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Recap: Generalized Linear Discriminants

¢ Extension with non-linear basis functions
» Transform vector x with M nonlinear basis functions ¢ (x):

M
ve(x) =g | 3 weé,(x) + wro
Jj=1

- Basis functions ¢,(x) allow non-linear decision boundaries.
» Activation function g( - ) bounds the influence of outliers.
» Disadvantage: minimization no longer in closed form.

¢ Notation

M
-y;\.(x) =g Z ul;.jéj(x) with ¢0(X) =1

=0

lide adaoted from Bernt Schiele B. Leibe
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Recap: Gradient Descent
e Example: Quadr}etic error function
B(w) = (y(xn;w) — t,)’
¢ Sequential updﬁilng leads to delta rule (=LMS rule)
wir™ = ) = s W) — ) ()
= w7 — 10knd; (xn)
- where
Okn = Yk(Xn; W) =t

= Simply feed back the input data point, weighted by the
classification error.

Slide adanted from Rernt Schiele. B. Leibe
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This Lecture: Advanced Machine Learning

 Regression Approaches f X = R
» Linear Regression T N
» Regularization (Ridge, Lasso) WA\ e
» Gaussian Processes

¢ Learning with Latent Variables
» Prob. Distributions & Approx. Inference
» Mixture Models
» EM and Generalizations

¢ Deep Learning
» Linear Discriminants
» Neural Networks
» Backpropagation
» CNNs, RNNs, RBMs, etc.

B. Leibe

Recap: Gradient Descent

¢ |terative minimization
» Start with an initial guess for the parameter values w,(:;).
» Move towards a (local) minimum by following the gradient.

¢ Basic strategies
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. “Batch learning” wl(:_“) = w](:.) — —8E(w)
’ J Owgj | yin)
E,
. “Sequential updating” w,(c;“) = l(c;) - Z’"—(VV)‘
3wkj w(™)
N
where E(w) = Z E,(w)
n=1
B. Leibe 4
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Recap: Probabilistic Discriminative Models
¢ Consider models of the form

p(Cilp) = y(d) =o(w'¢)

p(C2l@) = 1—p(Ci|®)

¢ This model is called logistic regression.

with

¢ Properties
» Probabilistic interpretation
» But discriminative method: only focus on decision hyperplane
» Advantageous for high-dimensional spaces, requires less
parameters than explicitly modeling p(¢|C,) and p(C,,).

B. Leibe
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Recap: Logistic Regression Recap: Gradient of the Error Function

* Let’s consider a data set {¢,,t,} withn=1,...,N,
where ¢,, = ¢(x,) and t,, € {0,1}, t = (t1,...,tn)" .

¢ Gradient for logistic regression

» With y, = p(Cy|¢,), we can write the likelihood as

N
p(tlw) = T vl {1 v} ™"
n=1 ¢ This is the same result as for the Delta (=LMS) rule

(7+1) (7)

« Define the error function as the negative log-likelihood Wy = Wy — n(yk(Xn; W) - tkn)¢>j(xn)

E(w) = —Inp(tlw
(w) PlEw) ¢ We can use this to derive a sequential estimation
algorithm.

» However, this will be quite slow...
» More efficient to use 2"-order Newton-Raphson = IRLS

= =) {talnyn + (1 —t,) In(1—y,)}

» This is the so-called cross-entropy error function.

Advanced Machine Learning Winter’15
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Recap: Softmax Regression Recap: Softmax Regression Cost Function

¢ Multi-class generalization of logistic regression
» In logistic regression, we assumed binary labels ¢, € {0,1}

¢ Logistic regression
» Alternative way of writing the cost function

» Softmax generalizes this to K values in 1-of-K notation. N
E(w) = — taIny, + (1 —1t,)In(1 —y,
Ply = 1hesw) ep(w ) (w) ;{ ( ) In )}
( ) P(y = 2[x;w) 1 exp(wy X) N 1
X; W) = . =—_—F————— .
Y : Ele exp(w;x) : = - Z Z {I(tn = k) In P (yn = klxn; w)}
P(y=K|x;w) exp(wx) n=1k=0

¢ Softmax regression
» Generalization to K classes using indicator functions.

» This uses the softmax function

prp(ﬂ‘{‘) ‘ B(w) ii {]I(t k) exp(w)l x) }
oxpla; = - n= =
j oxplog) n=1k=1 Z]‘:l exp(ijx)

> Note: the resulting distribution is normalized.

Advanced Machine Learning Winter’15
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N
VWkE(w) = 72[]1@":k)lnP(yn:k\xn;w)]

B. Leibe B. Leibe
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Side Note: Support Vector Machine (SVM) SVM - Analysis
¢ Basic idea

» The SVM tries to find a classifier which
maximizes the margin between pos. and
neg. data points. L

» Up to now: consider linear classifiers

wix+b=0

¢ Traditional soft-margin formulation
N

1 “Maximi
. 9 aximize
RTINS e
bject to th traint:
subject to the constraints «Most points should
tay(x,) 2 1-¢, be on the correct
side of the margin”

¢ Formulation as a convex optimization problem

« Different way of looking at it
» Find the hyperplane satisfying

» We can reformulate the constraints into the objective function.

. 2 N
arg min —||w|| 1 2
wb 2 min s WP+ C D[ty

under the constraints
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n=1
T
th(Wix, +b)>1 Vn L, regularizer “Hinge loss”
based on training data points x,, and target values ¢,, € {—1,1}. where [z], := max{0,z}.
1

3
LA ide adapted from Christoph | ampert LA
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SVM Error Function (Loss Function)

E(z) Ideal misclassification error]
Squared error
Hinge error

Robust to outliers!

Favors sparse
solutions!

Not differentiable! \

-2 =1 0

» “Hinge error” used in SVMs
- Zero error for points outside the margin (z, > 1).
- Linearly increasing error for misclassified points (z, < 1).
= Leads to sparse solutions, not sensitive to outliers.

- Not differentiable around z, = 1 = Cannot be optimized directly. 5
8. Leibe
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Image source: Bishop, 200

Topics of This Lecture

¢ A Short History of Neural Networks

e Perceptrons
» Definition
» Loss functions
» Regularization
» Limits

¢ Multi-Layer Perceptrons
~ Definition
» Learning

Advanced Machine Learning Winter’15
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
1969 Minsky & Papert

» They showed that (single-layer) Perceptrons cannot solve all
problems.

» This was misunderstood by many that they were worthless.

Neural Networks

don’t work!
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B. Leibe

lmage source: colourbox de, thinkstoc!
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SVM - Discussion
¢ SVM optimization function

N
1
min W[ +C Y1 tay(xn)],

weRP
—
L, regularizer

n=1

Hinge loss

¢ Hinge loss enforces sparsity

Only a subset of training data points actually influences the
decision boundary.

This is different from sparsity obtained through the regularizer!
There, only a subset of input dimensions are used.

v

v

v

Unconstrained optimization, but non-differentiable function.
Solve, e.g. by subgradient descent
Currently most efficient: stochastic gradient descent

v

v

ide adapted from Christoph lampert B. Leibe
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
» And a cool learning algorithm: “Perceptron Learning”

» Hardware implementation “Mark | Perceptron”
for 20x 20 pixel image analysis

Elye New YJork Eimes
“The embryo of an electronic computer
that [...] will be able to walk, talk, see,
write, reproduce itself and be conscious
of its existence.”

B. Leibe Image source; Wikipedia, cli o

")
=
]
IS
o
=
=
®
5
3
o
=
S
8
=
-
@
o
c
8
3
<
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks
» Some notable successes with multi-layer perceptrons.
» Backpropagation learning algorithm

9]0
o

Oh no! Killer robots will
¥ | achieve world domination!

B. Leibe lmage sources: g
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks
» Some notable successes with multi-layer perceptrons.
» Backpropagation learning algorithm

» But they are hard to train, tend to overfit, and have
unintuitive parameters.

» So, the excitement fades again.

600! &}

B. Leibe Lmage source: clipartof.com. colourbox.d
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
1969 Minsky & Papert
1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods
» Notably Support Vector Machines
> Machine Learning becomes a discipline of its own.
» The general public and the press still love Neural Networks.

I’m doing Machine Learning.
So, you’re using Neural Networks?
B. Leibe
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RWTH ACHET
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
1969 Minsky & Papert
1980s Resurgence of Neural Networks
1995+ Interest shifts to other learning methods
2005+ Gradual progress
2012 Breakthrough results
» ImageNet Large Scale Visual Recognition Challenge

» A ConvNet halves the error rate of dedicated vision approaches.
» Deep Learning is widely adopted.

i
SN

AT,

om. clipartof,.con]

B. Leibe

lmage source: cli

RWTH/CET
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron
1969 Minsky & Papert
1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods
» Notably Support Vector Machines
» Machine Learning becomes a discipline of its own.

| can do research, me!

29,
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B. Leibe

Image source: clipartof.cor

RWTH CHE
A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

2005+ Gradual progress
» Better understanding how to successfully train deep networks
» Availability of large datasets and powerful GPUs
» Still largely under the radar for many disciplines applying ML

Are you using Neural Networks?
Come on. Get real!

B. Leibe
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Topics of This Lecture

¢ Perceptrons
» Definition
» Loss functions
» Regularization
» Limits
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Perceptrons (Rosenblatt 1957) Extension: Multi-Class Networks

¢ Standard Perceptron

¢ One output node per class
(%) ya(x)  yr(x)

Output layer Output layer

© Weights © Weights

£ =l ay x T Input layer £ Input layer
H H

=« Input Layer 2

E » Hand-designed features based on common sense ﬁ ° OUtPUtS

it S » Linear outputs Logistic outputs

2| « Outputs E d d

S = r -
8 . Linear outputs Logistic outputs E yr(x) = Z Wiz yr(x)=¢o Z Whiz;
3 y(x) =w'x+uy y(x) = a(w' x +wp) 3 i=0 =0

% . .. . = => Can be used to do multidimensional linear regression or
§ ¢ Learning = Determining the weights w 3:’ multiclass classification.

B. Leibe

Slide adapted from Stefan Roth B. Leibe
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Extension: Non-Linear Basis Functions

RWTHACEN
Extension: Non-Linear Basis Functions

¢ Straightforward generalization
i (x) yalx)  y(x)

¢ Straightforward generalization
i (x) yalx)  yr(x)

Output layer Output layer

» Everything we know about the latter can also be applied here.
- Note: feature functions ¢(x) are kept fixed, not learned!

d
yi(x) = Z Wiio(x;) ye(x) =0 (Z Wy ;o{‘r,))
i=0

i=0

© Weights 0 Weights

E Feature layer g Feature layer
2 Mapping (fixed) B Mapping (fixed)
o o

£ 2

= Input layer = Input layer

2 2

=|  Outputs =  Remarks

S » Linear outputs Logistic outputs < » Perceptrons are generalized linear discriminants!

£ ! E

8 8

- S

< <

" 29
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Perceptron Learning Perceptron Learning

e Very simple algorithm ¢ Let’s analyze this algorithm...

¢ Process the training cases in some permutation

» If the output unit is correct, leave the weights alone.

» If the output unit incorrectly outputs a zero, add the input
vector to the weight vector.
If the output unit incorrectly outputs a one, subtract the input
vector from the weight vector.

¢ Process the training cases in some permutation

» If the output unit is correct, leave the weights alone.

»If the output unit incorrectly outputs a zero, add the input
vector to the weight vector.
If the output unit incorrectly outputs a one, subtract the input
vector from the weight vector.

v
v

¢ This is guaranteed to converge to a correct solution if
such a solution exists.

¢ Translation
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slide adapted from Geoff Hinton B. Leibe ide adanted from Geaff Hinton B. Leibe
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Perceptron Learning

¢ Let’s analyze this algorithm...

¢ Process the training cases in some permutation
» If the output unit is correct, leave the weights alone.

» If the output unit incorrectly outputs a zero, add the input
vector to the weight vector.

» If the output unit incorrectly outputs a one, subtract the input
vector from the weight vector.

¢ Translation
(r+1) _ (") .
Wi = wy; — 10 (Yk(Xn; W) — tn) 5 (xn)
» This is the Delta rule a.k.a. LMS rule!

= Perceptron Learning corresponds to 15t-order (stochastic)
Gradient Descent of a quadratic error function!

Slide adapted from Geoff Hinton B. Leibe

Regularization

¢ In addition, we can apply regularizers
» E.g., an L2 regularizer
E(w) = X Lty y(x,;w)) + Al|w |2

i
This is known as weight decay in Neural Networks.

v

v

We can also apply other regularizers, e.g. L1 = sparsity

v

Since Neural Networks often have many parameters,
regularization becomes very important in practice.

We will see more complex regularization techniques later on...

v

B. Leibe
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Wait...

e Didn’t we just say that...
» Perceptrons correspond to generalized linear discriminants
» And Perceptrons are very limited...

» Doesn’t this mean that what we have been doing so far in
this lecture has the same problems???

¢ Yes, this is the case. C, OC-]
» A linear classifier cannot solve certain problems
(e.g., XOR).. . 3 ol oG
» However, with a non-linear classifier based on .
the right kind of features, the problem becomes solvable.

= So far, we have solved such problems by hand-designing good
features ¢ and kernels ¢ ' ¢.

= Can we also learn such feature representations?

B. Leibe

Loss Functions

¢ We can now also apply other loss functions
» L2 loss
Lit,y(x) = ¥, (y(xa) - t)*
» L1 loss:
Lit.y(x)) = 22, [y(xn) — ta]
» Cross-entropy loss = Logistic regression|
Lit,y(x)) = — er {tn Ing, +(1—1,)In(1 - yn)}
» Hinge loss
Lity(x)) =32, [1— tuylx)],

» Softmax loss

= Least-squares regression|

= Median regression

= SVM classification

= Multi-class probabilistic classification
L(ty) = X, Ty {I(tn = k) In 220000

B. Leibe

Advanced Machine Learning Winter’15
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Limitations of Perceptrons

¢ What makes the task difficult?
» Perceptrons with fixed, hand-coded input features can model
any separable function perfectly...
» ...given the right input features.

» For some tasks this requires an exponential number of input
features.

- E.g., by enumerating all possible binary input vectors as separate
feature units (similar to a look-up table).

- But this approach won’t generalize to unseen test cases!
= It is the feature design that solves the task!

» Once the hand-coded features have been determined, there are
very strong limitations on what a perceptron can learn.

Advanced Machine Learning Winter’15

- Classic example: XOR function. & of
o eG
) 36
B. Leibe

Topics of This Lecture

¢ Multi-Layer Perceptrons
» Definition
» Learning
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Multi-Layer Perceptrons

¢ Adding more layers
(%) p2(x)

Y (x)

Output layer

Hidden layer

Learning with Hidden Units

* Networks without hidden units are very limited in what
they can learn
> More layers of linear units do not help = still linear
» Fixed output non-linearities are not enough.

* We need multiple layers of adaptive non-linear hidden
units. But how can we train such nets?

» Need an efficient way of adapting all weights, not just the last
layer.

Learning the weights to the hidden units = learning features

This is difficult, because nobody tells us what the hidden units
should do.

= Next lecture

v

v

lide adaoted from Geoff Hinton B. Leibe

Input layer
e Output
i d
g A2) ( AL
we(x) =g [ S w g | Y wila,
i=0 =0
39
Slide adapted from Stefan Roth B. Leibe
RWTH CHE
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Multi-Layer Perceptrons

h d
‘ 2 .
ue(x) = 9@ | D WiPg | Do Wia
i=0 =0
¢ Activation functions g(:

. For example: ¢ (a) = o(a), gV(a) = a

¢ The hidden layer can have an arbitrary number of nodes
» There can also be multiple hidden layers.

¢ Universal approximators

» A 2-layer network (1 hidden layer) can approximate any
continuous function of a compact domain arbitrarily well!
(assuming sufficient hidden nodes)

40

Slide credit: Stefan Roth B. Leibe
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References and Further Reading

¢ More information on Neural Networks can be found in
Chapters 6 and 7 of the Goodfellow & Bengio book

lan Goodfellow, Aaron Courville, Yoshua Bengio
Deep Learning
MIT Press, in preparation

https://goodfeli.github.io/dlbook/
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