = 2, Sy {L(tn = k) In R0 |

34
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Regularization

e |In addition, we can apply regularizers
» E.g., an L2 regularizer

E(wW) = L(tn, y(xn; w)) + A w]|?
> This is known as \;}eight decay in Neural Networks.
- We can also apply other regularizers, e.g. L1 = sparsity

~ Since Neural Networks often have many parameters,
regularization becomes very important in practice.

> We will see more complex regularization techniques later on...

35
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Limitations of Perceptrons

e What makes the task difficult?

» Perceptrons with fixed, hand-coded input features can model
any separable function perfectly...

> ...given the right input features.

~ For some tasks this requires an exponential number of input
features.

- E.g., by enumerating all possible binary input vectors as separate
feature units (similar to a look-up table).

- But this approach won’t generalize to unseen test cases!
= It is the feature design that solves the task!

> Once the hand-coded features have been determined, there are
very strong limitations on what a perceptron can learn.

- Classic example: XOR function. o o°
o“ oG
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Wait...

e Didn’t we just say that...
~ Perceptrons correspond to generalized linear discriminants
> And Perceptrons are very limited...

~ Doesn’t this mean that what we have been doing so far in
this lecture has the same problems???

 Yes, this is the case. G, o

~ A linear classifier cannot solve certain problems
(e.g., XOR). OCI payes
- However, with a non-linear classifier based on
the right kind of features, the problem becomes solvable.

= So far, we have solved such problems by hand-desighing good
features ¢ and kernels ¢ ' ¢.

= Can we also learn such feature representations?
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RWTHAACHEN
UNIVERSITY

Topics of This Lecture

e Multi-Layer Perceptrons
> Definition
> Learning
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Multi-Layer Perceptrons

e Adding more layers
y1(X) y2(x)  yr(x)

Output layer

Hidden layer

Input layer

n
F
.
Q
P
.E
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

. 39
Slide adapted from Stefan Roth B. Leibe



Multi-Layer Perceptrons

h d
ye(x) = g | YW g | Y Wi
i=0 §=0

e Activation functions ¢*:
. For example: ¢ (a) = o(a), ¢gV(a) = a

e The hidden layer can have an arbitrary number of nodes
> There can also be multiple hidden layers.

e Universal approximators

> A 2-layer network (1 hidden layer) can approximate any
continuous function of a compact domain arbitrarily well!
(assuming sufficient hidden nodes)
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Learning with Hidden Units

e Networks without hidden units are very limited in what
they can learn
> More layers of linear units do not help = still linear
~ Fixed output non-linearities are not enough.

e We need multiple layers of adaptive non-linear hidden
units. But how can we train such nets?

> Need an efficient way of adapting all weights, not just the last
layer.

> Learning the weights to the hidden units = learning features

~ This is difficult, because nobody tells us what the hidden units
should do.

= Next lecture
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RWNTH
References and Further Reading

e More information on Neural Networks can be found in
Chapters 6 and 7 of the Goodfellow & Bengio book

lan Goodfellow, Aaron Courville, Yoshua Bengio
Deep Learning
MIT Press, in preparation

https://goodfeli.github.io/dlbook/

B. Leibe
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