Advanced Machine Learning Lecture 11 Linear Discriminants Revisited

03.12.2015

Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Recap: Least-Squares Classification

- Simplest approach
 - > Directly try to minimize the sum-of-squares error

$$E(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n; \mathbf{w}) - \mathbf{t}_n)^2 = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^{\top} \mathbf{x}_n - t_n)^2$$

> Setting the derivative to zero yields

$$\frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \sum_{n=1}^{N} (\mathbf{w}^{\top} \mathbf{x}_{n} - t_{n}) \mathbf{x}_{n} = \mathbf{X} \mathbf{X}^{\top} \mathbf{w} - \mathbf{X} \mathbf{t} \stackrel{!}{=} 0$$

$$\mathbf{w} = (\mathbf{X} \mathbf{X}^{\top})^{-1} \mathbf{X} \mathbf{t}$$

⇒ Exact, closed-form solution for the parameters.

Recap: Multi-Class Case

- · General classification problem
 - Let's consider K classes described by linear models

$$y_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0}, \qquad k = 1, \dots, K$$

> We can group those together using vector notation

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\mathrm{T}} \widetilde{\mathbf{x}}$$

where

$$\widetilde{\mathbf{W}} = [\widetilde{\mathbf{w}}_1, \dots, \widetilde{\mathbf{w}}_K] = \begin{bmatrix} w_{10} & \dots & w_{K0} \\ w_{11} & \dots & w_{K1} \\ \vdots & \ddots & \vdots \\ w_{1D} & \dots & w_{KD} \end{bmatrix}$$

- > The output will again be in 1-of-K notation.
- \Rightarrow We can directly compare it to the target value $\mathbf{t} = [t_1, \dots, t_k]^{\mathrm{T}}$

B. Leibe

Recap: Multi-Class Case

· Classification problem in matrix notation

For the entire dataset, we can write

$$Y(\widetilde{X}) = \widetilde{X}\widetilde{W}$$

and compare this to the target matrix T where

$$\begin{split} \widetilde{\mathbf{W}} &= \left[\widetilde{\mathbf{w}}_1, \dots, \widetilde{\mathbf{w}}_K\right] \\ \widetilde{\mathbf{X}} &= \begin{bmatrix} \mathbf{x}_1^{\mathrm{T}} \\ \vdots \\ \mathbf{x}_N^{\mathrm{T}} \end{bmatrix} \quad \mathbf{T} &= \begin{bmatrix} \mathbf{t}_1^{\mathrm{T}} \\ \vdots \\ \mathbf{t}_N^{\mathrm{T}} \end{bmatrix} \end{split}$$

> Result of the comparison:

$$\widetilde{\widetilde{X}}\widetilde{W}-T$$
 Goal: Choose \widetilde{W} such that this is minimal!

Recap: Multi-Class Least-Squares

· Multi-class case

> We can formulate the sum-of-squares error in matrix notation

$$E(\widetilde{\mathbf{W}}) = \sum_{n=1}^{N} \sum_{k=1}^{K} (y(\mathbf{x}_n; \mathbf{w}_k) - t_{kn})^2$$

= $\frac{1}{2} \text{Tr} \left\{ (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T})^{\top} (\widetilde{\mathbf{X}} \widetilde{\mathbf{W}} - \mathbf{T}) \right\}$

> Setting the derivative to zero yields

$$\widetilde{\mathbf{W}} \ = \ \widetilde{\mathbf{X}}^{\dagger} \mathbf{T} = (\widetilde{\mathbf{X}}^{\top} \widetilde{\mathbf{X}})^{-1} \widetilde{\mathbf{X}}^{\top} \mathbf{T}$$

> We then obtain the discriminant function as

$$\mathbf{y}(\mathbf{x}) = \widetilde{\mathbf{W}}^{\top} \widetilde{\mathbf{x}} = \mathbf{T}^{\top} \Big(\widetilde{\mathbf{X}}^{\dagger} \Big)^{\!\top} \widetilde{\mathbf{x}}$$

⇒ Exact, closed-form solution for the discriminant function

Recap: Problems with Least Squares ૢૹૢ૾૾ · Least-squares is very sensitive to outliers! > The error function penalizes predictions that are "too correct". B. Leibe

RWTHAACHE UNIVERSIT

Recap: Extension to Nonlinear Basis Fcts.

Generalization

ightarrow Transform vector ${f x}$ with M nonlinear basis functions $\phi_i({f x})$:

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0}$$

Advantages

- > Transformation allows non-linear decision boundaries,
- > By choosing the right ϕ_j , every continuous function can (in principle) be approximated with arbitrary accuracy.

Disadvantage

- The error function can in general no longer be minimized in closed form.
- ⇒ Minimization with Gradient Descent

Recap: Extension to Nonlinear Basis Fcts.

Generalization

ightarrow Transform vector ${f x}$ with M nonlinear basis functions $\phi_j({f x})$:

$$y_k(\mathbf{x}) = \sum_{j=1}^{M} w_{kj} \phi_j(\mathbf{x}) + w_{k0}$$

- ightarrow Basis functions $\phi_i(\mathbf{x})$ allow non-linear decision boundaries.
- $\,\,$ By choosing the right $\phi_j,$ every continuous function can (in principle) be approximated with arbitrary accuracy.
- > Disadvantage: minimization no longer in closed form.
- Notation

$$y_k(\mathbf{x}) = \sum_{j=0}^M w_{kj} \phi_j(\mathbf{x})$$
 with $\phi_0(\mathbf{x}) = 1$

Slide credit: Bernt Schiele

R Loibo

15

RWIT

Recap: Gradient Descent

Problem

The error function can in general no longer be minimized in closed form.

• Idea (Gradient Descent)

- > Iterative minimization
- > Start with an initial guess for the parameter values $w_{k\,i}^{(0)}$.
- > Move towards a (local) minimum by following the gradient.

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

 η : Learning rate

This simple scheme corresponds to a 1st_order Taylor expansion (There are more complex procedures available).

B. Leibe

Recap: Gradient Descent

Iterative minimization

- > Start with an initial guess for the parameter values $w_{h,i}^{(0)}$.
- > Move towards a (local) minimum by following the gradient.

Basic strategies

"Batch learning"

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

, "Sequential updating" $w_{kj}^{(\tau+1)}=w_{kj}^{(\tau)}-\eta\left.\frac{\partial E_n(\mathbf{w})}{\partial w_{kj}}\right|_{\mathbf{w}^{(\tau)}}$

where
$$E(\mathbf{w}) = \sum_{n=1}^N E_n(\mathbf{w})$$

B. Leibe

Recap: Gradient Descent

 $\bullet \ \ {\bf Example: Quadratic \ error \ function}$

$$E(\mathbf{w}) = \sum_{n=1}^{N} (y(\mathbf{x}_n; \mathbf{w}) - \mathbf{t}_n)^2$$

• Sequential updating leads to delta rule (=LMS rule)

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n)$$
$$= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n)$$

where

$$\delta_{kn} = y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn}$$

⇒ Simply feed back the input data point, weighted by the classification error.

Slide adapted from Bernt Schiele

B. Leibe

Recap: Gradient Descent

· Cases with differentiable, non-linear activation function

$$y_k(\mathbf{x}) = g(a_k) = g\left(\sum_{j=0}^M w_{ki}\phi_j(\mathbf{x}_n)\right)$$

Gradient descent (again with quadratic error function)

$$\begin{split} \frac{\partial E_n(\mathbf{w})}{\partial w_{kj}} &= \frac{\partial g(a_k)}{\partial w_{kj}} \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \phi_j(\mathbf{x}_n) \\ w_{kj}^{(\tau+1)} &= w_{kj}^{(\tau)} - \eta \delta_{kn} \phi_j(\mathbf{x}_n) \\ \delta_{kn} &= \frac{\partial g(a_k)}{\partial w_{kj}} \left(y_k(\mathbf{x}_n; \mathbf{w}) - t_{kn} \right) \end{split}$$

Slide adapted from Bernt Schiele

B. Leibe

Summary: Generalized Linear Discriminants

- Properties
 - General class of decision functions.
 - Nonlinearity $g(\cdot)$ and basis functions ϕ_i allow us to address linearly non-separable problems.
 - Shown simple sequential learning approach for parameter estimation using gradient descent.
- · Limitations / Caveats
 - > Flexibility of model is limited by curse of dimensionality
 - $g(\cdot)$ and ϕ_i often introduce additional parameters.
 - Models are either limited to lower-dimensional input space or need to share parameters.
 - Linearly separable case often leads to overfitting.
 - Several possible parameter choices minimize training error.

Topics of This Lecture

- Linear Discriminants Revisited
 - Linear Discriminants
 - Least-Squares Classification
- Generalized Linear Discriminants
- **Gradient Descent**
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
- Gradient descent
 - Note on error functions
- Softmax Regression
 - Multi-class generalization
 - Properties

Recap: Probabilistic Discriminative Models

· Consider models of the form

$$p(C_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma(\mathbf{w}^T \boldsymbol{\phi})$$

with

$$p(\mathcal{C}_2|\boldsymbol{\phi}) = 1 - p(\mathcal{C}_1|\boldsymbol{\phi})$$

- · This model is called logistic regression.
- Properties
 - > Probabilistic interpretation
 - » But discriminative method; only focus on decision hyperplane
 - Advantageous for high-dimensional spaces, requires less parameters than explicitly modeling $p(\phi | C_k)$ and $p(C_k)$.

Recap: Logistic Sigmoid

Properties

Properties
$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

Inverse:

$$a = \ln\left(\frac{\sigma}{1 - \sigma}\right)$$

"logit" function

Symmetry property:

$$\sigma(-a) = 1 - \sigma(a)$$

Derivative: $\frac{d\sigma}{da} = \sigma(1-\sigma)$

Recap: Logistic Regression

- Let's consider a data set $\{\phi_n,t_n\}$ with $n=1,\ldots,N$, where $\phi_n=\phi(\mathbf{x}_n)$ and $t_n\in\{0,1\}$, $\mathbf{t}=(t_1,\ldots,t_N)^T$.
- With $y_n=p(\mathcal{C}_1|\pmb{\phi}_n)$, we can write the likelihood as $p(\mathbf{t}|\mathbf{w})=\prod_{n=1}^Ny_n^{t_n}\left\{1-y_n\right\}^{1-t_n}$

$$p(\mathbf{t}|\mathbf{w}) = \prod_{n=1}^{N} y_n^{t_n} \left\{ 1 - y_n \right\}^{1-t_n}$$

· Define the error function as the negative log-likelihood

$$\begin{split} E(\mathbf{w}) &= -\ln p(\mathbf{t}|\mathbf{w}) \\ &= -\sum_{n=1}^{N} \left\{ t_n \ln y_n + (1-t_n) \ln (1-y_n) \right\} \end{split}$$

> This is the so-called cross-entropy error function.

$$\begin{split} \nabla E(\mathbf{w}) &= -\sum_{n=1}^{N} \left\{ t_n \frac{\frac{d}{dw} y_n}{y_n} + (1 - t_n) \frac{\frac{d}{dw} (1 - y_n)}{(1 - y_n)} \right\} \\ &= -\sum_{n=1}^{N} \left\{ t_n \frac{y_n (1 - y_n)}{y_n} \phi_n - (1 - t_n) \frac{y_n (1 - y_n)}{(1 - y_n)} \phi_n \right\} \\ &= -\sum_{n=1}^{N} \left\{ (t_n - t_n y_n - y_n + t_n y_n) \phi_n \right\} \\ &= \sum_{n=1}^{N} (y_n - t_n) \phi_n \end{split}$$

4

RWTHAACHE UNIVERSIT

Gradient of the Error Function

· Gradient for logistic regression

$$\nabla E(\mathbf{w}) = \sum_{n=1}^{N} (y_n - t_n) \boldsymbol{\phi}_n$$

- · Does this look familiar to you?
- This is the same result as for the Delta (=LMS) rule $w_{kj}^{(\tau+1)} \ = \ w_{kj}^{(\tau)} \eta(y_k(\mathbf{x}_n;\mathbf{w}) t_{kn})\phi_j(\mathbf{x}_n)$
- We can use this to derive a sequential estimation algorithm.
 - However, this will be quite slow...

Recap: Iteratively Reweighted Least Squares

· Result of applying Newton-Raphson to logistic regression

$$\begin{split} \mathbf{w}^{(\tau+1)} &= \mathbf{w}^{(\tau)} - (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t}) \\ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \left\{ \mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi} \mathbf{w}^{(\tau)} - \mathbf{\Phi}^T (\mathbf{y} - \mathbf{t}) \right\} \\ &= (\mathbf{\Phi}^T \mathbf{R} \mathbf{\Phi})^{-1} \mathbf{\Phi}^T \mathbf{R} \mathbf{z} \end{split}$$

with
$$\mathbf{z} = \mathbf{\Phi} \mathbf{w}^{(au)} - \mathbf{R}^{-1} (\mathbf{y} - \mathbf{t})$$

- Very similar form to pseudo-inverse (normal equations)
 - > But now with non-constant weighing matrix ${f R}$ (depends on ${f w}$).
 - > Need to apply normal equations iteratively.
 - ⇒ Iteratively Reweighted Least-Squares (IRLS)

2

Summary: Logistic Regression

Properties

- ightarrow Directly represent posterior distribution $p(\phi \mid C_k)$
- > Requires fewer parameters than modeling the likelihood + prior.
- > Very often used in statistics.
- > It can be shown that the cross-entropy error function is concave
 - Optimization leads to unique minimum
 - But no closed-form solution exists
 - Iterative optimization (IRLS)
- > Both online and batch optimizations exist

Caveat

Logistic regression tends to systematically overestimate odds ratios when the sample size is less than ~500.

Topics of This Lecture

- Linear Discriminants Revisited
 - Linear Discriminants
 - Least-Squares Classification
 - Generalized Linear Discriminants
- Gradient Descent

Logistic Regression

- > Probabilistic discriminative models
- Logistic sigmoid (logit function)
- Cross-entropy error
- Gradient descent
- > Note on error functions
- Softmax Regression
 - > Multi-class generalization
 - Properties

B. Leibe

Topics of This Lecture

- Linear Discriminants Revisited
- Linear Discriminants
- Least-Squares Classification
- Generalized Linear Discriminants
- **Gradient Descent**
- Logistic Regression
 - Probabilistic discriminative models
 - Logistic sigmoid (logit function)
 - Cross-entropy error
 - Gradient descent Note on error functions
- Softmax Regression
 - Multi-class generalization
 - **Properties**

Softmax Regression

- · Multi-class generalization of logistic regression
 - > In logistic regression, we assumed binary labels $t_n \in \{0,1\}$
 - > Softmax generalizes this to K values in 1-of-K notation.

$$\mathbf{y}(\mathbf{x}; \mathbf{w}) = \begin{bmatrix} P(y = 1 | \mathbf{x}; \mathbf{w}) \\ P(y = 2 | \mathbf{x}; \mathbf{w}) \\ \vdots \\ P(y = K | \mathbf{x}; \mathbf{w}) \end{bmatrix} = \frac{1}{\sum_{j=1}^{K} \exp(\mathbf{w}_{j}^{\top} \mathbf{x})} \begin{bmatrix} \exp(\mathbf{w}_{1}^{\top} \mathbf{x}) \\ \exp(\mathbf{w}_{2}^{\top} \mathbf{x}) \\ \vdots \\ \exp(\mathbf{w}_{K}^{\top} \mathbf{x}) \end{bmatrix}$$

> This uses the softmax function

$$\frac{\exp(a_k)}{\sum_{i} \exp(a_i)}$$

> Note: the resulting distribution is normalized.

Softmax Regression Cost Function

· Logistic regression

> Alternative way of writing the cost function

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

= $-\sum_{n=1}^{N} \sum_{k=0}^{1} \{\mathbb{I}(t_n = k) \ln P(y_n = k | \mathbf{x}_n; \mathbf{w})\}$

Softmax regression

> Generalization to K classes using indicator functions.

$$E(\mathbf{w}) \ = \ -\sum_{n=1}^{N} \sum_{k=1}^{K} \left\{ \mathbb{I}\left(t_n = k\right) \ln \frac{\exp(\mathbf{w}_k^{\top} \mathbf{x})}{\sum_{j=1}^{K} \exp(\mathbf{w}_j^{\top} \mathbf{x})} \right\}$$

Optimization

- · Again, no closed-form solution is available
 - Resort again to Gradient Descent
 - Gradient

$$\nabla_{\mathbf{w}_k} E(\mathbf{w}) \ = \ -\sum_{n=1}^N \left[\mathbb{I}\left(t_n = k\right) \ln P\left(y_n = k | \mathbf{x}_n; \mathbf{w}\right) \right]$$

- Note
 - $abla_{\mathbf{w}^k} E(\mathbf{w})$ is itself a vector of partial derivatives for the different components of \mathbf{w}_k .
 - > We can now plug this into a standard optimization package.

Summary

- · We have now an understanding of
 - Generalized Linear Discriminants as basic tools
 - Different loss functions and their effects
 - Softmax generalization to multi-class classification
- · In the next lecture, we will see
 - How they are related to Neural Networks.
 - How we can use our new background to get a better understanding of what NNs actually do.

References and Further Reading

 More information on Linear Discriminant Functions can be found in Chapter 4 of Bishop's book (in particular Chapter 4.1).

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

R Leibe

7