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RWTHA/
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
> Regularization (Ridge, Lasso) J
> Gaussian Processes

e Learning with Latent Variables o
> EM and Generalizations
> Approximate Inference

e Deep Learning

> Neural Networks
> CNNs, RNNs, RBMs, etc.
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Topics of This Lecture

e Recap: Important Concepts from ML Lecture
> Probability Theory
- Bayes Decision Theory
> Maximum Likelihood Estimation
> Bayesian Estimation

A Probabilistic View on Regression
» Least-Squares Estimation as Maximum Likelihood
> Predictive Distribution
> Maximum-A-Posteriori (MAP) Estimation
~ Bayesian Curve Fitting

e Discussion

n
-
.
Q
i
-E
o))
=
c
-
(44}
Q
—
(b}
£
e
(@)
@®
=
©
(D]
(&)
[
©
>
©
<

B. Leibe



Recap: The Rules of Probability

e Basic rules

Sum Rule p(X) =) p(X,Y)

Product Rule p(X,Y) =p(Y|X)p(X)

e From those, we can derive
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Bayes’ Theorem p(Y|X) = p(Xp‘z;)(I)?(Y)
where  p(X) = 3 p(X[V)p(Y)

B. Leibe



RWTH
Recap: Bayes Decision Theory

e Concept 1: Priors (a priori probabilities) ‘ p(Ck) ‘
> What we can tell about the probability before seeing the data.

> Example: 9
P(a)=0.75
aababaaba P(b)=0.25

baaaabaaba :

abaaaabba
babaabaa

C, = p(C
C, = p(
e In general: Z p(Ck ) =1

k
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Slide credit: Bernt Schiele B. Leibe



RWNTH
Recap: Bayes Decision Theory

e Concept 2: Conditional probabilities ‘ p(X | C, )‘
» Let x be a feature vector.

> © measures/describes certain properties of the input.
- E.g. number of black pixels, aspect ratio, ...
> p(x|C)) describes its likelihood for class C,.

== p(xla)|

:5 p(x|b) 1

LIl
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RWTH
Recap: Bayes Decision Theory

e Concept 3: Posterior probabilities ‘p(Ck | X)‘

> We are typically interested in the a posteriori probability, i.e.
the probability of class C, given the measurement vector z.

e Bayes’ Theorem:

p(C, | X) = p(x|C)P(C)  p(xIC)P(Cy)

p(x) Z p(x]C) p(C))

e Interpretation
Likelihood x Prior

Normalization Factor

Posterior =
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Recap: Bayes Decision Theory

tp(x]a) (le) Likelihood

p( p(a

X | b p(b) Likelihood x Prior

Dec1510n boundary

p(alx) , Likelihood x Prior
Posterzor = -
NormalizationFactor

8
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RWNTH
Recap: Gaussian (or Normal) Distribution

e One-dimensional case t
> Mean p
> Variance o2

N(z|p,0®) = \/Ql—m exp {— (xz_af)Q }

N(z|p,a?)

v

e Multi-dimensional case
> Mean p
> Covariance X
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9
Image source: C.M. Bishop, 2006



Side Note

e Notation

> In many situations, it will be preferable to work with the inverse
of the covariance matrix X::

A=X"1

> We call A the precision matrix.

> We can therefore also write the Gaussian as

N(z|p, A7) = \/ﬁi—l/Q exp {—%(x — M)Q}
N (x|, A7) = (zw)Dﬂl\A\—l/Q exp {—%(X — ) Ax - u)}
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Recap: Parametric Methods

e Given
. Data X ={x1,2o,...,2zN}

> Parametric form of the distribution
with parameters 6

. E.g. for Gaussian distrib.: 0 = (i, 0)

e Learning
~ Estimation of the parameters ¢

e Likelihood of ¢

~ Probability that the data X have indeed been generated from a
probability density with parameters 6

L(6) = p(X16)
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RWTH
Recap: Maximum Likelihood Approach

e Computation of the likelihood

> Single data point: p($n|9) = N(z,|u, 02)
~ Assumption: all data points X = {:cl, ..,xn} are independent
L(0) = p(X|0) = H p(x,|0)

» Log-likelihood
E@)=—InL(0) = — Zlnp(mn|9)

e Estimation of the parameters 6 (Learning)

> Maximize the likelihood (=minimize the negative log-likelihood)
— Take the derivative and set it to Zero.

-y B
p(x,|0)

Slide credit: Bernt Schiele B. Leibe
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RWTH
Recap: Maximum Likelihood Approach

e Applying ML to estimate the parameters of a Gaussian,
we obtain

g T “sample mean”

e In a similar fashion, we get

ZI*—‘

N
E “sample variance”

e 0= (i1,6) is the Maximum Likelihood estimate for the
parameters of a Gaussian distribution.

e This is a very important result.
e Unfortunately, it is biased...

B. Leibe
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RWTH
Recap: Maximum Likelihood - Limitations

e Maximum Likelihood has several significant limitations

» It systematically underestimates the variance of the distribution!
~ E.g. consider the case

N:LX:{CIZ‘l} I >

= Maximum-likelihood estimate:

- We say ML overfits to the observed data.

> We will still often use ML, but it is important to know about this
effect.

14
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Recap: Deeper Reason

e Maximum Likelihood is a Frequentist concept

> In the Frequentist view, probabilities are the frequencies of
random, repeatable events.

» These frequencies are fixed, but can be estimated more
precisely when more data is available.

e This is in contrast to the Bayesian interpretation

> In the Bayesian view, probabilities quantify the uncertainty
about certain states or events.

> This uncertainty can be revised in the light of new evidence.

e Bayesians and Frequentists do not like /7
each other too well... =

s
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RWTH
Recap: Bayesian Approach to Learning

e Conceptual shift

> Maximum Likelihood views the true parameter vector 6 to be
unknown, but fixed.

- In Bayesian learning, we consider 6 to be a random variable.

e This allows us to use knowledge about the parameters ¢

. i.e. to use a prior for 6 posterior
p(8ly)

» Training data then converts this .
prior distribution on 6 into prior
a posterior probability density. p(8)

~ The prior thus encodes knowledge we have about the type of
distribution we expect to see for 6.

Slide adapted from Bernt Schiele B. Leibe
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RWNTH
Recap: Bayesian Learning Approach

e Bayesian view:

» Consider the parameter vector 6 as a random variable.
> When estimating the parameters, what we compute is

p(x|X) = /p(aj, 0| X)do Assumption: given 0, this

doesn’t depend on X anymore

p(x,6|X) = p(x6, X)p(6]X)

p(2]X) = / p(]0)p(6]X)do
——

This is entirely determined by the parameter 6
(i.e. by the parametric form of the pdf).
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RWNTH
Recap: Bayesian Learning Approach

p(]X) = / p(]0)p(6]X)db
—

T~
— p(X|0)p(0) _ p(0)
PO ==y~ Y
NI
/\_/

p(X) = / p(X|0)p(6)d6 — / L(0)p(6)do

e Inserting this above, we obtain

[ p(z]0)LO)p(0) ., [ p(z|0)L(0)p(0)
p(elX) = / X VT Toopea
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RWTH
Recap: Bayesian Learning Approach

* Discussion Likelihood of the parametric

form 0 given the data set X.

Estimate for x based on Prior for the
parametric form 0 parameters 0

\ | /

_ [h(alf)LO)p(d
o) = | TLOPO)d

~

I

Normalization: integrate
over all possible values of ¢

S

» The more uncertain we are about 6, the more we average over
all possible parameter values.
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Topics of This Lecture

* A Probabilistic View on Regression
» Least-Squares Estimation as Maximum Likelihood
> Predictive Distribution
> Maximum-A-Posteriori (MAP) Estimation
> Bayesian Curve Fitting
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Curve Fitting Revisited

e In the last lecture, we’ve looked at curve fitting in terms
of error minimization...

e Now: View the problem from a probabilistic perspective

» Goal is to make predictions for target variable ¢
given new value for input variable .

- Basis: trainingset x=(z, ..., z,)"
with target values t = (¢, ..., t,)".

- We express our uncertainty over the value of the target variable
using a probability distribution

p(tlz,w, 5)
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Probabilistic Regression

e First assumption:

> Our target function values ¢ are generated by adding noise to
the ideal function estimate:

gt S
value / \

Regression function Input value Weights or
parameters

e Second assumption:
> The noise is Gaussian distributed.

p(tlx, w, B) = N(tly(x,w), 8"

\

Mean Variance

(B precision)

Slide adapted from Bernt Schiele B. Leibe
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Probabilistic Regression

e Given
- Training data points: X = [x1,...,%,] € R¥*"
- Associated function values: t = [t1,...,tn]"

e Conditional likelihood (assuming i.i. d data)

p(t’X,W,,@ HN |y Xna HN n’w @(Xn)
n=1 /
= Maximize w.r.t. w, Generalized linear

regression function

Slide adapted from Bernt Schiele B. Leibe
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Maximum Likelihood Regression
e Simplify the log-likelihood

log p(t|X, w, 5) = ilogN(tn\y(XmW),ﬁ‘l)
- Nz, 67

1
- V2r3—1/2

exp {—g(fc—u)z}

n=1 \/27‘- 2
3 & N N
= —5 Y {tn — ylxn, W)} + 3 1og 8 - 7 log(2n)
Sum-of-squares error Constants
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Maximum Likelihood Regression

N N
{tn — y(xn, W)} + - log § — = log(2m)

l.\D||Q
] =

log p(t|X, w, 3)
1

S
|

N N

{t, — vvf'rcb(:x:r,.l)}2 + 5 log 3 — 5 log(2m)

I
l_\D||Tb
] =

S
|
[

e Gradient w.r.t. w:

Vwlogp(t| X, w, §) —ﬁzt —who(xn))(xn)
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Maximum Likelihood Regression

Vw log p(t|X, w, §) —ﬁZ —w'p(xn))B(xn)

e Setting the gradient to zero

= —BZ —wl(x,))p(xn)
& Ztnqﬁ(xn) = {Z ¢<xn>¢(xn>T} W

& ot =0 w S = [p(x1),...,0(xp)]

— (P! ) 1Pt
< wuL = ) ¥—— Same as in least-squares

regression!

=> Least-squares regression is equivalent to Maximum Likelihood
under the assumption of Gaussian noise.
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RWNTH
Role of the Precision Parameter

e Also use ML to determlne the precision parameter G

logp(t|X, w, (3) 6 Z{t — W gb Xn,) } 4+ — log,(j’ — E log(2)

e Gradient w.r.t. (:
N1

Valogp(t| X, w, () ——Z{t — W qﬁxn)} 33

% = —Z{t —wo(x,)}"

=> The inverse of the noise precision is given by the residual
variance of the target values around the regression function.

n
-—
.
Q
P
-E
o))
=
c
-
(44}
Q
—
(b}
£
e
(&)
©
=
©
(D]
(&)
[
©
>
©
<

29
B. Leibe



Predictive Distribution

e Having determined the parameters w and (3, we can
now make predictions for new values of x.

p(t|X, W, Bur) = N (t|y(x, W), Bat,)

e This means

> Rather than giving a point Lr
estimate, we can now also t
give an estimate of the
estimation uncertainty.

e What else can we do in the
Bayesian view of regression?

o
8

n
-
.
Q
i
-E
o))
-E
c
-
(44}
Q
—
(b}
£
e
(@)
@®
=
©
(D]
(&)
[
©
>
©
<

30
Image source: C.M. Bishop, 2006

B. Leibe



n
-
.
Q
i
-E
o))
-E
c
-
(44}
Q
—
(b}
£
e
(@)
@®
=
©
(D]
(&)
[
©
>
©
<

RWTH
MAP: A Step Towards Bayesian Estimation...

e Introduce a prior distribution over the coefficients w.

~ For simplicity, assume a zero-mean Gaussian distribution

(M+1)/2
p(w|a) = N(wl|0,a 1) = (%) exp {—%WTW}

> New hyperparameter « controls the distribution of model
parameters.

e Express the posterior distribution over w.
» Using Bayes’ theorem:

p(w|X,t, 8, a) x p(t|X, w, B)p(w|a)
> We can now determine w by maximizing the posterior.
> This technique is called maximum-a-posteriori (MAP).

B. Leibe
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MAP Solution

e Minimize the negative logarithm
—logp(w|X, t, 3,a) o< —logp(t| X, w, 3) — log p(w|a)

N
—logp(t|X,w,3) = g Z{y(xn, W) — tn}2 + const
n=1

—log p(w|a) = %WTW + const

e The MAP solution is therefore the solution of
N
gnzl{y(xn,w) — tn}z + %WTW

= Maximizing the posterior distribution is equivalent to
minimizing the regularized sum-of-squares error (with A =
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RWTH
Results of Probabilistic View on Regression

e Better understanding what linear regression means

» Least-squares regression is equivalent to ML estimation under
the assumption of Gaussian noise.

= We can use the predictive distribution to give an uncertainty
estimate on the prediction.

= But: known problem with ML that it tends towards overfitting.

» L2-regularized regression (Ridge regression) is equivalent to
MAP estimation with a Gaussian prior on the parameters w.

= The prior controls the parameter values to reduce overfitting.
= This gives us a tool to explore more general priors.

e But still no full Bayesian Estimation yet

> Should integrate over all values of w instead of just making a
point estimate.
B. Leibe
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Bayesian Curve Fitting

e Given
- Training data points: X = [x1,...,%,] € R¥*"
- Associated function values: t = [t1,...,tn]"

~ Our goal is to predict the value of ¢ for a new point x.

e Evaluate the predictive distribution

pltfe.X,6) = [ e, wip(w/X, t)dw

™~

What we just computed for MAP

~ Noise distribition - again assume a Gaussian here

p(tlz, w) = N(tly(x, w), 57"

> Assume that parameters o and (3 are fixed and known for now.
34
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Bayesian Curve Fitting

e Under those assumptions, the posterior distribution is a
Gaussian and can be evaluated analytically:

p(tlz, X, t) = N(t|m(z), s*())
- where the mean and variance are given by

N
m(z) = Bo()7S Y ¢(xn)tn

s(x)? = F7 + o(z) " S¢(x)

> and S is the regularized covariance matrix

N
S'=al+8) é(xn)d(xn)"
n=1

B. Leibe
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Analyzing the result

e Analyzing the variance of the predictive distribution

s(@)? = 67 + ¢(x)"So(x)

Uncertainty in the predicted Uncertainty in the parameters w
value due to noise on the (consequence of Bayesian
target variables treatment)

(expressed already in ML)

36
B. Leibe



RWTH
Bayesian Predictive Distribution

e Important difference to previous example
> Uncertainty may vary with test point !
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CHEN
. , UNIVERSITY
Topics of This Lecture

e Recap: Important Concepts from ML Lecture
Probability Theory

~ Bayes Decision Theory

> Maximum Likelihood Estimation

» Bayesian Estimation

Y

e A Probabilistic View on Regression
» Least-Squares Estimation as Maximum Likelihood
> Predictive Distribution
> Maximum-A-Posteriori (MAP) Estimation
> Bayesian Curve Fitting

e Discussion
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Discussion

e We now have a better understanding of regression
» Least-squares regression: Assumption of Gaussian noise

= We can now also plug in different noise models and explore how
they affect the error function.

» L2 regularization as a Gaussian prior on parameters w.

= We can now also use different regularizers and explore what
they mean.

= Next lecture...

- General formulation with basis functions ¢(x).
= We can now also use different basis functions.

39
B. Leibe



Discussion

e General regression formulation

> In principle, we can perform regression in arbitrary spaces
and with many different types of basis functions

- However, there is a caveat... Can you see what it is?

e Example: Polynomial curve fitting, M=3
D D D

y(x w = W + szxz -+ Z Z Wi T L5 + Y y Y W;jkTiT T

=1 7=1 =1 3=1 k=1

= Number of coefficients grows with D!

= The approach becomes quickly unpractical for high dimensions.
~ This is known as the curse of dimensionality.

> We will encounter some ways to deal with this later.
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RWTHAACHEN
UNIVERSITY

References and Further Reading

e More information on linear regression can be found in
Chapters 1.2.5-1.2.6 and 3.1-3.1.4 of

&S| PATTERN RECOGNITION g
o MACHINE LEARNING

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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