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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
> Regularization (Ridge, Lasso) J
> Gaussian Processes

M =9 =
st </

e Learning with Latent Variables

> Prob. Distributions & Approx. Inference w1
> Mixture Models %
. EM and Generalizations : .

e Deep Learning
> Linear Discriminants
> Neural Networks
~ Backpropagation
> CNNs, RNNs, RBMs, etc.
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Deep Learning
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Deep Learning

e We’ve finally got there! Yay! But...
> What is it?
> Why is it a thing?
> Why is it a thing now?

e |n order to understand that, let’s look at some
background first:
> Linear Discriminants (this lecture)
» Neural Networks
~ Backpropagation
> How to get them to work

> Specific types of networks (CNN, RNN, RBM, ...)
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Topics of This Lecture

e Linear Discriminants Revisited (from ML lecture)
> Linear Discriminants
~ Least-Squares Classification
> Generalized Linear Discriminants

Gradient Descent

Y

e Logistic Regression
> Probabilistic discriminative models
> Logistic sigmoid (logit function)
> Cross-entropy error
> Gradient descent
> Note on error functions

e Softmax Regression
> Multi-class generalization
> Properties
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RWTH
Recap: Linear Discriminant Functions

e Basic idea
~ Directly encode decision boundary
> Minimize misclassification probability directly.

- w, w, define a hyperplane in R”,

~ |If a data set can be perfectly classified by a linear discriminant,
then we call it linearly separable.

o . . o« o . —

% e Linear discriminant functions y 0

E 0 N

< X -+ Wy Yy ‘<

% / \ ’.-..*../w xl
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v weight vector “bias” o,
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RWNTH
Recap: Least-Squares Classification

e Simplest approach

> Directly try to minimize the sum- of-squares error
N

E(w):Z(y(xn, w)—t,)" = —Z W' X, —

n=1

~ Setting the derivative to zero yields
N

OFE (w) |
v — Z (wan — tn) X, = XX'w—-Xt=0

n=1
w = (XXT) " Xt

= Exact, closed-form solution for the parameters.
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Recap: Multi-Class Case

e General classification problem
» Let’s consider K classes described by linear models

Uk (X) = Wi X 4 Wy, Ek=1,...,. K

- We can group those together using vector notation

y(x) = W'%

where I wip ... WKO |
—~ B N W11 WK1
W =[wy,...,Wg| =

wip ... WKD

> The output will again be in 1-of-K notation.

= We can directly compare it to the target valuet = |t1, ..., tk]T .
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Recap: Multi-Class Case

e Classification problem in matrix notation
> For the entire dataset, we can write

Y(X) = XW
and compare this to the target matrix T where

S~

W = |[wy,...,Wg]|
I g
X1 t4
X = . T = .
T T
XN ty]

» Result of the comparison:

}NCW _ T Goal: Choose W such

that this is minimal!
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RWTH
Recap: Multi-Class Least-Squares

e Multi-class case
~ We can formulate the sum-of-squares error in matrix notation

. N K
E(W) = (y(Xn; Wi) = trn)”
- %Tr {(5&\7\? )T (XW — T)}

~ Setting the derivative to zero yields

o —

W = X'T=(X"X)"'X'T
> We then obtain the discriminant function as
— ~ N\
y(x) = WX = TT(XT) %

= Exact, closed-form solution for the discriminant function
parameters.
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Recap: Problems with Least Squares

e Least-squares is very sensitive to outliers!

> The error function penalizes predictions that are “too correct”.

12
Image source: C.M. Bishop, 2006
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RWTH
Recap: Generalized Linear Models

e Generalized linear model
y(x) = g(w'x +wo)

> ¢( - ) is called an activation function and may be nonlinear.

~ The decision surfaces correspond to

y(x) = const. < W'x-+wg = const.

> If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

e Advantages of the non-linearity

> Can be used to bound the influence of outliers
and “too correct” data points.

- When using a sigmoid for ¢(-), we can interpret I 1 ?
the y(x) as posterior probabilities. g(a) =
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RWTH
Recap: Extension to Nonlinear Basis Fcts.

e Generalization
> Transform vector x with M nonlinear basis functions ¢ (x):

Zwk3¢j + Wko

e Advantages
> Transformation allows non-linear decision boundaries.

> By choosing the right qu, every continuous function can (in
principle) be approximated with arbitrary accuracy.

e Disadvantage

> The error function can in general no longer be minimized in
closed form.

= Minimization with Gradient Descent
B. Leibe
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RWTH
Recap: Extension to Nonlinear Basis Fcts.

e Generalization
> Transform vector x with M nonlinear basis functions ¢ (x):

Zwk3¢] + Wko

> Basis functions qu(x) allow non-linear decision boundaries.

» By choosing the right qu, every continuous function can (in
principle) be approximated with arbitrary accuracy.

» Disadvantage: minimization no longer in closed form.
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e Notation Iy
Yk (X) — Zwqubj (X) with qbQ(X) =1
7=0

15
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Recap: Gradient Descent

e Problem

> The error function can in general no longer be minimized in
closed form.

e |dea (Gradient Descent)
> lterative minimization
~ Start with an initial guess for the parameter values w,(;;-).
> Move towards a (local) minimum by following the gradient.

OF(w)
T+1 T

Owy; w(m)

7 : Learning rate

This simple scheme corresponds to a 1st-order Taylor expansion
(There are more complex procedures available).

Y
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Recap: Gradient Descent

e |terative minimization
~ Start with an initial guess for the parameter values w,g(;).
> Move towards a (local) minimum by following the gradient.

e Basic strategies

. “Batch learning” ECTJF ) _ w}(f ) By OE(w)
J J 8wkj

W(T)

(T+1) _ <T> né‘E( )|
K Owy w(m)

where FE(w) = Z E,(w
n=1

B. Leibe

> “Sequential updating”
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Recap: Gradient Descent

e Example: Quadratic error function
N

E(w) =) (y(xn;w) — tn)°

n=1

28 ¢ Sequential updating leads to delta rule (=LMS rule)
g (r+1) _ | (7) .

é L% = Wg,; — 7 (yk (Xm W) — tkm) ¢j (Xn)
(@)}

= _ (7

E‘B — wkj o naknqu (Xn)

(0]

= - where

= 5kn — yk(Xn§ W) — Tkn

k5

§ = Simply feed back the input data point, weighted by the
é classification error.

Slide adapted from Bernt Schiele B. Leibe



Recap: Gradient Descent

o Cases with differentiable, non-linear activation function

yk(x) = glax) =g Zwki¢j (%n)

e Gradient descent (again with quadratic error function)

OE,(w)  Og(ax) (yr(Xn; W) — tien) &5 (%)
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8wkj B &wkj
l(;j_—H) — wl(g;) — 775kn¢j (Xn)
dg(ar) ,
5kn — awkj (yk (Xna W) tkn)
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RWTH
Summary: Generalized Linear Discriminants

e Properties
> General class of decision functions.

- Nonlinearity g(-) and basis functions ¢ allow us to address
linearly non-separable problems.

> Shown simple sequential learning approach for parameter
estimation using gradient descent.

e Limitations / Caveats
» Flexibility of model is limited by curse of dimensionality

- ¢(-) and gbj often introduce additional parameters.

- Models are either limited to lower-dimensional input space
or need to share parameters.

> Linearly separable case often leads to overfitting.
- Several possible parameter choices minimize training error.
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Topics of This Lecture

e Logistic Regression
> Probabilistic discriminative models
> Logistic sigmoid (logit function)
> Cross-entropy error
> Gradient descent
> Note on error functions

B. Leibe
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RWTH
Recap: Probabilistic Discriminative Models

e Consider models of the form
p(Cile) = y(¢p) = o(w' @)
with p(Calp) = 1—p(Ci|0)

e This model is called logistic regression.

e Properties
~ Probabilistic interpretation
» But discriminative method: only focus on decision hyperplane

~ Advantageous for high-dimensional spaces, requires less
parameters than explicitly modeling p(¢|C,) and p(C,).
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Recap: Logistic Sigmoid

e Properties 1
~ Definition: a(a) —
1 + exp(—a)
o)
> Inverse: a=In “logit” function
|

> Symmetry property:
o(—a) =1—o0(a)

do
> Derivative: — = 1 —
- o(l—o)
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Recap: Logistic Regression

e Let’s consider a data set {¢,,t } withn=1,...,N,
where ¢, = ¢(x,) andt, € {0,1}, t = (t1,...,tn)" .

e Withy = p(Cl|q§ ), we can write the likelihood as

p(t|w) = Hyn {T—ya}' ™

e Define the error function as the negative log-likelihood
E(w) = —Inp(tjw)

= =) {talny,+ (1 —t,)In(l - y,)}

n=1
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» This is the so-called cross-entropy error function.
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Gradient of the Error Function

Yn — O(WT¢n>
dyn

e Error functlon —— = Yn(1 —yn)d,
W

E(w) Z{t Iny, + (1 —t,)In(1 —y,)}
n=1
e Gradient o d
VE(w) = — ) St ™+ (1—t,
(W) = XS AR — }

S WA= (T )
2y ¢ t”)u\%lqb“}

= —Z{t —bnlln — Yn +nla) P}
= D (W

n=1 26
B. Leibe
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Gradient of the Error Function

e Gradient for logistic regression
N

VE(w) = Z(yn_tn)¢n

n=1

e Does this look familiar to you?

e This is the same result as for the Delta (=LMS) rule

wii ™ = w — (Y (X W) — tn) 5 (x0)

e We can use this to derive a sequential estimation
algorithm.
~» However, this will be quite slow...

B. Leibe
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RWTH
Recap: Iteratively Reweighted Least Squares

e Result of applying Newton-Raphson to logistic regression

wi = w( — (TR®) 1! (y — t)
— (3"R®)" {(I)TR<I>W(T) — 3T (y — t)}
= (®'R®)'®'Rz
with z=®w!?) — R (y —t)

e Very similar form to pseudo-inverse (normal equations)

-~ But now with non-constant weighing matrix R (depends on w).

> Need to apply normal equations iteratively.

= lteratively Reweighted Least-Squares (IRLS) -
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Summary: Logistic Regression

e Properties
Directly represent posterior distribution p(¢|C,)

Y

Requires fewer parameters than modeling the likelihood + prior.
Very often used in statistics.

~ It can be shown that the cross-entropy error function is concave
- Optimization leads to unique minimum

- But no closed-form solution exists
- Iterative optimization (IRLS)

~ Both online and batch optimizations exist

Y

Y

e Caveat

» Logistic regression tends to systematically overestimate odds
ratios when the sample size is less than ~500.

29
B. Leibe



n
F
.
Q
P
IE
(@)]
=
c
| -
®
(b}
|
(D)
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

Topics of This Lecture

e Logistic Regression
> Probabilistic discriminative models
> Logistic sigmoid (logit function)
> Cross-entropy error
> Gradient descent
> Note on error functions

B. Leibe
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RWNTH
A Note on Error Functions

tE(z,) Ideal misclassif
Z eal misclassification error

Not differentiable! S

=2 y N\ 1 7™ #n = tnl(%n)

e |deal misclassification error function (black)
> This is what we want to approximate,
> Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.
= We cannot minimize it by gradient descent. 31

Image source: Bishop, 2006
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A Note on Error Functions o

A

E (Zn) Ideal misclassification error
Squared error

tn € {—1,1}

Sensitive to outliers!

Penalizes “too correct”
data points!

", #

—2 1 0 1

e Squared error used in Least-Squares Classification
~ Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points
= Generally does not lead to good classifiers. 32

Image source: Bishop, 2006

2"' Zn = tny(xn)
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A Note on Error Functions
A
kE (Zn) Ideal misclassification error
Squared error
Cross-entropy error

tn € {—1,1}

Robust to outliers!

- — 0 — 2 = Ey(%,)

e Cross-Entropy Error
> Minimizer of this error is given by posterior class probabilities.
> Concave error function, unique minimum exists.
~ Robust to outliers, error increases only roughly linearly
» But no closed-form solution, requires iterative estimation. 33

Image source: Bishop, 2006
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Topics of This Lecture

e Softmax Regression
> Multi-class generalization
> Properties
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Softmax Regression

e Multi-class generalization of logistic regression

- In logistic regression, we assumed binary labels ¢,, € {0,1}
» Softmax generalizes this to K values in 1-of-K notation.

Py =1xw) exp(wq X) |
(s ) Py =2|x;w) 1 exp(W, X)
y(x;w) = . = — .
; > i1 exp(W, X) :
Py = K|x;w)]| | exp(W ;X) |

> This uses the softmax function
exp(a)

>_j exp(ay)

> Note: the resulting distribution is normalized.
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Softmax Regression Cost Function

e Logistic regression

> Alternative way of writing the cost function

N

E(w) = — Z {talny, + (1 —t,)In(1 —y,)}

= —ZZ k)In P (yy

e Softmax regression

— k’Xn; W)}

» Generalization to K classes using indicator functions.

n=1 k=1

B. Leibe

K
> j—1 €xp(W, x

=

exp(w, X) }
)
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Optimization

e Again, no closed-form solution is available
> Resort again to Gradient Descent

> Gradient
N
Ve, E(W) = = [[(tp = k) In P (y, = k|xp; w)]
n=1
e Note

- V., E(w) is itself a vector of partial derivatives for the
different components of w,.

> We can now plug this into a standard optimization package.

B. Leibe
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Summary

e We have now an understanding of
» Generalized Linear Discriminants as basic tools
~ Different loss functions and their effects
> Softmax generalization to multi-class classification

e |In the next lecture, we will see
> How they are related to Neural Networks.

> How we can use our new background to get a better
understanding of what NNs actually do.
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References and Further Reading

e More information on Linear Discriminant Functions can
be found in Chapter 4 of Bishop’s book (in particular
Chapter 4.1).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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