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Topics of This Lecture

¢ Recap: Linear Regression

¢ Kernels
» Dual representations
» Kernel Ridge Regression
» Properties of kernels

Gaussian Processes
» Motivation
~ Gaussian Process definition
» Squared exponential covariance function
» Prediction with noise-free observations
» Prediction with noisy observations

» GP Regression

Influence of hyperparameters

v

¢ Applications
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RWTH/ACHEN
Recap: Linear Basis Function Models

¢ Generally, we consider models of the following form
M-1
Yo w) = 3 wig,(x) = whe(x)
J=0
» where ¢;(x) are known as basis functions.
- In the simplest case, we use linear basis functions: ¢,(x) = z,.

e Other popular basis functions

=1 0 1 =1 0 1
Polynomial Gaussian
B. Leibe

0
Sigmoid
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This Lecture: Advanced Machine Learning

* Regression Approaches f X — R
» Linear Regression o

» Regularization (Ridge, Lasso) YV
» Kernels (Kernel Ridge Regression)
» Gaussian Processes

» Bayesian Estimation & Bayesian Non-Parametrics
» Mixture Models & EM
» Dirichlet Processes
» Latent Factor Models »
» Beta Processes

¢ SVMs and Structured Output Learning
» SV Regression, SVDD
» Large-margin Learning

[ X =Y

B. Leibe
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Recap: Loss Functions for Regression

¢ The squared loss is not the only possible choice
» Poor choice when conditional distribution p(¢|x) is multimodal.

¢ Simple generalization: Minkowski loss
L{t, y(x)) = |y(x) -t
» Expectation

E[L,] /|y ) — #9p(x, t)dxdt

¢ Minimum of E[L ] is given by

» Conditional mean

forg=2, i
» Conditional median for ¢ =1, . |
» Conditional mode

for g=0. B /

B. Leibe
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RWTH ACHET
Recap: Regularized Least-Squares

¢ Consider more general regularization functions
M

- “Ly norms”: —Z{fn—w &(xn)} ——ZW‘

n=1 i=1

€©

o Effect: Sparsity for ¢ < 1.

» Minimization tends to set many coefficients to zero

6
B. Leibe

Image source: C.M, Bishop, 200




RWTH/ACHEN RWTH/ACHEN
Recap: Lasso as Bayes Estimation Topics of This Lecture
¢ L, regularization (“The Lasso”)
N M
1 N * Kernels
W=argmin o Z{t” who(x)} + A Z wj| ~ Dual representations
n=t i=1 . Kernel Ridge Regression
E . . . g » Properties of kernels
i * Interpretation as Bayes Estimation g
% ~ We can think of |w|? as the log-prior density for w;. 3;
c c
£ £
|« Prior for Lasso (¢ = 1): Laplacian distribution 8
o 1 l 3
A pv) = e {-wl/Th wih =3 5
o -
g g
§ §
3 — ERE 3
B. Leibe Jmage source: Wikipedi B. Leibe -
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Introduction to Kernel Methods Dual Representations: Derivation

¢ Dual representations
» Many linear models for regression and classification can be
reformulated in terms of a dual representation, where

predictions are based on linear combinations of a kernel
function evaluated at training data points.

¢ Consider a regularized linear regression model

N
1o, o s A
T(w) =3 D oAwhoxa) — ta} + Swlw

n=1

with the solution

v

For models that are based on a fixed nonlinear feature space
mapping ¢(x), the kernel function is given by

N
1 T .
wo= =2 {wlolx) — tulo(xa)
n=1
» We can write this as a linear combination of the ¢(x,) with
coefficients that are functions of w:

k(x,x') = 6(x)! 6(x)

v

We will see that by substituting the inner product by the kernel,
we can achieve interesting extensions of many well-known
algorithms...
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Dual Representations: Derivation Kernel Ridge Regression
¢ Dual definition
» Instead of working with w, we can formulate the optimization
for a by substituting w = ®7a into J(w):
N

J(w) = % Z{WI.C‘(X”) ta} + %wfw

n=1

1 o 1 A
J(a) = §af KKa—a'Kt + §t1 t+ §ai Ka
» Solving for a, we obtain E

a = (K+Ay) 't

¢ Prediction for a new input x: e
» Writing k(x) for the vector with elements k,(x) = k(x,,x)

y(x) = wio(x) = a’ @o(x) = k(x)"(K + AIy) 't

1 . . 1 . A
J(a) = Eafsz@@fa —a’3dt + §tft + 5ﬂfqaqaia
» Define the kernel matrix K = ®®7 with elements

Ko = 0(x0) 6(%0) = k(%0 X0m) = The dual formulation allows the solution to be entirely

expressed in terms of the kernel function k(x,x’).

= The resulting form is known as Kernel Ridge Regression
and allows us to perform non-linear regression.

» Now, the sum-of-squares error can be written as

o~ N
s o
. e
o o
5 E
i= =
= =
o j=
= =
c c
£ £
g 5
] ]
o o
= =
< <
[ o
] -}
H =
3 3
Qo Qo
- g
E H

1 4 o 1. A
J(a) = §a1 KKa—a'Kt + §t1t + §ai Ka

12
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Why use k(x,x’) instead of <¢(x),p(x’)>?

1. Memory usage
» Storing ¢(x,),... , P(xy) requires O(NM) memory.
» Storing k(x,, X,),... , k(Xy, Xy) requires O(N?) memory.

2. Speed

» We might find an expression for k(x;, x;) that is faster to
evaluate than first forming ¢(x) and then computing
<p(x),p(x)>.

» Example: comparing angles (z € [o, 27]):

(d(a;), d(x;)) = ([cos(a;),sin(z;)], [cos(x;), sin(x;)])
= cos(x;) cos(z;) + sin(z;) sin(z;)
k(e a;) = cos(x; —ay)

Slide credit: Christoph | ampert B. Leibe
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Properties of Kernels

¢ Definition (Positive Definite Kernel Function)
» Let X be a non-empty set. A function k : X' x X — R is called
positive definite kernel function, iff
» k is symmetric, i.e. k(z, z') = k(z’, z) for all z, 2’ € X, and
~ for any set of points z,... , z, € A, the matrix

Kij = (k(zi2))i g

is positive (semi-)definite, i.e. for all vectors x € R™:

N
3 %K% >0
igj=1

lide credit: Christoph Lampert B. Leibe
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Properties of Kernels

¢ Theorem

» Let k: X x X — R be a positive definite kernel function. Then
there exists a Hilbert Space H and a mapping ¢ : X — H such
that

k(z.2'") = ((o(z), o2"))n

-~ where (., .),, is the inner product in H.
¢ Translation

» Take any set X’ and any function k: X' x X — R.

» If k is a positive definite kernel, then we can use k to learn a
(soft) maximum-margin classifier for the elements in A!

* Note
» X can be any set, e.g. X’ = "all videos on YouTube" or X = "all
permutations of {1, . . ., k}", or X = "the internet”.

slide credit: Christoph Lampert
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Why use k(x,x’) instead of <¢(x),p(x’)>?

3. Flexibility
» There are kernel functions k(x;, x;) for which we know that a
feature transformation ¢ exists, but we don’t know what ¢ is.
» This allows us to work with far more general similarity functions.
» We can define kernels on strings, trees, graphs, ...

4. Dimensionality

» Since we no longer need to explicitly compute ¢(x), we can
work with high-dimensional (even infinite-dim.) feature spaces.

« In the following, we take a closer look at the
background behind kernels and at how to use them...

slide adapted from Christoph | ampert B. Leibe

Hilbert Spaces

¢ Definition (Hilbert Space)
» A Hilbert Space H is a vector space H with an inner product
(., )% e.8. a mapping
(hou:HxH—=R

which is
» symmetric: (v, V') = (v, v)y forallv, v € H,
» positive definite: (v, v)y > 0 forallv e H,
where (v, v)3 =0only forv=0 € H.
» bilinear: (av, v')y = a(v, v')y forve H,a € R
(0 ) 0 = (0, 0+ (0 0

¢ We can treat a Hilbert space like some R, if we only use
concepts like vectors, angles, distances.
¢ Note: dimH = oo is possible!

B. Leibe

ide credit: Christoph Lampert.
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Example: Bag of Visual Words Representation

¢ General framework in visual recognition
» Create a codebook (vocabulary) of prototypical image features
» Represent images as histograms over codebook activations
. Compare two images by any histogram kernel, e.g. x2 kernel

1 (hy — h)?
k2 (h, Iy = CexXp (7 . ; Iyt f::

{ !

B. Leibe

ide adapted from Christoph | ampert
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Advanced Machine Learning Winter’12

The “Kernel Trick”

Any algorithm that uses data only in the form
of inner products can be kernelized.

¢ How to kernelize an algorithm
» Write the algorithm only in terms of inner products.
» Replace all inner products by kernel function evaluations.

= The resulting algorithm will do the same as the linear
version, but in the (hidden) feature space .

» Caveat: working in 7 is not a guarantee for better performance.
A good choice of k£ and model selection are important!

lide credit: Christoph | ampert B. Leibe

Topics of This Lecture

e Gaussian Processes

Motivation

Gaussian Process definition

Squared exponential covariance function
Prediction with noise-free observations
Prediction with noisy observations

GP Regression

Influence of hyperparameters

v

B. Leibe

Gaussian Process

¢ Gaussian distribution
» Probability distribution over scalars / vectors.

¢ Gaussian process (generalization of Gaussian distrib.)
~ Describes properties of functions.
» Function: Think of a function as a long vector where each entry
specifies the function value f(x;) at a particular point x;.
» Issue: How to deal with infinite number of points?

- If you ask only for properties of the function at a finite number of
points...

- Then inference in Gaussian Process gives you the same answer if
you ignore the infinitely many other points.

* Definition

» A Gaussian process (GP) is a collection of random variables any
finite number of which has a joint Gaussian distribution.

Slide credit: Bernt Schiele LA
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Outlook

¢ Kernels are a widely used concept in Machine Learning
» They are the basis for Support Vector Machines from ML1.
» We will see several other kernelized algorithms in this lecture...

* Examples
» Gaussian Processes
» Support Vector Regression
» Kernel PCA
» Kernel k-Means

o Let’s first examine the role of kernels in probabilistic
discriminative models.
= This will lead us to Gaussian Processes.

B. Leibe

Gaussian Processes

e Sofar...
» Considered linear regression models of the form
ylx.w) = wo(x)
where w is a vector of parameters
¢(x) is a vector of fixed non-linear basis functions.
We showed that a prior distribution over w induced a prior
distribution over functions y(x,w).

Given a training set, we evaluated the posterior distribution
over w = corresponding posterior over regression functions.

v

v

v

» This implies a predictive distribution p(t|x) for new inputs x.

¢ Gaussian process viewpoint

» Dispense with the parametric model and instead define a prior
probability distribution over functions directly.

B. Leibe
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Gaussian Process

¢ Example prior over functions p(f)

» Represents our prior belief about
functions before seeing any data.
Although specific functions don’t have
mean of zero, the mean of f(x) values
for any fixed x is zero (here).

v

Favors smooth functions
- l.e. functions cannot vary too rapidly

- Smoothness is induced by the covariance function of the
Gaussian Process.

v

» Learning in Gaussian processes

- Is mainly defined by finding suitable properties of the covariance
function.

28
Image source: Rasmussen & Williams, 2009

ide credit: Bernt Schiele B. Leibe
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Linear Regression Revisited

e Let’s return to the linear regression example and re-
derive the predictive distribution by working in terms of
distributions over functions y(x,w)...

¢ Linear Regression Model

ylx, w) = wlo(x)

v

Consider a prior distribution over w given by
p(w) = N(w|0,a"'T)

v

For any given value of w, the definition induces a particular
function of x.

The probability distribution over w therefore induces a
probability distribution over functions y(x).

v

B. Leibe

RWTHACEN
Gaussian Process

¢ This model is a particular example of a Gaussian
Process.

» Linear regression with a zero-mean, isotropic Gaussian prior on
Ww.

¢ General definition
» A Gaussian Process is defined as a probability distribution over
functions y(x) such that the set of values of y(x) evaluated at an
arbitrary set of points x,,...,x, have a Gaussian distribution.

v

A key point about GPs is that the joint distribution over N
variables y,,...,yy is completely specified by the second-order
statistics, namely mean and covariance.

B. Leibe
RWTH ACHET
Gaussian Process
¢ Property
» Defined as a collection of random variables, which implies
consistency.
» Consistency means > 5
- If the GP specifies e.g.  (y;,y5) ~ Mu,Y) n| Z1 0 F12
Y1 Yo

- Then it must also specify Y1 ~ Mg, Z1q)

» l.e. examination of a larger set of variables does not change the
distribution of a smaller set.

B. Leibe

slide credit: Bernt Schiele
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Linear Regression Revisited

¢ Linear Regression (cont’d)
» We want to evaluate this function at specific values of x,
e.g. at the training data points x,...,xy.
» We are therefore interested in the joint distribution of function
values y(x,),...,y(xy), which we denote by the vector y.
y = dw
» We know that y is a linear combination of Gaussian distributed
variables and is therefore itself Gaussian.
= Only need to find its mean and covariance.
Ely] = ®E[w]=0
1
—o0” =K
«
» with the kernel matrix K = {k(x,,,x,,)},.n-

covly] = Elyy?] = eE[ww]®T =

B. Leibe
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Gaussian Process

¢ A Gaussian process is completely defined by
» Mean function m(x) and

m(x) = E[f(x)]

» Covariance function k(x,x’)

k(x, %) = E[(f(x) — m(x)(f(x') = m(x'))]

» We write the Gaussian process (GP)

f(x) ~ GP(m(x), k(x,x"))

ide adated from Bernt Schiele B. Leibe
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Gaussian Process: Example

e Example:
. Bayesian linear regression model: f(x) = ¢(x)Tw
- With Gaussian prior: w ~ N(0,%,)

= Mean:
E[f(x)] = ¢(x) E[w] =0
= Covariance:
E[f(x)f(x)] = ¢(x) Eww"]¢(x)
= ¢(x)"S0(x)
= 9(x)79(x)

where  @(x) = Egcﬁ(x)

34

ide credit: Bernt Schiele B. Leibe
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Gaussian Process: Prior over Functions

¢ Typical covariance function
~ Squared exponential (SE)

- Covariance function specifies the covariance between pairs of
random variables

cov[f(xp), fxg)] = Elxp. %) = e.‘q.){ %\xp xq\z}

¢ Distribution over functions:
~ Specification of covariance function implies distribution over
functions.
» l.e. we can draw samples from the distribution of functions
evaluated at a (finite) number of points.

» Procedure
¢ Remarks . .
c j b h . B § A - We choose a number of input points X,

» Covariance e.ztween the outputs is written as a function - We write the corresponding covariance % .
between the inputs. matrix (e.g. using SE) element-wise: 2 \/\ ¥ /\\

» The squared exponential covariance function corresponds to a K(X,,X,) 30 \ / \ ;
Bayesian linear regression model with an infinite number of . 3 W& -7\ 9
basis functions - Then we generate a random Gaussian - \/ \/

: vector with this covariance matrix:

» For any positive definite covariance function k(.,.), there exists

f P L : : f*NN(O’K(XHX*))
a (possibly infinite) expansion in terms of basis functions.

Advanced Machine Learning Winter’12
Advanced Machine Learning Winter’12

input, x
Example of 3 functions

Slide credit: Bernt Schiele B. Leibe * Slide credit: Bernt Schiele B. Leibe Jmage source; Rasaumer!gewllvam 2001
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Topics of This Lecture Prediction with Noise-free Observations
¢ Assume our observations are noise-free:
{(%n.fu) [n=1,....N}
¢ Joint distribution of the training outputs f and test
o & outputs f. according to the prior:
£ : 3 {f ]NN<0 [K(X,X) K(XJ@)D
§ . Gal:Asst!ant.Processes é f, VI K(X, X) K(X,,X,)
S » Motivation 2 . . . -
E . Gaussian Process definition g > K(')(.i(;,s X.) contains covariances for all pairs of training and test
] » Squared exponential covariance function S points.
o s g: . s . @
= - Prediction with noise-free observations = « To get the posterior (after including the observations)
E » Prediction with noisy observations S . . .
S GP R : s » We need to restrict the above prior to contain only those
B g Infl egreSSIfo: " B functions which agree with the observed values.
E - Influence of hyperparameters % » Think of generating functions from the prior and rejecting those
ﬁ § that disagree with the observations (obviously prohibitive).
B. Leibe _ ide credit: Bernt Schiele B. Leibe *
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Prediction with Noise-free Observations Prediction with Noise-free Observations

e Calculation of posterior: simple in GP framework

» Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

BIX,X.F ~ N cov[f]) £ = E[fX Xt

e Example:

Prior Posterior using 5
noise-free observations

> with:

>
!

f. = K(X,.X)K(X.X)"'t
cov[f,] = K(X,,X,)~ K(X,,X)K(X,X)"'K(X,X,)

output, f(x)
=)
output, f(x)
=)

» This uses the general property of Gaussians that

M| s Yoo Zab - Happ = Bo + Zap T (%0 — pay)
’ Tha Dy Sap = Baa — Zab T Sha

0 0
input, x input, x

o~ N
s o
. e
o o
5 E
i= =
= =
o j=
= =
c c
£ £
g 5
] ]
o o
= =
< <
[ o
] -}
H =
3 3
Qo Qo
- g
E H

40
ide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williame, 2009

Slide credit: Bernt Schiele LA
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Topics of This Lecture Prediction with Noisy Observations

¢ Typically, we assume noise in the observations
t=f(x)+e¢ e~ N(0,02)
¢ The prior on the noisy observations becomes
cov(yp. yq) = k(xp. x)+0, 0,
» Written in compact form:
covly] = K(X,X)+e 1

¢ Gaussian Processes

Motivation

Gaussian Process definition

Squared exponential covariance function
Prediction with noise-free observations
Prediction with noisy observations

GP Regression

Influence of hyperparameters

v

v

« Joint distribution of the observed values and the test
locations under the prior is then:

[ ¢ ]mN (Q.[K(X-X)*Ur’.f K(X.X,)D

v

v

v

v

K(X..X) K(X.X.)

v

Advanced Machine Learning Winter’12
Advanced Machine Learning Winter’12

41

42
B. Leibe

de credit: Bernt Schiele B. Leibe
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Prediction with Noisy Observations Gaussian Process Regression

¢ Calculation of posterior:

» Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

¢ Example

X, Xt~ N, cov[f]) £ = E[f]X,X,,t]

> with:

£ = KX X) (KX, X)o7t
covif,] = K(X., X.)— K(X., X) (K(X,X)+o*) 7 K(X, X,)

= This is the key result that defines Gaussian process regression!
- The predictive distribution is a Gaussian whose mean and variance
depend on the test points X. and on the kernel k(x,x’), evaluated

on the training data X.

Advanced Machine Learning Winter’12
Advanced Machine Learning Winter’12
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lide credit: Bernt Schiele B. Leibe ide credit: Bernt Schiele B. Leibe
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Gaussian Process Regression Discussion

-

* Keyresult: f|X, X.t~N(f,cov[f]) with
£, = K(X.,X) (KX, X)o7t

covlf] = K(X, X.) - K(X,,X) (K(X, X)), .’)_1 K(X,X.)
e Observations

» The mean can be written in linear form

N
Flx) = k(x, X)E(XX) +020] o= ank(x.,xn).
«

n=1

- This form is commonly encountered in the kernel literature (-»SVM)

» The variance is the difference between two terms
Vix,) = k(x., x,) — k(x,, X)[K(X, X) + cr‘f,Ii lﬁc(X. X.)
-

o~ N
s o
. e
o o
5 E
i= =
= =
o j=
= =
c c
£ £
g 5
] ]
o o
= =
< <
[ o
] -}
H =
3 3
Qo Qo
- g
E H

Prior variance Explanation of data X'

45 46

Slide credit: Bernt Schiele B. Leibe ide adanted fram Carl B. Leibe




Computational Complexity Computational Complexity

« Computational complexity

» Central operation in using GPs involves inverting a matrix of size
NxN (the kernel matrix K(X,X)):

£ o= K(X., X)|(K(X, X)+20)

cov[f] = K(X., X,)— K(X,, X)|(K(X,X) ﬂ;'.a'fl K(X,X.)

= Effort in O(N?) for N data points!

¢ Complexity of GP model
» Training effort: O(IN?) through matrix inversion
» Test effort: O(N?) through vector-matrix multiplication

¢ Complexity of basis function model
. Training effort: O(M?3)
» Test effort: O(M?)
» Compare this with the basis function model (—Lecture 3)
1 . o
p(fx., X, t) ~ N (“r—zgﬁ(xJI STl (X)t, (x.)! S’lr,-')(xk))

S = L,Q(X)Q(X)" +3;!

Zip

¢ Discussion
~ If the number of basis functions M is smaller than the number of
data points N, then the basis function model is more efficient.

» However, advantage of GP viewpoint is that we can consider
covariance functions that can only be expressed by an infinite
number of basis functions.

- Still, exact GP methods become infeasible for large training sets,

n

= Effort in O(M?) for M basis functions.

Advanced Machine Learning Winter’12
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B. Leibe 7 B. Leibe
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Topics of This Lecture Influence of Hyperparameters
¢ Most covariance functions have some free parameters.
» Example:
2 (xp — %) 2¢
ky(xp, %) = o7 exp 5.2 + 0,0pq
~N ~N
£ . £ - Parameters: ({,0;.0,)
i 3 Gauss!an.Processes i - Signal variance: 0}
£ - Motivation £ - Range of neighbor influence (called “length scale”): |
s > Gaussian Process definition s - Observation noise: &
% » Squared exponential covariance function 2
£ » Prediction with noise-free observations £
é » Prediction with noisy observations ‘:‘3
2 > GP Regression 2
o o
E » Influence of hyperparameters E
2 2
B. Leibe ide credit: Bernt Schiele B. Leibe >
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Influence of Hyperparameters Topics of This Lecture
i o (x, —x,)° '
w(Xps Xg) = a7 exp 5.2 + T0pg
« Examples for different settings of the length scale
g ([} o, gw_) = (o parameters set by optimizing e
K] : the marginal likelihood) g
E E
i = (0.3,1.08,0.00005) =(1,1,0.1) = (3.0,1.16,0.89) i
£ : £
E 2) & l E 4 5
k. A : /p\, 1 3
£ EEV N N AEdA S \ 15 o 4 e 2
ﬁ 34 ‘f \*\j \7"‘ | '-‘th"\* 81 .‘.‘" \_,«" ‘\ /"K‘)E( ER " // '§
= Il ot "\;" - = 1 =
H - SR 3 F
s e T e Ay g
3 ! . : 1« Applications
Slide credit: Bernt Schiele LA Jmage source; Rasmussen M B. Leibe 2
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Application: Non-Linear Dimensionality Reduction

2D space
2D manifold ,p T

in 3D space

2 2D latent
e space
¥ )
B ==
300 F N
articulated ¥ H d ¥
body space WY \ A’. ; i
53
Slide credit: Andreas Geiger B. Leibe
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Example: Style-based Inverse Kinematics

I
- L . l X:..

Learned GPLVMs using a walk, a jump shot and a baseball pitch

R
\

Slide credit: Andreas Geiger B. Leibe
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RWTH ACHET
Articulated Motion in Latent Space wifferent work)
¢ Gaussian Process regression from latent space to

» Pose [—>= p(Pose|z) to recover original pose from latent space]
» Silhouette [ = p(Silhouette | z) to do inference on silhouettes]

Walking cycles have one
main (periodic) DOF

Additional DOF encodes
»walking style“
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TWTH/ZCEN
Gaussian Process Latent Variable Model

¢ At each time step ¢, we express our observations y as a
combination of basis functions v of latent variables x.

) & ® -

Yt = Zbﬂ/)j(xt) + 8
J

(B)

¢ This is modeled as a Gaussian process...

ide credit: Andreas Geiger B. Leibe

RWTH CHE
Application: Modeling Body Dynamics

¢ Task: estimate full body pose in m video frames.
» High-dimensional Y.

» Model body dynamics using hierarchical Gaussian process latent
variable model (hGPLVM) [Lawrence & Moore, ICML 2007].

Advanced Machine Learning Winter’12

———— Time (frame #) T=[t cR] Training
o p(2ZIT@) = [JA(Z.:/0, Kx)
» Latent space Z =z, € RY
L D
] v p(Y1Z.0) = [[NV(Y.il0,K,)
5| o i=1
Configuration Y = [y; € RP)
" 56
ide credit: Bernt Schiele. B. Leibe JAndriluka, Roth, Schiele, CVPR'08Y]
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Results

454 frames (~35 sec)
23 Pedestrians
20 detected by multi-body tracker
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References and Further Reading

¢ Kernels and Gaussian Processes are (shortly) described
in Chapters 6.1 and 6.4 of Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

Carl E. Rasmussen, Christopher K.I. Williams
Gaussian Processes for Machine Learning
MIT Press, 2006

¢ A better introduction can be found in Chapters 1 and 2
of the book by Rasmussen & Williams (also available
online: http://www.gaussianprocess.org/gpml/)

B. Leibe
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