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We'’ve finally got there!

Deep Learning

B. Leibe
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RWTH ACHET
Topics of This Lecture

¢ Linear Discriminants Revisited (from ML lecture)
» Linear Discriminants
» Least-Squares Classification
» Generalized Linear Discriminants
» Gradient Descent

¢ Logistic Regression
» Probabilistic discriminative models
» Logistic sigmoid (logit function)
Cross-entropy error
» Gradient descent
> Note on error functions

v

¢ Softmax Regression
» Multi-class generalization
» Properties

B. Leibe
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This Lecture: Advanced Machine Learning

* Regression Approaches f X 2 R
» Linear Regression -

» Regularization (Ridge, Lasso) 1941,
» Gaussian Processes

¢ Learning with Latent Variables
» Prob. Distributions & Approx. Inference
» Mixture Models
» EM and Generalizations

¢ Deep Learning
» Linear Discriminants
» Neural Networks
» Backpropagation
» CNNs, RNNs, RBMs, etc.

B. Leibe

Deep Learning

¢ We’ve finally got there! Yay! But...
» What is it?
» Why is it a thing?
» Why is it a thing now?

¢ In order to understand that, let’s look at some
background first:
» Linear Discriminants (this lecture)
» Neural Networks
» Backpropagation
» How to get them to work

v

Specific types of networks (CNN, RNN, RBM, ...)

B. Leibe
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Recap: Linear Discriminant Functions
¢ Basic idea

» Directly encode decision boundary
» Minimize misclassification probability directly.

y=0= y>0

e Linear discriminant functions

y(x) = wx + y<0

weight vector “bias”

(= threshold)

» w, w, define a hyperplane in R”.

» If a data set can be perfectly classified by a linear discriminant,
then we call it linearly separable.

ide adapted from Berpt Schiele B. Leibe




Advanced Machine Learning Winter’15

Advanced Machine Learning Winter’15

RWTHACHE
Recap: Least-Squares Classification

¢ Simplest approach
~ Directly try to minimize the sum-of-squares error
N N

) = 3 Wi w) — ta)* = 33 (wxa )
n=1 n=1

» Setting the derivative to zero yields

GE(w) _ N~ o7 T z
5w = HZ;l(w Xp—tn) X, = XX'w-Xt=0
w o= (XXT) "Xt

= Exact, closed-form solution for the parameters.

B. Leibe

Recap: Multi-Class Case

e Classification problem in matrix notation
» For the entire dataset, we can write

Y(X) = XW
and compare this to the target matrix T where

W = [W1,..., %]
x7 t
X =|: T = |:
x?\, th
> Result of the comparison: __
XW -7 Goal: Choose W such

that this is minimal!

B. Leibe
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Recap: Problems with Least Squares

x
/ o
-4
-6
-8 -8
-4 2 o 2 4 6 8 -4 2 o2 4 6 8

o Least-squares is very sensitive to outliers!

» The error function penalizes predictions that are “too correct”.

12

B. Leibe lmage source: CM, Bishop, 2004
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Recap: Multi-Class Case

¢ General classification problem
» Let’s consider K classes described by linear models
T
Ye(x) =wpx+wp, k=1... K

» We can group those together using vector notation

y(x) = WTx
where w10 WKO
—~ - - wir ... WK1
W= [Wl,...,WK] =
wip ... WKD
» The output will again be in 1-of-K notation.
= We can directly compare it to the target valuet = [t1, ... 7tk]T .
8
B. Leibe
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Recap: Multi-Class Least-Squares

¢ Multi-class case
» We can formulate the sum-of-squares error in matrix notation

N K
EW) =33 (wlxuiwi) — 1)’
n=1 k=1
= %Tr {()"(VTI —T) T (XW - T)}
» Setting the derivative to zero yields
W= XIT=(X"X)"'X'T
» We then obtain the discriminant function as
y(x)= W% = T'()“G)Ti

= Exact, closed-form solution for the discriminant function
parameters.

B. Leibe
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Recap: Generalized Linear Models

¢ Generalized linear model
T )
y(x) = g(w x +w)
» g( - ) is called an activation function and may be nonlinear.
» The decision surfaces correspond to

y(x) = const. < WX+ wy = const.

» If g is monotonous (which is typically the case), the resulting
decision boundaries are still linear functions of x.

¢ Advantages of the non-linearity
» Can be used to bound the influence of outliers
and “too correct” data points.
» When using a sigmoid for g(-), we can interpret

1
the y(x) as posterior probabilities.

1+ exp(—a)
13

gla) =

B. Leibe
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Recap: Extension to Nonlinear Basis Fcts.
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Recap: Extension to Nonlinear Basis Fcts.

¢ Generalization
~ Transform vector x with M nonlinear basis functions ¢(x):

M
(%) = D wiy (%) + wio
j=1

¢ Generalization
» Transform vector x with M nonlinear basis functions ¢;(x):

M
(%) = D wiy (%) + wio
j=1

¢ Advantages
» Transformation allows non-linear decision boundaries.

» By choosing the right ¢;, every continuous function can (in
principle) be approximated with arbitrary accuracy.

» Basis functions ¢J(x) allow non-linear decision boundaries.

- By choosing the right ¢;, every continuous function can (in
principle) be approximated with arbitrary accuracy.
» Disadvantage: minimization no longer in closed form.

+ Disadvantage

» The error function can in general no longer be minimized in
closed form.

= Minimization with Gradient Descent
B. Leibe

¢ Notation

M
ye(0) = D wiidi(x)  witn Go(x) = 1
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Slide credit: Bernt Schiele B. Leibe

Recap: Gradient Descent Recap: Gradient Descent

¢ Problem

» The error function can in general no longer be minimized in
closed form.

¢ |terative minimization

» Start with an initial guess for the parameter values w,(:;).

» Move towards a (local) minimum by following the gradient.
¢ |dea (Gradient Descent)

» Iterative minimization

» Start with an initial guess for the parameter values w,(c(;).

» Move towards a (local) minimum by following the gradient.

W @ OEW)

¢ Basic strategies
» “Batch learning” wl(;]'_“) = w](c;) — 8E—(W)

Bwkj

wi()
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=w, —— . o (r - OE,(w
kj kj 6wk], ) . “Sequential updating wl(chrl) = l(cj) —n Bw—(kj)‘ .
7 : Learning rate N e
~ This simple scheme corresponds to a 1st-order Taylor expansion where  E(w) = Z E,(w)
(There are more complex procedures available). n=1
B. Leibe 16 B. Leibe 1
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Recap: Gradient Descent Recap: Gradient Descent
e Example: Quadr}etic error function e Cases with differentiable, non-linear activation function
M
E(w) = (y(xn; W) — )
nz::l (%) = glar) = g | D writ;(xn)
« Sequential updating leads to delta rule (=LMS rule) J=0
+1
wi ™ = ) = (03 W) = i) 05 ()

¢ Gradient descent (again with quadratic error function)

£ o

£ 5

£ E

s H

: o | mw _ o

g = Wy = Nkn;(%n) £ w(w) _ Oglax , _

g 7 g (e (Xn; W) — tin) 5 (Xn)
: i aﬂ)k] 87.Uk] n n) Pj\&n
£ » where = (ri1) "

§ 5kn = Yk (xn; W) —tgn é Wy = Wi — n‘sknqu (Xn)

B =]

5 [

e = Simply feed back the input data point, weighted by the s dg(ax) .

g classification error. g Okn Dung (yr(Xn; W) — tin)

Slide adapted from Bernt Schiele B. Leibe ide adanted from Bernt Schiele B. Leibe




RWTH/ACHEN RWTH/ACHEN
Summary: Generalized Linear Discriminants Topics of This Lecture
¢ Properties
~ General class of decision functions.
» Nonlinearity g(-) and basis functions ¢; allow us to address
linearly non-separable problems.
E » Shown simple sequential learning approach for parameter ?
E estimation using gradient descent. g « Logistic Regression
z, e Limitations / Caveats z, » Pro!)alhzilis.tic d.iscrimf‘native ‘models
5 » Flexibility of model is limited by curse of dimensionality E - Logistic sigmoid (logit function)
E - ¢(-) and ¢, often introduce additional parameters 3 » Cross-entropy error
o g 7 . X P . o o » Gradient descent
.E - Models are either limited to lower-dimensional input space _g Not functi
3 or need to share parameters. E - Note on error functions
E » Linearly separable case often leads to overfitting. E
§ - Several possible parameter choices minimize training error. §
< ©
> >
o =]
= 21 & 22
B. Leibe
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Recap: Probabilistic Discriminative Models Recap: Logistic Sigmoid
¢ Consider models of the form ¢ Properties 1
— _ T » Definition: o(a) = — 8 —
pCild) = y(9) =o(w') O )
N with p(Ca|d) = 1-p(Ci9) .
T T g
|  This model is called logistic regression. £ ~ Inverse: a=1In <1 — g) “logit” function
s =
£ . £
=1  Properties £ . Symmetry property:
g » Probabilistic interpretation bt o
2 o L o o(—a) =1—o0(a)
£ » But discriminative method: only focus on decision hyperplane £
§ » Advantageous for high-dimensional spaces, requires less §
3 parameters than explicitly modeling p(¢|C;) and p(C}). 3 . Derivative: d_a =o(1-0)
z = da
- S
= ) 23 = ) 24
B. Leibe B. Leibe
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Recap: Logistic Regression Gradient of the Error Function, — 74

dyn
* Let’s consider a data set {¢,,t,} withn=1,...,N, ¢ Error function % = yn(L = yn)@,
where ¢,, = ¢(x,,) andt, € {0,1}, t = (¢1,... ,tN)T . E(w) = — Z {tpInyn + (1 — t) In(1 — o)}

n=1

o With y, = p(Cy|¢,), we can write the likelihood as e Gradient

N N A1 =)
—tn VE = — ty I (1 — ¢, ) I T
pleiw) = [] v (1 — g}~ W) = =D G AW R
" _ 7% . %k(l*yn)qj -t )ynm¢
¢ Define the error function as the negative log-likelihood ~ " Y n M ), "
E(w) = —Inp(tlw) N

= - Z{(tn 7*’!'4&1 —Yn J"M)an}
n=1

=
=Y Wn—ta)o,
n=1

B. Leibe
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» This is the so-called cross-entropy error function.

Advanced Machine Learning Winter’15
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Gradient of the Error Function

¢ Gradient for logistic regression

¢ Does this look familiar to you?

¢ This is the same result as for the Delta (=LMS) rule
T+1 T
wiit™ = il — (s (e w) — tn) 65 (%)

* We can use this to derive a sequential estimation
algorithm.
» However, this will be quite slow...

B. Leibe

Summary: Logistic Regression

¢ Properties

» Directly represent posterior distribution p(¢|C;)
» Requires fewer parameters than modeling the likelihood + prior.
» Very often used in statistics.

» It can be shown that the cross-entropy error function is concave
- Optimization leads to unique minimum
- But no closed-form solution exists
- Iterative optimization (IRLS)

» Both online and batch optimizations exist

e Caveat

» Logistic regression tends to systematically overestimate odds
ratios when the sample size is less than ~500.

B. Leibe
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A Note on Error Functions
E(z,)

Ideal misclassification error]

t,C{ 1.1}

Not differentiable! ——

2 - o’ 7 3" #n = tny(xn)

¢ |deal misclassification error function (black)
» This is what we want to approximate,
> Unfortunately, it is not differentiable.
» The gradient is zero for misclassified points.

= We cannot minimize it by gradient descent. 31
lmage source: Bishop, 2009
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Recap: Iteratively Reweighted Least Squares

« Result of applying Newton-Raphson to logistic regression
w) = w() _ (3TR®) &7 (y —t)

— (8"R®)! {@TR‘I)W(T) —3T(y - t)}
= (®"R®) 9" Rz
with z=®w( —R (y —t)

¢ Very similar form to pseudo-inverse (normal equations)
» But now with non-constant weighing matrix R. (depends on w).
» Need to apply normal equations iteratively.
= Iteratively Reweighted Least-Squares (IRLS)

Topics of This Lecture

¢ Logistic Regression
» Probabilistic discriminative models
» Logistic sigmoid (logit function)
» Cross-entropy error
» Gradient descent
» Note on error functions

B. Leibe
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A Note on Error Functions
Elz,)

Ideal misclassification error]
Squared error

t,C{ 1.1}

Sensitive to outliers!

Penalizes “too correct”
data points!

2 - 0 — [ tny(xn)

e Squared error used in Least-Squares Classification
» Very popular, leads to closed-form solutions.
» However, sensitive to outliers due to squared penalty.
» Penalizes “too correct” data points

= Generally does not lead to good classifiers. 32
lmage source: Bishop, 2004
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A Note on Error Functions
E[:’:'H) Ideal misclassification error]
Squared error
Cross-entropy error

) 7 0 T > Zn = tny(xn)

t,C{ 1.1}

Robust to outliers!

e Cross-Entropy Error
» Minimizer of this error is given by posterior class probabilities.
» Concave error function, unique minimum exists.
» Robust to outliers, error increases only roughly linearly

Advanced Machine Learning Winter’15

» But no closed-form solution, requires iterative estlimation.
m

3
age source: Bishop, 200
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Softmax Regression
¢ Multi-class generalization of logistic regression
» In logistic regression, we assumed binary labels ¢, € {0,1}
» Softmax generalizes this to K values in 1-of-K notation.
) Py =1|x;w) exp(w{ x)
% Y(xw) = Py = -2\x;w) __ 1 exp(w, X)
H : et exp(w;x)
E P(y = Klx;w) exp(Wcx)
£
§ » This uses the softmax function
£ explayg )
= —_
§ > jexple;)
3
% > Note: the resulting distribution is normalized.
>
o
< ) 35
B. Leibe
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Optimization

¢ Again, no closed-form solution is available
» Resort again to Gradient Descent
» Gradient

M=

Ve, E(w) = — [I(t, = k) In P (y,, = k|xn; W)]

n=1

¢ Note

> Vi E(w) is itself a vector of partial derivatives for the
different components of w;.

> We can now plug this into a standard optimization package.

©
T
g
JE|
=)
=
<
&
51
)
o
=
S
a
=
©
@
o
=
s
3
<

B. Leibe

Advanced Machine Learning Winter’15

Advanced Machine Learning Winter’15

RWTH/ACHEN
Topics of This Lecture
¢ Softmax Regression
» Multi-class generalization
» Properties
B. Leibe 34
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Softmax Regression Cost Function

¢ Logistic regression
» Alternative way of writing the cost function

E(w)

N
- Z {tnIny, + (1 —t,) In(1 —y,)}

N 1
- ZZ {I(t, = k) In P (y, = klx,; W)}

n=1 k=0

¢ Softmax regression
» Generalization to K classes using indicator functions.

N K
Ew) = -3} {]I(tn:k)ln exp(w X) }

R L
n=1k=1 Zj:l eXP(WjTX)

B. Leibe
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Summary

¢ We have now an understanding of
» Generalized Linear Discriminants as basic tools
» Different loss functions and their effects
» Softmax generalization to multi-class classification

¢ In the next lecture, we will see
» How they are related to Neural Networks.

> How we can use our new background to get a better
understanding of what NNs actually do.

B. Leibe
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References and Further Reading

¢ More information on Linear Discriminant Functions can
be found in Chapter 4 of Bishop’s book (in particular
Chapter 4.1).

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

0
i
]
2
=
=
=
=
<
®
4
o
=
=
S
<]
=
b3
31
o
c
3
>
=l
<

40
B. Leibe




