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This Lecture: Advanced Machine Learning 

• Regression Approaches 

 Linear Regression 

 Regularization (Ridge, Lasso) 

 Gaussian Processes 
 

• Learning with Latent Variables 

 Prob. Distributions & Approx. Inference 

 Mixture Models 

 EM and Generalizations 
 

• Deep Learning 

 Linear Discriminants 

 Neural Networks 

 Backpropagation 

 CNNs, RNNs, RBMs, etc. 
B. Leibe 
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Recap: Generalized Linear Discriminants 

• Extension with non-linear basis functions  

 Transform vector x with M nonlinear basis functions Áj(x): 

 

 

 
 

 Basis functions Áj(x) allow non-linear decision boundaries. 

 Activation function g( ¢ ) bounds the influence of outliers. 

 Disadvantage: minimization no longer in closed form. 
 

• Notation 

3 
B. Leibe 

with Á0(x) = 1

Slide adapted from Bernt Schiele 
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Recap: Gradient Descent 

• Iterative minimization 

 Start with an initial guess for the parameter values        . 

 Move towards a (local) minimum by following the gradient. 
 

• Basic strategies 

 “Batch learning” 

 

 
 

 “Sequential updating” 

 
 

                            where 
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w
(¿+1)

kj = w
(¿)

kj ¡ ´
@E(w)

@wkj

¯̄
¯̄
w(¿)

w
(0)

kj

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@En(w)

@wkj

¯̄
¯̄
w(¿)

E(w) =

NX

n=1

En(w)
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Recap: Gradient Descent 

• Example: Quadratic error function 

 

 
 

• Sequential updating leads to delta rule (=LMS rule) 

 

 

 
 

 where 

 

 

 Simply feed back the input data point, weighted by the 

classification error. 

 5 
B. Leibe 

w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)

= w
(¿)

kj ¡ ´±knÁj(xn)

±kn = yk(xn;w)¡ tkn

Slide adapted from Bernt Schiele 

E(w) =

NX

n=1

(y(xn;w)¡ tn)
2
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Recap: Probabilistic Discriminative Models 

• Consider models of the form 

 
 

with 
 

• This model is called logistic regression. 

 

• Properties 

 Probabilistic interpretation 

 But discriminative method: only focus on decision hyperplane 

 Advantageous for high-dimensional spaces, requires less 

parameters than explicitly modeling p(Á|Ck) and p(Ck). 

 

 

 
 

6 
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p(C1jÁ) = y(Á) = ¾(wTÁ)

p(C2jÁ) = 1¡ p(C1jÁ)
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Recap: Logistic Regression 

• Let’s consider a data set {Án,tn} with n = 1,…,N, 

where                     and                 ,                            . 
 

• With yn = p(C1|Án), we can write the likelihood as 

 

 
 

• Define the error function as the negative log-likelihood 

 

 

 
 

 This is the so-called cross-entropy error function. 

 

 

 

8 

Án = Á(xn) tn 2 f0;1g

p(tjw) =

NY

n=1

ytnn f1¡ yng1¡tn

E(w) = ¡ ln p(tjw)

= ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

t = (t1; : : : ; tN)T
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Recap: Gradient of the Error Function 

• Gradient for logistic regression 

 

 

 

 
 

• This is the same result as for the Delta (=LMS) rule 

 
 

• We can use this to derive a sequential estimation 

algorithm. 

 However, this will be quite slow… 

 More efficient to use 2nd-order Newton-Raphson  IRLS 

9 
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rE(w) =

NX

n=1

(yn ¡ tn)Án

w
(¿+1)

kj = w
(¿)

kj ¡ ´(yk(xn;w)¡ tkn)Áj(xn)
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Recap: Softmax Regression 

• Multi-class generalization of logistic regression 

 In logistic regression, we assumed binary labels 

 Softmax generalizes this to K values in 1-of-K notation. 

 

 

 

 

 

 This uses the softmax function 

 

 

 

 Note: the resulting distribution is normalized. 

11 
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tn 2 f0;1g

y(x;w) =

2
6664

P (y = 1jx;w)

P (y = 2jx;w)
...

P (y = Kjx;w)

3
7775 =

1
PK

j=1 exp(w>j x)

2
6664

exp(w>1 x)

exp(w>2 x)
...

exp(w>Kx)

3
7775
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Recap: Softmax Regression Cost Function 

• Logistic regression 

 Alternative way of writing the cost function 

 

 

 

 

 
 

• Softmax regression 

 Generalization to K classes using indicator functions. 

 

 

12 
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E(w) = ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

= ¡
NX

n=1

1X

k=0

fI (tn = k) ln P (yn = kjxn;w)g

E(w) = ¡
NX

n=1

KX

k=1

(
I (tn = k) ln

exp(w>k x)
PK

j=1 exp(w>j x)

)

rwkE(w) = ¡
NX

n=1

[I (tn = k) lnP (yn = kjxn;w)]
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Side Note: Support Vector Machine (SVM) 

• Basic idea 

 The SVM tries to find a classifier which   

maximizes the margin between pos. and 

neg. data points. 

 Up to now: consider linear classifiers 

 

 

• Formulation as a convex optimization problem 

 Find the hyperplane satisfying 

 

 

 under the constraints 

 
 

 based on training data points xn and target values                     . 

 

 

 

 

 

 

 

 Formulation as a convex optimization problem  

 Possible to find the globally optimal solution! 
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Margin 

wTx+ b = 0

argmin
w;b

1

2
kwk2

tn(wTxn + b) ¸ 1 8n
tn 2 f¡1;1g
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SVM – Analysis 

• Traditional soft-margin formulation 

 

 
 

subject to the constraints 

 

 

• Different way of looking at it 

 We can reformulate the constraints into the objective function. 

 

 

 

 
 

where [x]+ := max{0,x}. 
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“Hinge loss” L2 regularizer 

“Most points should  

be on the correct 

side of the margin” 

“Maximize  

the margin” 
min

w2RD; »n2R+
1

2
kwk2 + C

NX

n=1

»n

min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Slide adapted from Christoph Lampert 
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SVM Error Function (Loss Function) 

 

 

 

 

 

 

 

 
 

 “Hinge error” used in SVMs 

– Zero error for points outside the margin (zn > 1). 

– Linearly increasing error for misclassified points (zn < 1). 

 Leads to sparse solutions, not sensitive to outliers. 

– Not differentiable around zn = 1  Cannot be optimized directly. 

 
15 

B. Leibe Image source: Bishop, 2006 

Ideal misclassification error 

Hinge error 

Squared error 

Not differentiable! Favors sparse  

solutions! 

Robust to outliers! 
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SVM – Discussion 

• SVM optimization function 

 

 

 

 

• Hinge loss enforces sparsity 

 Only a subset of training data points actually influences the 

decision boundary. 

 This is different from sparsity obtained through the regularizer! 

There, only a subset of input dimensions are used. 
 

 Unconstrained optimization, but non-differentiable function. 

 Solve, e.g. by subgradient descent 

 Currently most efficient: stochastic gradient descent 
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min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Hinge loss L2 regularizer 

Slide adapted from Christoph Lampert 
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Topics of This Lecture 

• A Short History of Neural Networks 
 

• Perceptrons 
 Definition 

 Loss functions 

 Regularization 

 Limits 
 

• Multi-Layer Perceptrons 
 Definition 

 Learning 

17 
B. Leibe 
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A Brief History of Neural Networks 

1957 Rosenblatt invents the Perceptron 

 And a cool learning algorithm: “Perceptron Learning” 

 Hardware implementation “Mark I Perceptron” 
for 20£20 pixel image analysis  

18 
B. Leibe Image source: Wikipedia, clipartpanda.com 

“The embryo of an electronic computer 

that [...] will be able to walk, talk, see, 

write, reproduce itself and be conscious 

of its existence.” 
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A Brief History of Neural Networks 

1957 Rosenblatt invents the Perceptron 

1969 Minsky & Papert  

 They showed that (single-layer) Perceptrons cannot solve all 

problems. 

 This was misunderstood by many that they were worthless. 

19 
B. Leibe Image source: colourbox.de, thinkstock 

Neural Networks 

don’t work! 
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A Brief History of Neural Networks 

1957 Rosenblatt invents the Perceptron 

1969 Minsky & Papert  

1980s Resurgence of Neural Networks 

 Some notable successes with multi-layer perceptrons. 

 Backpropagation learning algorithm 

20 
B. Leibe Image sources: clipartpanda.com, cliparts.co 

OMG! They work like 

the human brain! 

Oh no! Killer robots will 

achieve world domination! 
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A Brief History of Neural Networks 

1957 Rosenblatt invents the Perceptron 

1969 Minsky & Papert  

1980s Resurgence of Neural Networks 

 Some notable successes with multi-layer perceptrons. 

 Backpropagation learning algorithm 

 But they are hard to train, tend to overfit, and have  

unintuitive parameters. 

 So, the excitement fades again. 

21 
B. Leibe Image source: clipartof.com, colourbox.de 

sigh! 
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A Brief History of Neural Networks 

1957 Rosenblatt invents the Perceptron 

1969 Minsky & Papert  

1980s Resurgence of Neural Networks 

1995+ Interest shifts to other learning methods 

 Notably Support Vector Machines 

 Machine Learning becomes a discipline of its own. 
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I can do research, me! 

Image source: clipartof.com 
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A Brief History of Neural Networks 

1957 Rosenblatt invents the Perceptron 

1969 Minsky & Papert  

1980s Resurgence of Neural Networks 

1995+ Interest shifts to other learning methods 

 Notably Support Vector Machines 

 Machine Learning becomes a discipline of its own. 

 The general public and the press still love Neural Networks. 

 

23 
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So, you’re using Neural Networks? 

I’m doing Machine Learning. 

Actually... 
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A Brief History of Neural Networks 

1957 Rosenblatt invents the Perceptron 

1969 Minsky & Papert  

1980s Resurgence of Neural Networks 

1995+ Interest shifts to other learning methods 

2005+  Gradual progress 

 Better understanding how to successfully train deep networks 

 Availability of large datasets and powerful GPUs 

 Still largely under the radar for many disciplines applying ML 
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Are you using Neural Networks? 

Come on. Get real! 
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A Brief History of Neural Networks 

1957 Rosenblatt invents the Perceptron 

1969 Minsky & Papert  

1980s Resurgence of Neural Networks 

1995+ Interest shifts to other learning methods 

2005+  Gradual progress 

2012   Breakthrough results 

 ImageNet Large Scale Visual Recognition Challenge 

 A ConvNet halves the error rate of dedicated vision approaches. 

 Deep Learning is widely adopted. 

 

25 
B. Leibe Image source: clipartpanda.com, clipartof.com 

It works! 
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Topics of This Lecture 

• A Short History of Neural Networks 
 

• Perceptrons 
 Definition 

 Loss functions 

 Regularization 

 Limits 
 

• Multi-Layer Perceptrons 
 Definition 

 Learning 

26 
B. Leibe 
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• Standard Perceptron 

 

 

 

 
 

• Input Layer 

 Hand-designed features based on common sense 
 

• Outputs 

 Linear outputs          Logistic outputs 

 
 

• Learning = Determining the weights w 

Perceptrons (Rosenblatt 1957) 

27 
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Input layer 

Weights 

Output layer 
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• One output node per class 

 

 

 

 

 

• Outputs 

 Linear outputs          Logistic outputs 

 

 

 

 Can be used to do multidimensional linear regression or 

multiclass classification. 

Extension: Multi-Class Networks 

28 
B. Leibe Slide adapted from Stefan Roth 

Input layer 

Weights 

Output layer 
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• Straightforward generalization 

 

 

 

 

 

 

 

• Outputs 

 Linear outputs          Logistic outputs 

 

 

Extension: Non-Linear Basis Functions 

29 
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Feature layer 

Weights 

Output layer 

Input layer 

Mapping (fixed) 
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• Straightforward generalization 

 

 

 

 

 

 

 

• Remarks 

 Perceptrons are generalized linear discriminants! 

 Everything we know about the latter can also be applied here. 

 Note: feature functions Á(x) are kept fixed, not learned! 

 

 

Extension: Non-Linear Basis Functions 

30 
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Feature layer 

Weights 

Output layer 

Input layer 

Mapping (fixed) 
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Perceptron Learning 

• Very simple algorithm 
 

• Process the training cases in some permutation 

 If the output unit is correct, leave the weights alone. 

 If the output unit incorrectly outputs a zero, add the input 

vector to the weight vector. 

 If the output unit incorrectly outputs a one, subtract the input 

vector from the weight vector. 
 

• This is guaranteed to converge to a correct solution if 

such a solution exists. 
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Perceptron Learning 

• Let’s analyze this algorithm... 
 

• Process the training cases in some permutation 

 If the output unit is correct, leave the weights alone. 

 If the output unit incorrectly outputs a zero, add the input 

vector to the weight vector. 

 If the output unit incorrectly outputs a one, subtract the input 

vector from the weight vector. 
 

• Translation 
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Perceptron Learning 

• Let’s analyze this algorithm... 
 

• Process the training cases in some permutation 

 If the output unit is correct, leave the weights alone. 

 If the output unit incorrectly outputs a zero, add the input 

vector to the weight vector. 

 If the output unit incorrectly outputs a one, subtract the input 

vector from the weight vector. 
 

• Translation 

 

 

 This is the Delta rule a.k.a. LMS rule! 

 Perceptron Learning corresponds to 1st-order (stochastic) 

Gradient Descent of a quadratic error function!  
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Loss Functions 

• We can now also apply other loss functions 
 

 L2 loss 

 
 

 L1 loss: 

 
 

 Cross-entropy loss 

 
 

 Hinge loss 

 
 

 Softmax loss 
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 Logistic regression 

 Least-squares regression 

 Median regression 

L(t; y(x)) = ¡
P

n

P
k

n
I (tn = k) ln

exp(yk(x))P
j exp(yj(x))

o

 SVM classification 

 Multi-class probabilistic classification 
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Regularization 

• In addition, we can apply regularizers 

 E.g., an L2 regularizer 

 

 

 This is known as weight decay in Neural Networks.  
 

 We can also apply other regularizers, e.g. L1  sparsity 
 

 Since Neural Networks often have many parameters, 

regularization becomes very important in practice. 

 We will see more complex regularization techniques later on... 
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Limitations of Perceptrons 

• What makes the task difficult? 

 Perceptrons with fixed, hand-coded input features can model 

any separable function perfectly... 

 ...given the right input features. 
 

 For some tasks this requires an exponential number of input 

features. 

– E.g., by enumerating all possible binary input vectors as separate 

feature units (similar to a look-up table). 

– But this approach won’t generalize to unseen test cases! 

 It is the feature design that solves the task! 
 

 Once the hand-coded features have been determined, there are 

very strong limitations on what a perceptron can learn. 

– Classic example: XOR function. 
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Wait... 

• Didn’t we just say that... 

 Perceptrons correspond to generalized linear discriminants 

 And Perceptrons are very limited... 

 Doesn’t this mean that what we have been doing so far in  

this lecture has the same problems??? 
 

• Yes, this is the case.  

 A linear classifier cannot solve certain problems 

(e.g., XOR). 

 However, with a non-linear classifier based on  

the right kind of features, the problem becomes solvable. 

 So far, we have solved such problems by hand-designing good 

features Á and kernels Á>Á. 
 

  Can we also learn such feature representations? 
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Topics of This Lecture 

• A Short History of Neural Networks 
 

• Perceptrons 
 Definition 

 Loss functions 

 Regularization 

 Limits 
 

• Multi-Layer Perceptrons 
 Definition 

 Learning 
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Multi-Layer Perceptrons 

• Adding more layers 

 

 

 

 

 

 

 

• Output 
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Hidden layer 

Output layer 

Input layer 

Slide adapted from Stefan Roth 
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Multi-Layer Perceptrons 

 

 

 

• Activation functions g(k): 

 For example: g(2)(a) = ¾(a), g(1)(a) = a 
 

• The hidden layer can have an arbitrary number of nodes 

 There can also be multiple hidden layers. 
 

• Universal approximators 

 A 2-layer network (1 hidden layer) can approximate any 

continuous function of a compact domain arbitrarily well! 

(assuming sufficient hidden nodes) 
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Learning with Hidden Units 

• Networks without hidden units are very limited in what 

they can learn 

 More layers of linear units do not help  still linear 

 Fixed output non-linearities are not enough. 

 

• We need multiple layers of adaptive non-linear hidden 

units. But how can we train such nets? 

 Need an efficient way of adapting all weights, not just the last 

layer. 

 Learning the weights to the hidden units = learning features 

 This is difficult, because nobody tells us what the hidden units 

should do. 

 Next lecture 
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References and Further Reading 

• More information on Neural Networks can be found in 

Chapters 6 and 7 of the Goodfellow & Bengio book 
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Deep Learning 

MIT Press, in preparation 

https://goodfeli.github.io/dlbook/ 


